Displaying publications 41 - 60 of 230 in total

Abstract:
Sort:
  1. Mohd Hasmizam Razali, Nadhra Hidayah Binti Mohd Halim
    MyJurnal
    Methyl orange is one of the anionic dyes and is a major pollutant from textile industry that enters both aquatic and atmospheric systems. In this research, methyl orange was degraded using TiO2 powder and immobilized TiO2 on glass. Titanium tetra-isopropoxide (TTIP) was used for preparation of TiO2 powder using soft chemistry method, and it was immobilized on glass via paste-gel coating method. The prepared photocatalysts were characterized by XRD and SEM. Highly crystalline anatase TiO2 powder photocatalyst was obtained. Meanwhile, immobilized TiO2 was less crystalline and agglomerated onto the glass surface. TiO2 powder had higher degradation rate (71%) compared to immobilized TiO2 (52%) due to its chemical stability and larger amount of photocatalyst contacted with methyl orange during the degradation process.
    Matched MeSH terms: Powders
  2. Zhang, Q., Ismail, N., Cheng, L.H.
    MyJurnal
    Chicken breast muscle powder (CBMP) was treated as a function of heating temperature, heating time and amount of alkali added. The pre-treated CBMP was then blended with modified waxy corn starch (MWCS) and characterized by flow analysis and temperature sweep. Flow analysis revealed that the blend behaved as a shear thickening and time dependent fluid with a yield stress. Statistical analysis showed that only linear and quadratic effects of heating temperature and heating time caused significant effects on flow behaviour index, consistency index and yield stress (p
    Matched MeSH terms: Powders
  3. Kang, O.L., Yong, P.F., Ma’aruf, A.G., Osman, H., Nazaruddin, R.
    MyJurnal
    In this work, oven-dried, freeze-dried and spray-dried agaro-oligosaccharide powders were characterized to investigate their physicochemical and antioxidant properties. Agaro-oligosaccharide powders were shown to exhibit high water solubility index (88.73 – 95.88%), water absorption capacity (0.96 – 2.57 g/g) and oil absorption capacity (0.40 – 0.45 g/g). Agaro-oligosaccharide powders were shown to possess moderate DPPH radical scavenging activity (10.65 – 14.59%), ABTS radical scavenging activity (44 .47 – 65.61%) and ferric reducing antioxidant activity (0.165 – 0.353). Agaro-oligosaccharide powders were further characterized with respect to thermal and pH stability. Agaro-oligosaccharide powders were shown to exhibit high temperature resistance (≤ 100oC) and acid/alkaline resistance.
    Matched MeSH terms: Powders
  4. Yusof Abdullah, Mohd Reusmaazran Yusof, Nadira Kamarudin, Paulus, Wilfred Sylvester, Rusnah Mustaffa, Nurazila Mat Zali, et al.
    MyJurnal
    Al/B4C composites with 0 wt.%, 5 wt.% and 10 wt.% of B4C were prepared by powder metallurgy and their properties were characterised successfully. Investigation of the effect of milling times (4, 8, 12, 16 hours) on microstructure, phase identification, hardness and neutron attenuation coefficient of composites has been studied. The results showed that hardness increased with increased of milling time, with maximum hardness obtained at 16 hours milling time. The increment is slower as the composition of B4C increased. The hardness of Al/10%B4C, Al/5%B4C and Al/0%B4C were 81.7, 78.7 and 61.2 HRB respectively. Morphology of scanning electron microscopy (SEM) showed that microstructures play important role in controlling the hardness. Meanwhile, x-ray diffraction (XRD) analysis showed the phases and crystalline present in composites with an indication that crystalline of the grain increased as the milling time increased. Neutron absorption of Al/10%B4C composites showed that this composite has the highest attenuation coefficient, thus indicating that it is the best composites for neutron shielding.
    Matched MeSH terms: Powders
  5. Habilla, C., Sim, S.Y., Nor Aziah, Cheng, L.H.
    MyJurnal
    In this study, acid-thinned starch was blended with konjac glucomannan or psyllium husk powder at a concentration of 3% w/w (starch basis). The blends were characterized by pasting analysis and rheological
    properties evaluation. Jelly candy was made from the blends and textural characteristics were studied. Pasting analysis showed that both gums were found to significantly increase some of the pasting parameters, such as peak viscosity, trough, breakdown, final viscosity and setback values. From the frequency sweep, it was found that addition of konjac glucomanan or psyllium husk powder increased the storage modulus (G’) and loss modulus (G’’) values, with psyllium added sample showing more prominent effect than konjac added ones, when compared to the control samples. All samples were found to demonstrate thixotropic flow behaviour. Jelly candy texture profile analysis revealed that konjac glucomannan or psyllium husk powder addition, although decreasing chewability, but rendered the jelly candy less sticky.
    Matched MeSH terms: Powders
  6. Rahbari, R., Hamdi, M., Farhudi, O., Yahya, R., Asmalina, M., Marzuki, Z.
    MyJurnal
    Self-propagating high-temperature synthesis (SHS) of powder compacts is a novel processing technique being developed as a route for the production of engineering ceramics and other advanced materials. The process, which is also referred to as combustion synthesis, provides energy- and cost-saving advantages over the more conventional processing routes for these materials. In the case of titanium or titanium alloy materials, prior researches employed powder metallurgy technology for preparing metal matrix composites, MMCs and laminated structures through the use of fine powders of an inert phase or phases (TiC, TiN, TiB and TiB2B ) dispersed in Ti or Ti alloy powders. The present research relates to manufacture of titanium-ceramic composites that are synthesized by combustion synthesis (SHS) and retains a multilayered composite microstructure comprising one or more titanium-based layers and one ceramic titanium carbide layers.
    Matched MeSH terms: Powders
  7. Wan Fahmin Faiz Wan Ali, Mohd Fadhil Ain, Zainal Arifin Ahmad
    MyJurnal
    Triyttrium Pentairon (iii) Oxide (Y3Fe501,2) or familiar called as Yttrium Iron Garnet (YIG) is successfully prepared using a conventional mixed-oxide method of 5:3 Fe to Y ratios. YIG prepared from conventional mixed-oxide usually produced some associated phase which surely will affect electrical properties. In this study, various temperature used in the sintering process to induce associated phases (YIP) to be fully reacting to form single phase of YIG and the effect on resonance frequency is studied for resonator applications. The mixtures of oxide powders are calcined at 1100 "C and sintered at various temperatures of (1350, 1380, 1400, 1420 1450 QC, respectively). Cubic phase is detected from the formation of YIG. Some other phases such as YIP and hematite also present as secondary phase. However, it is seen that, based on the Rietvield refinement method, the total amount of secondary phase simulated are inversely proportional with sintering temperature. The powder was pressed into cylindrical pellet and tested as a microwave resonator in antenna application. It was found that, on the actual antenna circuit the operating frequencies measured are in the range of 10-12 GHz for all samples which suitable for X-band. At the end, overall radiation pattern for all samples exhibit an omnidirectional behavior.
    Matched MeSH terms: Powders
  8. Yeong, Meng How, Shah Rizal Kasim, Hazizan Md Akil, Zainal Arifin Ahmad
    MyJurnal
    β-tricalcium phosphate (β-TCP) powders were synthesized by using various particles sizes (40 nm – 780 μm) calcium carbonate (CaCO3) and phosphoric acid (H3PO4) at room temperature (25 ˚C). The synthesized powders were characterized by using X-Ray Diffraction (XRD) method. The purity of β-TCP powders were determined from XRD pattern while the crystallite size of β-TCP powders were calculated by using Scherrer equation. Results shows that the purity of β-TCP powders were ranged from 20.33 % to 81.94 % while the crystallite size of β- TCP powders were ranged from 0.04391 μm to 0.06751 μm. From this work, particle size of CaCO3 will influenced the purity but not the mean crystallite size of synthesized β-TCP.
    Matched MeSH terms: Powders
  9. Masliana Muslimin, Meor Yusoff, M.S.
    MyJurnal
    The experiment aims to investigate the effect of high energy milling to the crystallite size of α-alumina. The starting material used is α-alumina powder with starting crystal size of 86nm. This powder was milled at different time ranges from 0 to 60 minutes and milling speed ranges from 400 rpm to 1100 rpm using a wet milling technique in corundum abrasive materials. The wet milling technique involved the use of water with the alumina to water ratio of 1:6.1. Samples prepared were then examined using the X-Ray Diffraction (XRD) to calculate the crystallite size and scanning electron microscope (SEM) was also used to determine changes in the morphology. Results from these analysis showed that the crystallite size will get smaller when milling speed and time of more than 600rpm and 30 minutes respectively were used. Optimum conditions to achieve the smallest crystal size of 79.7nm are 1000 rpm and 60 minutes.
    Matched MeSH terms: Powders
  10. Mohd Noor Halmy, Siti Khadijah Alias, Radzi Abdul Rasih, Mohd Ghazali Mohd Hamami, Norhisyam Jenal, Siti Aishah Taib
    MyJurnal
    This study focuses on the effect of boronizing medium on the boride layer thickness of pack boronized 304 stainless steel after surface modification. Pack boronizing treatment was conducted in temperature of 900oC for a duration of eight hours. The treatment was performed using two different boronizing mediums which are powder and paste inside a tight box in an induction furnace. The characteristics of the samples were then observed using optical microscopy and XRD analyser. The thickness of boride layer was then measured using MPS digital image analysis software. The results showed that boronizing medium significantly affected the thickness of boride layer as paste boronized samples exhibited thicker boride layer thickness. The enhancement was mainly due to the size of boron particle in the paste medium which was smaller than powder medium that enabled better diffusion. It is expected that the enhancement of the boride layer thickness would result in further improvement of the mechanical and wear properties of this material.
    Matched MeSH terms: Powders
  11. Wan Rosli, W.l.
    MyJurnal
    The present study was conducted to investigate the effect of oyster mushroom (Pleurotus sajorcaju,
    PSC) addition to partially replace coconut milk powder on nutritional composition and
    sensory values of Herbal Seasoning (HS). This study evaluates the nutritional composition,
    dietary fibre and sensory acceptance of HS that processed using six different formulations
    with different levels of PSC powder, namely 0% (A), 20% (B), 40% (C), 60% (D), 80% (E)
    and 100% (F). The use of PSC powder substantially brought down the fat content of HS.
    The fat content of PSC-based HS was ranged from 13.82±0.84% to 8.16±0.74%. The protein
    content showed an increasing trend in line with increasing of PSC powder ranging from 7%
    to 12%.Substitution of coconut milk powder with PSC powder resulted in significantly higher
    (p0.05).The panels preferred HS formulated with PSC powder since its
    enhance colour and viscosity attributes of the products. In brief, HS formulated with more than
    40% PSC powder is recommended since it has significant nutrients and palatably accepted by
    sensorial panellists.
    Matched MeSH terms: Powders
  12. Liansheng Tang, Haitao Sang, Liqun Jiang, Yinlei Sun
    Sains Malaysiana, 2016;45:141-156.
    The suction between soil particles is the basis and core problem in the study of unsaturated soil. However, is the suction between soil particles just the matrix suction (which has been widely used since the discipline of unsaturated soil mechanics was established). In fact, the concept of matrix suction is from soil science and reflects the water-absorbing capacity of the soil. Matrix suction characterizes the interaction between soil particles and pore water rather than the interactions between soil particles, which were not in conformity with the principle of effective stress of soils. The suction of unsaturated soil, in essence, is the intergranular suction composed of absorbed suction and structural suction. In this paper, first, the basic concepts of absorbed suction and structural suction were briefly introduced. Then, with soil mechanics, powder science, crystal chemistry, granular material mechanics and other related disciplines of knowledge for reference, the quantitative calculation formulas were theoretically deduced for the absorbed suction for equal-sized and unequal-sized unsaturated soil particles with arbitrary packing and the variable structural suction for equal-sized unsaturated soil particles with arbitrary packing and unequal-sized unsaturated soil particles with close tetrahedral packing. The factors that influence these equations were discussed. Then, the shear strength theory of unsaturated soil was established based on the theory of intergranular suction through the analysis of the effective stress principle of unsaturated soil. This study demonstrates that the shear strength of unsaturated soil consists of three parts: The effective cohesive force, the additional strength caused by external loads and the strength caused by intergranular suction. The contribution of the three parts to the shear strength of unsaturated soil depends on the following influence factors: Soil type, confining pressure, water content and density. Therefore, these factors must be comprehensively considered when determining the strength of an unsaturated soil.
    Matched MeSH terms: Powders
  13. Mohamad Yusof Maskat, Lee LY
    Due to the increase in consumer interest, mengkudu (Morinda citrifolia) extract is being produced in several forms including dry powder. One of the methods that can be used to produce dry powder is spray drying. This study was done to determine the physical properties of powdered mengkudu extract produced by spray drying from different sections of the spray-dryer. Mengkudu extract at 50% (v/v) dilution was spray-dried using two levels of feed flow rate (350 mL/hr and 475 mL/hr) and inlet air temperature (170oC and 190oC). Spray dried mengkudu extract from the cyclone and colletion sections of the spray dryer was collected and analyzed for amount produced, moisture content and colour. No significant interaction between feed flow rate and inlet air temperature used was observed for all parameters measured. Inlet temperature used did not show any significant effect on amount of production. However, increasing the inlet air temperature from 170oC to 190oC did produce lower moisture content for samples from the cyclone but no significant difference for samples from the collection bottle, while lowering the degree of redness of samples from the collection bottle, while lowering the degree of brightness for samples from both cyclone and collection sections of the spray-dryer. Feed flow rate used did not produce any significant effect on all parameters measured.
    Matched MeSH terms: Powders
  14. Mohd. Reusmaazran Yusof, Roslinda Shamsudin, Syafiq Baharuddin, Idris Besar
    Sains Malaysiana, 2008;37:233-237.
    Porous hydroxyapatite (HAp) as a bone graft substitute was produced via gas technique with three different concentrations of hydrogen peroxide (H2O2) namely 20, 30 and 50%. Hydroxyapatite(HA) slurries with different concentration were produced by mixing between H2O2 solutions and HA powder (L/P) with different ratio i.e. 0.9 to 2.20 ml.g-1. Different L/P ratio and H2O2 concentration affected the porosity, interconnectivity and compressive strength of HAp sample. Changes in L/P ratio between 0.9 to 2.20 ml.g-1, increases the porosity around 50 - 65% at 20% H2O2 concentration. Porosity increases with the L/P values and H2O2 concentration which 76% of porosity was obtained at 50% H2O2 and 2.20 mlg-1 of L/P. The compressive strength of HAp is in the range of 0.5 to 2.15 MPa and is found decreasing with the increasing of L/P values.
    Matched MeSH terms: Powders
  15. Toh W, Lai J, Wan Aizan W
    Sains Malaysiana, 2011;40:1179-1186.
    Several methods of incorporating sago pith waste (SPW) into poly(vinyl alcohol) (PVA) had been conducted: (i) dry blending (PVA/SPW/G), (ii) blending of SPW and pre-plasticized PVA (pPVA/SPW/G) and (iii) blending of pre-plasticized of both PVA and SPW (pPVA/pSPW). The effect of the compounding method on the mechanical and water absorption properties were investigated. The addition of SPW into PVA greatly reduced the tensile strength and elongation at break. The tensile strength and elongation at break of PVA/SPW composites with identical geometry during compounding stage (powder/powder and pellet/pellet), which were PVA/SPW/G and pPVA/pSPW yielded the highest value. The percentage of water absorbed by PVA/SPW/G (without pre-plasticization) was the highest, followed by pPVA/pSPW and pPVA/SPW/G.
    Matched MeSH terms: Powders
  16. Hafizawati Zakaria, Norhamidi Muhamad, Abu Bakar Sulong, Mord Halim Irwan Ibrahim, Farhana Foudzi
    Sains Malaysiana, 2014;43:129-136.
    Micro powder injection molding (vim) is a promising process that may satisfy the demand on miniaturization parts to micro domain in mass production with low manufacturing cost. Three mol% yttria stabilized zirconia (Ysz) with nano-sized powder and binder system consists of polyethylene glycol (PEG), polymethyl methacrylate (PMMA) and stearic acid (sA) were used. Nano-size powders with higher surface area generally require more binder to form a feedstock. As such, determination of the optimum powder loading of the feedstock for 1UPIM process is important. The rheological characteristics of different YSZ feedstocks with powder loading of 52 53 and 54 vol.% were investigated in terms of flow behavior as a function of viscosity and shear rate. Fairly low values of flow behavior exponent ranging from 025 to 0.39 (n<1) resulted in pseudoplastic flow behavior of the examined Yszfeedstock. The 52 vol.% feedstock exhibited the lowest viscosity resulting in highest activation energy and lowest moldability index of 1.862x10-6, while the 54 vol.% feedstock regardless to its high viscosity, yielded a low activation energy of 4.14 kJImol and high moldability index of 4.59x10-6. Based on rheological properties obtained, a powder loading of 54 vol.% has desirable feedstock characteristics for iumm process and exhibited molding ability for micro detail filling. The relationship between the optimum rheological properties obtained and the actual injection process was also determined. The results showed that the green parts were able to be injected without defects such as short shot or flashing.
    Matched MeSH terms: Powders
  17. Saiful Bahri, S., Wan Rosli, W. l.
    MyJurnal
    The influence of oyster mushroom (pleurotus sajor-caju, PSC) powder on the physical
    properties of herbal seasoning (HS) was investigated. The pH, total solid, viscosity, rheology
    and texture of semi solid HS containing different PSC powder level (0%, 20%, 40%, 60%,
    8%, 100% w/w) of coconut milk powder were measured. The pH of the products were in the
    range of 4.05 - 4.15. Rheological behavior was characterized by oscillatory rheometry. Stress
    sweep, frequency sweep and steady stress experiments were conducted to study the behavior
    of the products. The products showed non Newtonian characteristic or shear thinning. All
    samples were G’> G’’ showed the gel like network. In addition, the back extrusion rig texture
    analysis showed the correlation among the samples were also studied. Total substitution of PSC
    powder (100% w/w) in the formulation resulted more viscous product and the combination
    of the coconut milk powder and PSC powder showed the best spreadability and flow to the
    product characteristics. No added PSC powder (0% w/w) showed the least viscous products
    and the less moduli among the samples studied. The present study suggested the incorporation
    of more than 40% PSC powder to replace coconut milk powder give better flowability and not
    affect the viscosity of the products.
    Matched MeSH terms: Powders
  18. Alice, C.L.V., Wan Rosli, W.I.
    MyJurnal
    The present study was conducted to investigate the effects of brown rice (BR) powder addition on the proximate composition, total dietary fibre content and acceptability of some selected Malaysian traditional rice-based local kuih. Two types of kuih samples, namely Kuih Lompang (KL) and Kuih Talam Pandan (KTP) were prepared at the levels of either 0%, 10%, 20% or 30%. The kuih samples were analyzed for nutritional composition and sensory acceptance. There was significant increase in total dietary fibre content (from 2.64 g/100 g to 3.15 g/100 g) and protein content (from 2.36% to 2.51%) with the incorporation of 90% BR powder in the KL formulation. The moisture (from 36.79% to 36.83%), ash (from 1.11% to 1.21%) and fat (from 8.51% to 8.73%) content were not significantly affected for all percentages of BR powder addition. For KTP, the addition of BR powder at the level of 90% significantly increased the total dietary fibre (from 2.77 g/100 g to 3.45 g/100 g), fat (from 5.73% to 6.95%) and moisture (from 64.10% to 64.12%) content as compared to the control (0%). However, the protein content was not significantly affected (from 3.41% to 3.59%). On the other hand, there was no significant difference for all sensory attributes of KL formulated with 30-90% of BR powder as compared to the control (0%). The sensory score of KTP added with 30-90% BR powder received significantly lower sensory score compared to the control sample (0%) for appearance, colour, firmness, adhesiveness, chewiness, taste and overall acceptance attributes. In summary, sensory evaluation showed that all BR-incorporated KL were acceptable, while only 30% addition of BR powder in KTP was acceptable. Thus, BR powder is potentially used in improving the nutritional composition of KL. However, further study is needed to improve palatability aspect of KTP formulated with BR powder.
    Matched MeSH terms: Powders
  19. Park J, Lam SS, Park YK, Kim BJ, An KH, Jung SC
    Environ Res, 2023 Jan 01;216(Pt 3):114657.
    PMID: 36328223 DOI: 10.1016/j.envres.2022.114657
    Nickel-impregnated TiO2 photocatalyst (NiTP) responding to visible light was prepared by the liquid phase plasma (LPP) method, and its photoactivity was evaluated in degrading an antibiotic (oxytetracycline, OTC). For preparing the photocatalyst, nickel was uniformly impregnated onto TiO2 (P-25) powder, and the nickel content increased as the number of LPP reactions increased. In addition, the morphology and lattice of NiTP were observed through various instrumental analyses, and it was confirmed that NiO-type nanoparticles were impregnated in NiTP. Fundamentally, as the amount of impregnated nickel in the TiO2 powder increased sufficiently, the band gap energy of TiO2 decreased, and eventually, the NiTP excited by visible light was synthesized. Further, OTC had a decomposition reaction pathway in which active radicals generated in OTC photocatalytic reaction under NiTP were finally mineralized through reactions such as decarboxamidation, hydration, deamination, demethylation, and dehydroxylation. In effect, we succeeded in synthesizing a photocatalyst useable under visible light by performing only the LPP single process and developed a new advanced oxidation process (AOP) that can remove toxic antibiotics.
    Matched MeSH terms: Powders
  20. Giok KC, Veettil SK, Menon RK
    Clin Oral Investig, 2024 Jan 06;28(1):78.
    PMID: 38183500 DOI: 10.1007/s00784-023-05467-4
    OBJECTIVES: The purpose of this systematic review with network meta-analysis was to assess the comparative efficacy of various types of denture adhesives in complete denture patients.

    MATERIAL AND METHODS: A search was conducted for trials published in Scopus, PubMed, and Cochrane Central Register of Controlled Trials from inception until July 2023 (PROSPERO: CRD42023451045). A network meta-analysis was performed to assess the comparative efficacy of different denture adhesive types and ranked using the Surface Under the Cumulative Ranking (SUCRA) system. The Grading of Recommendations, Assessment, Development, and Evaluations (GRADE) approach was used to assess the level of certainty of evidence.

    RESULTS: Seventeen articles were included in the quantitative analysis. Cream denture adhesives significantly increased bite force in both incisal region (RR = 7.63[95%CI: 3.34, 11.91]) (P 

    Matched MeSH terms: Powders
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links