Displaying publications 41 - 60 of 81 in total

Abstract:
Sort:
  1. Zhang S, Ching CK, Huang D, Liu YB, Rodriguez-Guerrero DA, Hussin A, et al.
    Heart Rhythm, 2020 03;17(3):468-475.
    PMID: 31561030 DOI: 10.1016/j.hrthm.2019.09.023
    BACKGROUND: Implantable cardioverter-defibrillators (ICDs) are underutilized in Asia, Latin America, Eastern Europe, the Middle East, and Africa. The Improve SCA Study is the largest prospective study to evaluate the benefit of ICD therapy in underrepresented geographies. This analysis reports the primary objective of the study.

    OBJECTIVES: The objectives of this study was to determine whether patients with primary prevention (PP) indications with specific risk factors (1.5PP: syncope, nonsustained ventricular tachycardia, premature ventricular contractions >10/h, and low ventricular ejection fraction <25%) are at a similar risk of life-threatening arrhythmias as patients with secondary prevention (SP) indications and to evaluate all-cause mortality rates in 1.5PP patients with and without devices.

    METHODS: A total of 3889 patients were included in the analysis to evaluate ventricular tachycardia or fibrillation therapy and mortality rates. Patients were stratified as SP (n = 1193) and patients with PP indications. The PP cohort was divided into 1.5PP patients (n = 1913) and those without any 1.5PP criteria (n = 783). The decision to undergo ICD implantation was left to the patient and/or physician. The Cox proportional hazards model was used to compute hazard ratios.

    RESULTS: Patients had predominantly nonischemic cardiomyopathy. The rate of ventricular tachycardia or fibrillation in 1.5PP patients was not equivalent (within 30%) to that in patients with SP indications (hazard ratio 0.47; 95% confidence interval 0.38-0.57) but was higher than that in PP patients without any 1.5PP criteria (hazard ratio 0.67; 95% confidence interval 0.46-0.97) (P = .03). There was a 49% relative risk reduction in all-cause mortality in ICD implanted 1.5PP patients. In addition, the number needed to treat to save 1 life over 3 years was 10.0 in the 1.5PP cohort vs 40.0 in PP patients without any 1.5PP criteria.

    CONCLUSION: These data corroborate the mortality benefit of ICD therapy and support extension to a selected PP population from underrepresented geographies.

    Matched MeSH terms: Risk Assessment/methods*
  2. Joseph P, Yusuf S, Lee SF, Ibrahim Q, Teo K, Rangarajan S, et al.
    Heart, 2018 04;104(7):581-587.
    PMID: 29066611 DOI: 10.1136/heartjnl-2017-311609
    OBJECTIVE: To evaluate the performance of the non-laboratory INTERHEART risk score (NL-IHRS) to predict incident cardiovascular disease (CVD) across seven major geographic regions of the world. The secondary objective was to evaluate the performance of the fasting cholesterol-based IHRS (FC-IHRS).

    METHODS: Using measures of discrimination and calibration, we tested the performance of the NL-IHRS (n=100 475) and FC-IHRS (n=107 863) for predicting incident CVD in a community-based, prospective study across seven geographic regions: South Asia, China, Southeast Asia, Middle East, Europe/North America, South America and Africa. CVD was defined as the composite of cardiovascular death, myocardial infarction, stroke, heart failure or coronary revascularisation.

    RESULTS: Mean age of the study population was 50.53 (SD 9.79) years and mean follow-up was 4.89 (SD 2.24) years. The NL-IHRS had moderate to good discrimination for incident CVD across geographic regions (concordance statistic (C-statistic) ranging from 0.64 to 0.74), although recalibration was necessary in all regions, which improved its performance in the overall cohort (increase in C-statistic from 0.69 to 0.72, p<0.001). Regional recalibration was also necessary for the FC-IHRS, which also improved its overall discrimination (increase in C-statistic from 0.71 to 0.74, p<0.001). In 85 078 participants with complete data for both scores, discrimination was only modestly better with the FC-IHRS compared with the NL-IHRS (0.74 vs 0.73, p<0.001).

    CONCLUSIONS: External validations of the NL-IHRS and FC-IHRS suggest that regionally recalibrated versions of both can be useful for estimating CVD risk across a diverse range of community-based populations. CVD prediction using a non-laboratory score can provide similar accuracy to laboratory-based methods.

    Matched MeSH terms: Risk Assessment/methods*
  3. Sung JJ, Chiu PW, Chan FKL, Lau JY, Goh KL, Ho LH, et al.
    Gut, 2018 10;67(10):1757-1768.
    PMID: 29691276 DOI: 10.1136/gutjnl-2018-316276
    Non-variceal upper gastrointestinal bleeding remains an important emergency condition, leading to significant morbidity and mortality. As endoscopic therapy is the 'gold standard' of management, treatment of these patients can be considered in three stages: pre-endoscopic treatment, endoscopic haemostasis and post-endoscopic management. Since publication of the Asia-Pacific consensus on non-variceal upper gastrointestinal bleeding (NVUGIB) 7 years ago, there have been significant advancements in the clinical management of patients in all three stages. These include pre-endoscopy risk stratification scores, blood and platelet transfusion, use of proton pump inhibitors; during endoscopy new haemostasis techniques (haemostatic powder spray and over-the-scope clips); and post-endoscopy management by second-look endoscopy and medication strategies. Emerging techniques, including capsule endoscopy and Doppler endoscopic probe in assessing adequacy of endoscopic therapy, and the pre-emptive use of angiographic embolisation, are attracting new attention. An emerging problem is the increasing use of dual antiplatelet agents and direct oral anticoagulants in patients with cardiac and cerebrovascular diseases. Guidelines on the discontinuation and then resumption of these agents in patients presenting with NVUGIB are very much needed. The Asia-Pacific Working Group examined recent evidence and recommends practical management guidelines in this updated consensus statement.
    Matched MeSH terms: Risk Assessment/methods
  4. Singh DKA, Shahar S, Vanoh D, Kamaruzzaman SB, Tan MP
    Geriatr Gerontol Int, 2019 Aug;19(8):798-803.
    PMID: 31237103 DOI: 10.1111/ggi.13717
    AIM: The identification of risk factors associated with comorbidities and physical fitness might provide pathways for planning therapeutic targets for future falls prevention. Results from large datasets that examined falls risk factors in Asia have been limited. The aim of the present study was to identify the risk factors for falls by pooling data consisting of medical history, physical performance and self-rated health from two large Malaysian epidemiological studies.

    METHODS: Matching variables from the Towards Useful Aging and Malaysian Elders Longitudinal Research datasets related to falls, physical performance and determinants of falls were identified and pooled for analysis. The Timed Up and Go test and dominant handgrip strength tests were used as physical performance measures. Falls were self-reported, and functional status was assessed using activities of daily living.

    RESULTS: Data of 3935 participants, mean age 68.9 ± 6.8 years, 2127 (54.0%) women and 1807 (46.0%) men were extracted for analyses. In an adjusted model, independent risk factors for falls from this cohort studies were diabetes (OR 1.258), arthritis (OR 1.366), urinary incontinence (OR 1.346), poor self-rated health (OR 1.293), higher body mass index (OR 1.029) and lower handgrip strength (OR 1.234).

    CONCLUSIONS: Although the risk factors that emerged from our analyses were similar to available studies among older adults, the Timed Up and Go test did not appear as one of the risk factors in the present study that included middle-aged adults. Our findings will require confirmation in a prospective study. Geriatr Gerontol Int 2019; 19: 798-803.

    Matched MeSH terms: Risk Assessment/methods
  5. Musa MI, Shohaimi S, Hashim NR, Krishnarajah I
    Geospat Health, 2012 Nov;7(1):27-36.
    PMID: 23242678
    Malaria remains a major health problem in Sudan. With a population exceeding 39 million, there are around 7.5 million cases and 35,000 deaths every year. The predicted distribution of malaria derived from climate factors such as maximum and minimum temperatures, rainfall and relative humidity was compared with the actual number of malaria cases in Sudan for the period 2004 to 2010. The predictive calculations were done by fuzzy logic suitability (FLS) applied to the numerical distribution of malaria transmission based on the life cycle characteristics of the Anopheles mosquito accounting for the impact of climate factors on malaria transmission. This information is visualized as a series of maps (presented in video format) using a geographical information systems (GIS) approach. The climate factors were found to be suitable for malaria transmission in the period of May to October, whereas the actual case rates of malaria were high from June to November indicating a positive correlation. While comparisons between the prediction model for June and the case rate model for July did not show a high degree of association (18%), the results later in the year were better, reaching the highest level (55%) for October prediction and November case rate.
    Matched MeSH terms: Risk Assessment/methods
  6. Hassan H, Shohaimi S, Hashim NR
    Geospat Health, 2012 Nov;7(1):21-5.
    PMID: 23242677
    Dengue fever is a recurring public health problem afflicting thousands of Malaysians annually. In this paper, the risk map for dengue fever in the peninsular Malaysian states of Selangor and Kuala Lumpur was modelled based on co-kriging and geographical information systems. Using population density and rainfall as the model's only input factors, the area with the highest risk for dengue infection was given as Gombak and Petaling, two districts located on opposite sides of Kuala Lumpur city that was also included in the risk assessment. Comparison of the modelled risk map with the dengue case dataset of 2010, obtained from the Ministry of Health of Malaysia, confirmed that the highest number of cases had been found in an area centred on Kuala Lumpur as predicted our risk profiling.
    Matched MeSH terms: Risk Assessment/methods
  7. Chan CYW, Kwan MK
    Eur Spine J, 2018 02;27(2):340-349.
    PMID: 29058137 DOI: 10.1007/s00586-017-5350-x
    PURPOSE: To evaluate the zonal differences in risk and pattern of pedicle screw perforations in adolescent idiopathic scoliosis (AIS) patients.

    METHODS: The scoliosis curves were divided into eight zones. CT scans were used to assess perforations: Grade 0, Grade 1( 4 mm). Anterior perforations were classified into Grade 0, Grade 1( 6 mm). Grade 2 and 3 (except lateral grade 2 and 3 perforation over thoracic vertebrae) were considered as 'critical perforations'.

    RESULTS: 1986 screws in 137 patients were analyzed. The overall perforation rate was 8.4% after exclusion of the lateral perforation. The highest medial perforation rate was at the transitional proximal thoracic (PT)/main thoracic (MT) zone (6.9%), followed by concave lumbar (6.7%) and convex main thoracic (MT) zone (6.1%). The overall critical medial perforation rate was 0.9%. 33.3% occurred at convex MT and 22.2% occurred at transitional PT/MT zone. There were 39 anterior perforations (overall perforation rate of 2.0%). 43.6% occurred at transitional PT/MT zone, whereas 23.1% occurred at concave PT zone. The overall critical anterior perforation rate was 0.6%. 5/12 (41.7%) critical perforations occurred at concave PT zone, whereas four perforations occurred at the transitional PT/MT zone. There were only two symptomatic left medial grade 2 perforations (0.1%) resulting radiculopathy, occurring at the transitional main thoracic (MT)/Lumbar (L) zone.

    CONCLUSION: Overall pedicle perforation rate was 8.4%. Highest rate of critical medial perforation was at the convex MT zone and the transitional PT/MT zone, whereas highest rate of critical anterior perforation was at the concave PT zone and the transitional PT/MT zone. The rate of symptomatic perforations was 0.1%.

    Matched MeSH terms: Risk Assessment/methods
  8. Mortaza N, Abu Osman NA, Mehdikhani N
    Eur J Phys Rehabil Med, 2014 Dec;50(6):677-91.
    PMID: 24831570
    Fall is a common and a major cause of injuries. It is important to find elderlies who are prone to falls. The majority of serious falls occur during walking among the older adults. Analyzing the spatio-temporal parameters of walking is an easy way of assessment in the clinical setting, but is it capable of distinguishing a faller from a non-faller elderly? Through a systematic review of the literature, the objective of this systematic review was to identify and summarize the differences in the spatio-temporal parameters of walking in elderly fallers and non-fallers and to find out if these parameters are capable of distinguishing a faller from a non-faller. All original research articles which compared any special or temporal walking parameters in faller and non-faller elderlies were systematically searched within the Scopus and Embase databases. Effect size analysis was also done to standardize findings and compare the gait parameters of fallers and non-fallers across the selected studies. The electronic search led to 5381 articles. After title and abstract screening 30 articles were chosen; further assessment of the full texts led to 17 eligible articles for inclusion in the review. It seems that temporal measurements are more sensitive to the detection of risk of fall in elderly people. The results of the 17 selected studies showed that fallers have a tendency toward a slower walking speed and cadence, longer stride time, and double support duration. Also, fallers showed shorter stride and step length, wider step width and more variability in spatio-temporal parameters of gait. According to the effect size analysis, step length, gait speed, stride length and stance time variability were respectively more capable of differentiating faller from non-faller elderlies. However, because of the difference of methodology and number of studies which investigated each parameter, these results are prone to imprecision. Spatio-temporal analysis of level walking is not sufficient and cannot act as a reliable predictor of falls in elderly individuals.
    Matched MeSH terms: Risk Assessment/methods
  9. Ward HA, Gayle A, Jakszyn P, Merritt M, Melin B, Freisling H, et al.
    Eur J Cancer Prev, 2018 Jul;27(4):379-383.
    PMID: 27845960 DOI: 10.1097/CEJ.0000000000000331
    Diets high in red or processed meat have been associated positively with some cancers, and several possible underlying mechanisms have been proposed, including iron-related pathways. However, the role of meat intake in adult glioma risk has yielded conflicting findings because of small sample sizes and heterogeneous tumour classifications. The aim of this study was to examine red meat, processed meat and iron intake in relation to glioma risk in the European Prospective Investigation into Cancer and Nutrition study. In this prospective cohort study, 408 751 individuals from nine European countries completed demographic and dietary questionnaires at recruitment. Multivariable Cox proportional hazards models were used to examine intake of red meat, processed meat, total dietary iron and haem iron in relation to incident glioma. During an average follow-up of 14.1 years, 688 incident glioma cases were diagnosed. There was no evidence that any of the meat variables (red, processed meat or subtypes of meat) or iron (total or haem) were associated with glioma; results were unchanged when the first 2 years of follow-up were excluded. This study suggests that there is no association between meat or iron intake and adult glioma. This is the largest prospective analysis of meat and iron in relation to glioma and as such provides a substantial contribution to a limited and inconsistent literature.
    Matched MeSH terms: Risk Assessment/methods*
  10. Sany SB, Hashim R, Rezayi M, Rahman MA, Razavizadeh BB, Abouzari-lotf E, et al.
    Environ Sci Pollut Res Int, 2015 Aug;22(15):11193-208.
    PMID: 25953606 DOI: 10.1007/s11356-015-4511-x
    Current ecological risk assessment (ERA) schemes focus mainly on bioaccumulation and toxicity of pollutants in individual organisms. Ecological models are tools mainly used to assess ecological risks of pollutants to ecosystems, communities, and populations. Their main advantage is the relatively direct integration of the species sensitivity to organic pollutants, the fate and mechanism of action in the environment of toxicants, and life-history features of the individual organism of concern. To promote scientific consensus on ERA schemes, this review is intended to provide a guideline on short-term ERA involving dioxin chemicals and to identify key findings for exposure assessment based on policies of different agencies. It also presents possible adverse effects of dioxins on ecosystems, toxicity equivalence methodology, environmental fate and transport modeling, and development of stressor-response profiles for dioxin-like chemicals.
    Matched MeSH terms: Risk Assessment/methods*
  11. Shabanda IS, Koki IB, Low KH, Zain SM, Khor SM, Abu Bakar NK
    Environ Sci Pollut Res Int, 2019 Dec;26(36):37193-37211.
    PMID: 31745807 DOI: 10.1007/s11356-019-06718-2
    Human health is threatened by significant emissions of heavy metals into the urban environment due to various activities. Various studies describing health risk analyses on soil and dust have been conducted previously. However, there are limited studies that have been carried out regarding the potential health risk assessment of heavy metals in urban road dust of < 63-μm diameter, via incidental ingestion, dermal contact, and inhalation exposure routes by children and adults in developing countries. Therefore, this study evaluated the health risks of heavy metal exposure via ingestion, dermal contact, and inhalation of urban dust particles in Petaling Jaya, Malaysia. Heavy metals such as lead (Pb), chromium (Cr), zinc (Zn), copper (Cu), and manganese (Mn) were measured using dust samples obtained from industrial, high-traffic, commercial, and residential areas by using inductively coupled plasma mass spectrometry (ICP-MS). The principal component and hierarchical cluster analysis showed the dominance of these metal concentrations at sites associated with anthropogenic activities. This was suggestive of industrial, traffic emissions, atmospheric depositions, and wind as the significant contributors towards urban dust contamination in the study sites. Further exploratory analysis underlined Cr, Pb, Cu, and Zn as the most representative metals in the dust samples. In accommodating the uncertainties associated with health risk calculations and simulating the reasonable maximum exposure of these metals, the related health risks were estimated at the 75th and 95th percentiles. Furthermore, assessing the exposure to carcinogenic and non-carcinogenic metals in the dust revealed that ingestion was the primary route of consumption. Children who ingested dust particles in Petaling Jaya could be more vulnerable to carcinogenic and non-carcinogenic risks, but the exposure for both children and adults showed no potential health effects. Therefore, this study serves as an important premise for a review and reformation of the existing environmental quality standards for human health safety.
    Matched MeSH terms: Risk Assessment/methods
  12. Ishii S, Bell JN, Marshall FM
    Environ Pollut, 2007 Nov;150(2):267-79.
    PMID: 17379364
    The phytotoxic risk of ambient air pollution to local vegetation was assessed in Selangor State, Malaysia. The AOT40 value was calculated by means of the continuously monitored daily maximum concentration and the local diurnal pattern of O3. Together with minor risks associated with the levels of NO2 and SO2, the study found that the monthly AOT40 values in these peri-urban sites were consistently over 1.0 ppm.h, which is well in exceedance of the given European critical level. Linking the O3 level to actual agricultural crop production in Selangor State also indicated that the extent of yield losses could have ranged from 1.6 to 5.0% (by weight) in 2000. Despite a number of uncertainties, the study showed a simple but useful methodological framework for phytotoxic risk assessment with a limited data set, which could contribute to appropriate policy discussion and countermeasures in countries under similar conditions.
    Matched MeSH terms: Risk Assessment/methods
  13. Tanabe S, Kunisue T
    Environ Pollut, 2007 Mar;146(2):400-13.
    PMID: 16949712
    In this paper, we concisely reviewed the contamination of persistent organic pollutants (POPs) such as polychlorinated dibenzo-p-dioxins (PCDDs), dibenzofurans (PCDFs), biphenyls (PCBs), dichlorodiphenyltrichloroethane and its metabolites (DDTs), hexachlorocyclohexane isomers (HCHs), chlordane compounds (CHLs), hexachlorobenzene (HCB) in human breast milk collected from Asian countries such as Japan, China, Philippines, Vietnam, Cambodia, India, Malaysia, and Indonesia during 1999-2003. Dioxins, PCBs, CHLs in Japanese, and DDTs in Vietnamese, Chinese, Cambodian, Malaysian, and HCHs in Chinese, Indian, and HCB in Chinese breast milk were predominant. In India, levels of dioxins and related compounds (DRCs) in the mothers living around the open dumping site were notably higher than those from the reference site and other Asian developing countries, indicating that significant pollution sources of DRCs are present in the dumping site of India and the residents there have been exposed to relatively higher levels of these contaminants possibly via bovine milk.
    Matched MeSH terms: Risk Assessment/methods
  14. Agusa T, Kunito T, Sudaryanto A, Monirith I, Kan-Atireklap S, Iwata H, et al.
    Environ Pollut, 2007 Feb;145(3):766-77.
    PMID: 16828209
    Concentrations of 20 trace elements were determined in muscle and liver of 34 species of marine fish collected from coastal areas of Cambodia, Indonesia, Malaysia and Thailand. Large regional difference was observed in the levels of trace elements in liver of one fish family (Carangidae): the highest mean concentration was observed in fish from the Malaysian coastal waters for V, Cr, Zn, Pb and Bi and those from the Java Sea side of Indonesia for Sn and Hg. To assess the health risk to the Southeast Asian populations from consumption of fish, intake rates of trace elements were estimated. Some marine fish showed Hg levels higher than the guideline values by U.S. Environmental Protection Agency and Joint FAO/WHO Expert Committee on Food Additives (JECFA). This suggests that consumption of these fish may be hazardous to the people.
    Matched MeSH terms: Risk Assessment/methods
  15. Baki MA, Shojib MFH, Sehrin S, Chakraborty S, Choudhury TR, Bristy MS, et al.
    Environ Geochem Health, 2020 Feb;42(2):531-543.
    PMID: 31376046 DOI: 10.1007/s10653-019-00386-4
    This study aimed to assess the effects of major ecotoxic heavy metals accumulated in the Buriganga and Turag River systems on the liver, kidney, intestine, and muscle of common edible fish species Puntius ticto, Heteropneustes fossilis, and Channa punctatus and determine the associated health risks. K was the predominant and reported as a major element. A large concentration of Zn was detected in diverse organs of the three edible fishes compared with other metals. Overall, trace metal analysis indicated that all organs (especially the liver and kidney) were under extreme threat because the maximum permissible limit set by different international health organizations was exceeded. The target hazard quotient and target cancer risk due to the trace metal content were the largest for P. ticto. Thus, excessive intake of P. ticto from the rivers Buriganga and Turag could result in chronic risks associated with long-term exposure to contaminants. Histopathological investigations revealed the first detectable indicators of infection and findings of long-term injury in cells, tissues, and organs. Histopathological changes in various tissue structures of fish functioned as key pointers of connection to pollutants, and definite infections and lesion types were established based on biotic pointers of toxic/carcinogenic effects. The analysis of histopathological alterations is a controlling integrative device used to assess pollutants in the environment.
    Matched MeSH terms: Risk Assessment/methods*
  16. Brindha K, Paul R, Walter J, Tan ML, Singh MK
    Environ Geochem Health, 2020 Nov;42(11):3819-3839.
    PMID: 32601907 DOI: 10.1007/s10653-020-00637-9
    Monitoring the groundwater chemical composition and identifying the presence of pollutants is an integral part of any comprehensive groundwater management strategy. The present study was conducted in a part of West Tripura, northeast India, to investigate the presence and sources of trace metals in groundwater and the risk to human health due to direct ingestion of groundwater. Samples were collected from 68 locations twice a year from 2016 to 2018. Mixed Ca-Mg-HCO3, Ca-Cl and Ca-Mg-Cl were the main groundwater types. Hydrogeochemical methods showed groundwater mineralization due to (1) carbonate dissolution, (2) silicate weathering, (3) cation exchange processes and (4) anthropogenic sources. Occurrence of faecal coliforms increased in groundwater after monsoons. Nitrate and microbial contamination from wastewater infiltration were apparent. Iron, manganese, lead, cadmium and arsenic were above the drinking water limits prescribed by the Bureau of Indian Standards. Water quality index indicated 1.5% had poor, 8.7% had marginal, 16.2% had fair, 66.2% had good and 7.4% had excellent water quality. Correlation and principal component analysis reiterated the sources of major ions and trace metals identified from hydrogeochemical methods. Human exposure assessment suggests health risk due to high iron in groundwater. The presence of unsafe levels of trace metals in groundwater requires proper treatment measures before domestic use.
    Matched MeSH terms: Risk Assessment/methods
  17. Omar TFT, Aris AZ, Yusoff FM, Mustafa S
    Environ Geochem Health, 2019 Feb;41(1):211-223.
    PMID: 30051257 DOI: 10.1007/s10653-018-0157-1
    The concentration profile, distribution and risk assessment of pharmaceutically active compounds (PhACs) in the coastal surface water from the Klang River estuary were measured. Surface coastal water samples were extracted using offline solid phase, applying polymeric C18 cartridges as extraction sorbent and measuring with liquid chromatography mass spectrometry-mass spectrometry (LC MS-MS) technique. Extraction method was optimized for its recovery, sensitivity and linearity. Excellent recoveries were obtained from the optimized method with percentage of recoveries ranging from 73 to 126%. The optimized analytical method achieved good sensitivity with limit of detection ranging from 0.05 to 0.15 ng L-1, while linearity of targeted compounds in the LC MS-MS system was more than 0.990. The results showed that amoxicillin has the highest concentration (102.31 ng L-1) followed by diclofenac (10.80 ng L-1) and primidone (7.74 ng L-1). The percentage of contribution (% of total concentration) for the targeted PhACs is in the following order; amoxicillin (92.90%) > diclofenac (3.95%) > primidone (1.23%) > dexamethasone (0.75%) > testosterone (0.70%) > sulfamethoxazole (0.33%) > progesterone (0.14%). Environmental risk assessment calculated based on deterministic approach (the RQ method), showed no present risk from the presence of PhACs in the coastal water of Klang River estuary. Nonetheless, this baseline assessment can be used for better understanding on PhACs pollution profile and distribution in the tropical coastal and estuarine ecosystem as well as for future comparative studies.
    Matched MeSH terms: Risk Assessment/methods*
  18. Looi LJ, Aris AZ, Yusoff FM, Isa NM, Haris H
    Environ Geochem Health, 2019 Feb;41(1):27-42.
    PMID: 29982907 DOI: 10.1007/s10653-018-0149-1
    Sediment can accumulate trace elements in the environment. This study profiled the magnitude of As, Ba, Cd, Co, Cu, Cr, Ni, Pb, Se, and Zn pollution in surface sediments of the west coast of Peninsular Malaysia. Trace elements were digested using aqua regia and were analyzed using the inductively coupled plasma-mass spectrometry. The extent of elemental pollution was evaluated using with the enrichment factor (EF) and geoaccumulation index (Igeo). This study found that the elemental distribution in the sediment in descending order was Zn > Ba > Cr > Pb > Cu > As > Ni > Co > Se > Cd. Zn concentrations in all samples were below the interim sediment quality guideline (ISQG) (124 mg/kg). In contrast, Cd concentrations (2.34 ± 0.01 mg/kg) at Station 31 (Merlimau) exceeded the ISQG (0.70 mg/kg), and the concentrations of As in the samples from Station 9 (Tanjung Dawai) exceeded the probable effect level (41.60 mg/kg). The Igeo and EF revealed that Station 9 and Station 31 were extremely enriched with Se and Cd, respectively. All stations posed low ecological risk, except Station 31, which had moderate ecological risk. The outputs from this study are expected to provide the background levels of pollutants and help develop regional sediment quality guideline values. This study is also important in aiding relevant authorities to set priorities for resources management and policy implementation.
    Matched MeSH terms: Risk Assessment/methods
  19. Shahab A, Hui Z, Rad S, Xiao H, Siddique J, Huang LL, et al.
    Environ Geochem Health, 2023 Mar;45(3):585-606.
    PMID: 35347514 DOI: 10.1007/s10653-022-01255-3
    In order to expound on the present situation and potential risk of road dust heavy metals in major cities, a total of 114 literatures mainly over the past two decades, involving more than 5000 sampling sites in 61 cities of 21 countries, were screened through the collection and analysis of research papers. The concentration, sources, distribution, health risk, sample collection, and analytical methods of heavy metal research on road dust in cities around the world are summarized. The results show that Cd, Zn, and Cu in many urban road dusts in the world are higher than the grade II of the Chinese maximum allowable concentration of potentially toxic elements in the soil. Geo-accumulation index values show that Pb > Cd > Zn > Cu had the highest contamination levels. Hazard index assessment indicates Pb and Cr had the highest potential health risk, especially for children in which ingestion was found as the main exposure pathway. Moreover, through comparative analysis, it is found that some pollutants are higher in developed and industrialized cities and transport (53%) followed by industrial emissions (35%) provide the major contributions to the sources of heavy metals.
    Matched MeSH terms: Risk Assessment/methods
  20. Inayat-Hussain SH, Fukumura M, Muiz Aziz A, Jin CM, Jin LW, Garcia-Milian R, et al.
    Environ Int, 2018 08;117:348-358.
    PMID: 29793188 DOI: 10.1016/j.envint.2018.05.010
    BACKGROUND: Recent trends have witnessed the global growth of unconventional oil and gas (UOG) production. Epidemiologic studies have suggested associations between proximity to UOG operations with increased adverse birth outcomes and cancer, though specific potential etiologic agents have not yet been identified. To perform effective risk assessment of chemicals used in UOG production, the first step of hazard identification followed by prioritization specifically for reproductive toxicity, carcinogenicity and mutagenicity is crucial in an evidence-based risk assessment approach. To date, there is no single hazard classification list based on the United Nations Globally Harmonized System (GHS), with countries applying the GHS standards to generate their own chemical hazard classification lists. A current challenge for chemical prioritization, particularly for a multi-national industry, is inconsistent hazard classification which may result in misjudgment of the potential public health risks. We present a novel approach for hazard identification followed by prioritization of reproductive toxicants found in UOG operations using publicly available regulatory databases.

    METHODS: GHS classification for reproductive toxicity of 157 UOG-related chemicals identified as potential reproductive or developmental toxicants in a previous publication was assessed using eleven governmental regulatory agency databases. If there was discordance in classifications across agencies, the most stringent classification was assigned. Chemicals in the category of known or presumed human reproductive toxicants were further evaluated for carcinogenicity and germ cell mutagenicity based on government classifications. A scoring system was utilized to assign numerical values for reproductive health, cancer and germ cell mutation hazard endpoints. Using a Cytoscape analysis, both qualitative and quantitative results were presented visually to readily identify high priority UOG chemicals with evidence of multiple adverse effects.

    RESULTS: We observed substantial inconsistencies in classification among the 11 databases. By adopting the most stringent classification within and across countries, 43 chemicals were classified as known or presumed human reproductive toxicants (GHS Category 1), while 31 chemicals were classified as suspected human reproductive toxicants (GHS Category 2). The 43 reproductive toxicants were further subjected to analysis for carcinogenic and mutagenic properties. Calculated hazard scores and Cytoscape visualization yielded several high priority chemicals including potassium dichromate, cadmium, benzene and ethylene oxide.

    CONCLUSIONS: Our findings reveal diverging GHS classification outcomes for UOG chemicals across regulatory agencies. Adoption of the most stringent classification with application of hazard scores provides a useful approach to prioritize reproductive toxicants in UOG and other industries for exposure assessments and selection of safer alternatives.

    Matched MeSH terms: Risk Assessment/methods*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links