Displaying publications 41 - 60 of 172 in total

Abstract:
Sort:
  1. Yahya A, Sye CP, Ishola TA, Suryanto H
    Bioresour Technol, 2010 Nov;101(22):8736-41.
    PMID: 20609579 DOI: 10.1016/j.biortech.2010.05.073
    Formation of compost from oil palm empty fruit bunches (EFB) and decanter cake slurry by adding palm oil mill effluent (POME) with regular turning operation was investigated. The experiment was conducted in a commercial composting plant under the normal production process. The addition of decanter cake slurry has hastened the composting process of the EFB. The C/N ratio after 51 days for the mature compost with the decanter cake slurry was 18.65 while that of the matured compost without the decanter cake slurry remained high at 28.96. The compost formed from the addition of decanter cake to EFB and POME had 46.4% nitrogen, 17.9% phosphorus, 17.7% potassium and 23.1% calcium more than that without decanter cake. The use of compost produced from EFB, POME and decanter cake slurry could solve more environmental problems and enhance economic benefits in the oil palm industry.
    Matched MeSH terms: Soil/chemistry*
  2. Ho YB, Zakaria MP, Latif PA, Saari N
    Bioresour Technol, 2013 Mar;131:476-84.
    PMID: 23384781 DOI: 10.1016/j.biortech.2012.12.194
    The fate of nine veterinary antibiotics and one hormone in broiler manure during 40 days of composting was investigated. Results showed that composting can significantly reduce the concentration of veterinary antibiotics and hormone in broiler manure, making application of the post-compost manure safer for soil application. More than 99% of the nine antibiotics and one hormone involved in this study were removed from the manure during 40 days of composting. The target antibiotics and hormone showed short half-life in broiler manure composting, ranging from 1.3 to 3.8 days. The relationship between the physico-chemical properties of soil, manure and manure compost and its veterinary antibiotic and hormone concentration was statistically evaluated by Pearson correlation matrix. The concentration of veterinary antibiotics and hormone in manure compost was suggested to be affected by physico-chemical properties such as pH, temperature, total organic carbon (TOC), total nitrogen (TN), total phosphorus (TP) and metal contents.
    Matched MeSH terms: Soil/chemistry*
  3. Cui J, Zhou J, Peng Y, Chan A, Mao J
    Environ Sci Process Impacts, 2015 Dec;17(12):2082-91.
    PMID: 26515781 DOI: 10.1039/c5em00383k
    A detailed study on the solution chemistry of red soil in South China is presented. Data are collected from two simulated column-leaching experiments with an improved setup to evaluate the effects of atmospheric N deposition (ADN) composition and ADN flux on agricultural soil acidification using a (15)N tracer technique and an in situ soil solution sampler. The results show that solution pH values decline regardless of the increase of the NH4(+)/NO3(-) ratio in the ADN composition or ADN flux, while exchangeable Al(3+), Ca(2+), Mg(2+), and K(+) concentrations increase at different soil depths (20, 40, and 60 cm). Compared with the control, ADN (60 kg per ha per year N, NH4(+)/NO3(-) ratio of 2 : 1) decreases solution pH values, increases solution concentrations of NO3(-)-N, Al(3+), Ca(2+) and Mg(2+) at the middle and lower soil depths, and promotes their removal. NH4(+)-N was not detected in red soil solutions of all the three soil layers, which might be attributed to effects of nitrification, absorption and fixation in farmland red soil. Some of the NO3(-)-N concentrations at 40-60 cm soil depth exceed the safe drinking level of 10 mg L(-1), especially when the ADN flux is beyond 60 kg ha(-1) N. These features are critical for understanding the ADN agro-ecological effects, and for future assessment of ecological critical loads of ADN in red soil farmlands.
    Matched MeSH terms: Soil/chemistry*
  4. Teh TL, Rahman NN, Shahadat M, Wong YS, Syakir MI, Omar AK
    Environ Monit Assess, 2016 Jul;188(7):404.
    PMID: 27295186 DOI: 10.1007/s10661-016-5394-0
    The present study deals with possible contamination of the soil by metal ions which have been affecting the environment. The concentrations of metal ions in 14 borehole samples were studied using the ICP-OES standard method. The degree of contamination was determined on the basis of single element pollution index (SEPI), combined pollution index (CPI), soil enrichment factor (SEF), and geo-accumulation index (Igeo). Geo-accumulation indices and contamination factors indicated moderate to strong contaminations for eight boreholes (BL-1, BL-2, BL-6, BL-8, BL-9, BL-10, BL-12, and BL-13) while the rest were extremely contaminated. Among all the boreholes, BL-3 and BL-11 demonstrated the highest level of Cd(II) and Pb(II) which were found the most polluted sites. The level of metal contamination was also compared with other countries. The development, variation, and limitations regarding the regulations of soil and groundwater contamination can be provided as a helpful guidance for the risk assessment of metal ions in developing countries.
    Matched MeSH terms: Soil/chemistry
  5. Lim SL, Wu TY
    J Agric Food Chem, 2016 Mar 2;64(8):1761-9.
    PMID: 26844586 DOI: 10.1021/acs.jafc.6b00531
    The valorization process involves transforming low-value materials such as wastes into high-value-added products. The current study aims to determine the potential of using a valorization process such as vermicomposting technology to convert palm oil mill byproduct, namely, decanter cake (DC), into organic fertilizer or vermicompost. The maturity of the vermicompost was characterized through various chemical and instrumental characterization to ensure the end product was safe and beneficial for agricultural application. The vermicomposting of DC showed significantly higher nutrient recovery and decreases in C:N ratio in comparison with the controls, particularly in the treatment with 2 parts DC and 1 part rice straw (w/w) (2DC:1RS). 2DC:1RS vermicompost had a final C:N ratio of 9.03 ± 0.12 and reasonably high levels of calcium (1.13 ± 0.05 g/kg), potassium (25.47 ± 0.32 g/kg), magnesium (4.87 ± 0.19 g/kg), sodium (7.40 ± 0.03 g/kg), and phosphorus (3.62 ± 0.27 g/kg). In addition, instrumental characterization also revealed a higher degree of maturity in the vermicompost. Ratios of 2921:1633 and DTG2:DTG3 also showed significant linear correlations with the C:N ratio, implying that those ratios could be used to characterize the progression of vermicompost maturity during the valorization process of DC.
    Matched MeSH terms: Soil/chemistry*
  6. Vijith H, Dodge-Wan D
    Environ Monit Assess, 2019 Jul 13;191(8):494.
    PMID: 31302794 DOI: 10.1007/s10661-019-7604-z
    The upper catchment region of the Baram River in Sarawak (Malaysian Borneo) is undergoing severe land degradation due to soil erosion. Heavy rainfall with high erosive power has led to a number of soil erosion hotspots. The goal of the present study is to generate an understanding about the spatial characteristics of seasonal and annual rainfall erosivity (R), which not only control sediment delivery from the region but also determine the quantity of material potentially eroded. Mean annual rainfall and rainfall erosivity range from 2170 to 5167 mm and 1632 to 5319 MJ mm ha-1 h-1 year-1, respectively. Seasonal rainfall and rainfall erosivity range from 848 to 1872 mm and 558 to 1883 MJ mm ha-1 h-1 year-1 for the southwest (SW) monsoon, 902 to 2200 mm and 664 to 2793 MJ mm ha-1h-1year-1 for the northeast (NE) monsoon and 400 to 933 mm and 331 to 1075 MJ mm ha-1 h-1 year-1 during the inter-monsoon (IM) period. Linear regression, Spearman's Rho and Mann Kendall tests were applied. Considering the regional mean rainfall erosivity in the study area, all the methods show an overall non-significant decreasing trend (- 9.34, - 0.25 and - 0.30 MJ mm ha-1 h-1 year-1, respectively for linear regression, Spearman's Rho and Mann Kendall tests). However, during SW monsoon and IM periods, rainfall erosivity showed a non-significant decreasing trend (- 25.45, - 0.52, - 0.40, and - 8.86, - 1.07, - 0.77 MJ mm ha-1 h-1 year-1, respectively) whereas in NE, monsoon season erosivity showed a non-significant increasing trend (14.90, 1.59 and 1.60 MJ mm ha-1 h-1 year-1, respectively). The mean erosivity density ranges from 0.77 to 1.38 MJ ha-1 h-1 year-1 and shows decreasing trend. Spatial distribution pattern of erosivity density indicates significantly higher occurrence of erosive rainfall in the lower elevation portion of the study area. The spatial pattern of mean rainfall erosivity trends (linear, Spearman's Rho and Mann Kendall) suggests that the study area can be divided into two zones with increasing rainfall erosivity trends in the northern zone and decreasing trends in the southern zone. These results can be used to plan conservation measures to reduce sediment delivery from localized soil erosion hotspots.
    Matched MeSH terms: Soil/chemistry*
  7. Tin HS, Palaniveloo K, Anilik J, Vickneswaran M, Tashiro Y, Vairappan CS, et al.
    Microb Ecol, 2018 Feb;75(2):459-467.
    PMID: 28779295 DOI: 10.1007/s00248-017-1043-6
    Decline in forest productivity due to forest conversion is defining the Bornean landscape. Responses of bacterial communities due to land-use changes are vital and could define our understanding of ecosystem functions. This study reports the changes in bacterial community structure in organic soil (0-5 cm; O-Horizon) and organic-mineral soil (5-15 cm; A-Horizon) across Maliau Basin Conservation Area old growth forest (MBOG), Fragment E logged forest (FELF) located in Kalabakan Forest Reserve to Benta Wawasan oil palm plantation (BWOP) using two-step PCR amplicon analysis of bacteria DNA on Illumina Miseq next generation sequencing. A total of 30 soil samples yielded 893,752-OTU reads at ≥97% similarity from 5,446,512 good quality sequences. Soil from BWOP plantation showed highest unshared OTUs for organic (49.2%) and organic-mineral (50.9%) soil. MBOG soil showed a drop in unshared OTUs between organic (48.6%) and organic-mineral (33.9%). At phylum level, Proteobacteria dominated MBOG but shifted to Actinobacteria in logged and plantation soil. Present findings also indicated that only FELF exhibited change in bacterial communities along the soil depth, moving from the organic to the organic-mineral layer. Both layers of BWOP plantation soils deviated from other forests' soil in β-diversity analysis. To our knowledge, this is the first report on transitions of bacterial community structures with different soil horizons in the tropical rainforest including Borneo, Sabah. Borneo tropical soils form a large reservoir for soil bacteria and future exploration is needed for fully understanding the diversity structure and their bacterial functional properties.
    Matched MeSH terms: Soil/chemistry
  8. McGuire KL, D'Angelo H, Brearley FQ, Gedallovich SM, Babar N, Yang N, et al.
    Microb Ecol, 2015 May;69(4):733-47.
    PMID: 25149283 DOI: 10.1007/s00248-014-0468-4
    Human land use alters soil microbial composition and function in a variety of systems, although few comparable studies have been done in tropical forests and tropical agricultural production areas. Logging and the expansion of oil palm agriculture are two of the most significant drivers of tropical deforestation, and the latter is most prevalent in Southeast Asia. The aim of this study was to compare soil fungal communities from three sites in Malaysia that represent three of the most dominant land-use types in the Southeast Asia tropics: a primary forest, a regenerating forest that had been selectively logged 50 years previously, and a 25-year-old oil palm plantation. Soil cores were collected from three replicate plots at each site, and fungal communities were sequenced using the Illumina platform. Extracellular enzyme assays were assessed as a proxy for soil microbial function. We found that fungal communities were distinct across all sites, although fungal composition in the regenerating forest was more similar to the primary forest than either forest community was to the oil palm site. Ectomycorrhizal fungi, which are important associates of the dominant Dipterocarpaceae tree family in this region, were compositionally distinct across forests, but were nearly absent from oil palm soils. Extracellular enzyme assays indicated that the soil ecosystem in oil palm plantations experienced altered nutrient cycling dynamics, but there were few differences between regenerating and primary forest soils. Together, these results show that logging and the replacement of primary forest with oil palm plantations alter fungal community and function, although forests regenerating from logging had more similarities with primary forests in terms of fungal composition and nutrient cycling potential. Since oil palm agriculture is currently the mostly rapidly expanding equatorial crop and logging is pervasive across tropical ecosystems, these findings may have broad applicability.
    Matched MeSH terms: Soil/chemistry
  9. Nakao A, Tomita M, Wagai R, Tanaka R, Yanai J, Kosaki T
    J Environ Radioact, 2019 Aug;204:86-94.
    PMID: 30986719 DOI: 10.1016/j.jenvrad.2019.03.028
    Radiocesium (RCs) is selectively adsorbed on interlayer sites of weathered micaceous minerals, which can reduce the mobility of RCs in soil. Therefore, soils developed from mica-deficient materials (e.g. serpentine soils) may have a higher risk of soil-to-plant transfer of RCs. Soils were collected from three serpentine soil profiles; Udepts in Oeyama, Japan, and Udepts and Udox in Kinabalu, Malaysia. Soil was sampled every 3 cm from 0 to 30 cm depth and sieved to isolate soil particles of ≤20 μm diameter for the assessment of radiocesium interception potential (RIP) after a series of pretreatments. One subset was treated with H2O2 to remove organic matter (OM). Another subset was further treated with hot sodium citrate to remove hydroxy-Al polymers (Al(OH)x). RIPuntreated was <0.4 mol kg-1 whereas mica-K content was <0.02% by weight for ≤20-μm soil particles from Udepts and Udox in Kinabalu, Malaysia, values as low as those of non-micaceous minerals (e.g. kaolinite and smectite). Neither OM nor Al(OH)x removal resulted in a large increase in RIP value for these soils. These results clearly indicated that serpentine soils in Malaysia have very few RCs selective adsorption sites due to the absence of micaceous minerals. In contrast, soil from Udepts in Oeyama, Japan showed average RIPuntreated of 5.6 mol kg-1 and mica-K content of 0.72% by weight for the ≤20-μm particles. Furthermore, the RIP value was significantly increased to an average of 22.5 mol kg-1 after removing both OM and Al(OH)x. These results strongly suggest that weathered micaceous minerals primarily control the ability to retain RCs. These micaceous minerals cannot originate from serpentine minerals, and are probably incorporated as an exotic material, such as Asian dust. This hypothesis is supported by the δ18O value of quartz isolated from the ≤20-μm soil particles from Oeyama, Japan (+16.13‰±0.11‰), very similar to that of Asian dust. In conclusion, serpentine soils in Japan may exhibit a reduced risk of soil-to-plant transfer of RCs due to the historical deposition of Asian dust.
    Matched MeSH terms: Soil/chemistry*
  10. Neoh KB, Hu J, Yeoh BH, Lee CY
    Pest Manag Sci, 2012 May;68(5):749-56.
    PMID: 22076820 DOI: 10.1002/ps.2322
    The effectiveness of chlorantraniliprole and other insecticides (bifenthrin, fipronil, indoxacarb, imidacloprid and chlorfenapyr) were tested against Coptotermes gestroi (Wasmann). Four experiments were conducted: a topical bioassay, a horizontal transfer study, an insecticide bioavailability test and a feeding bioassay.
    Matched MeSH terms: Soil/chemistry*
  11. Heo CC, Tomberlin JK, Aitkenhead-Peterson JA
    J Forensic Sci, 2021 May;66(3):947-959.
    PMID: 33290606 DOI: 10.1111/1556-4029.14645
    Under normal circumstances, insects such as blow flies will oviposit and larvae will colonize a carcass as soon as possible. However, insect colonization on a carcass may be delayed due to the effects of wrapping, shallow burial, addition of lime derivatives to mitigate scavenging and odor, or extreme weather. The impacts of delayed insect colonization on carcass decomposition and its subsequent effect on soil chemistry profiles have not been examined to date. The objectives of this study were to determine soil chemistry dynamics associated with porcine carcasses experiencing delayed insect colonization for 7-day or 14-day. Soil chemistry profiles such as ammonium-N (NH4 -N), orthophosphate-P (PO4 -P), and dissolved organic carbon (DOC) were significantly different among treatments: insect inclusion (immediate access of blow fly colonization on porcine carcasses), 7-day insect exclusion and 14-day insect exclusion (blow fly access was delayed up to 7-day and 14-day). Furthermore, significant differences of soil chemical profiles were detected between days of decomposition and soil regions. Soil moisture, NH4 -N, PO4 -P, and DOC were significantly higher when insects were excluded from the porcine carcass suggesting loss of tissue from larval feeding reduced the mass of nutrients entering the soil. This study provides useful information for forensic science in cases where insect colonization is delayed for a period of time postmortem and soil chemistry in the cadaver decomposition island is considered for estimating postmortem interval.
    Matched MeSH terms: Soil/chemistry*
  12. Maznah Z, Halimah M, Shitan M, Kumar Karmokar P, Najwa S
    PLoS One, 2017;12(1):e0166203.
    PMID: 28060816 DOI: 10.1371/journal.pone.0166203
    Ganoderma boninense is a fungus that can affect oil palm trees and cause a serious disease called the basal stem root (BSR). This disease causes the death of more than 80% of oil palm trees midway through their economic life and hexaconazole is one of the particular fungicides that can control this fungus. Hexaconazole can be applied by the soil drenching method and it will be of interest to know the concentration of the residue in the soil after treatment with respect to time. Hence, a field study was conducted in order to determine the actual concentration of hexaconazole in soil. In the present paper, a new approach that can be used to predict the concentration of pesticides in the soil is proposed. The statistical analysis revealed that the Exploratory Data Analysis (EDA) techniques would be appropriate in this study. The EDA techniques were used to fit a robust resistant model and predict the concentration of the residue in the topmost layer of the soil.
    Matched MeSH terms: Soil/chemistry*
  13. Alzubaidi G, Hamid FB, Abdul Rahman I
    ScientificWorldJournal, 2016;2016:6178103.
    PMID: 27965987
    The activity concentrations of naturally occurring radionuclides (226)Ra, (232)Th, and (40)K were determined in 30 agricultural and virgin soil samples randomly collected from Kedah, north of Malaysia, at a fertile soil depth of 0-30 cm. Gamma-ray spectrometry was applied using high-purity germanium (HPGe) gamma-ray detector and a PC-based MCA. The mean radioactivity concentrations of (226)Ra, (232)Th, and (40)K were found to be 102.08 ± 3.96, 133.96 ± 2.92, and 325.87 ± 9.83 Bq kg(-1), respectively, in agricultural soils and 65.24 ± 2.00, 83.39 ± 2.27, and 136.98 ± 9.76 Bq kg(-1), respectively, in virgin soils. The radioactivity concentrations in agricultural soils are higher than those in virgin soils and compared with those reported in other countries. The mean values of radium equivalent activity (Raeq), absorbed dose rates D (nGy h(-1)), annual effective dose equivalent, and external hazard index (Hex) are 458.785 Bq kg(-1), 141.62 nGy h(-1), and 0.169 mSv y(-1), respectively, in agricultural soils and 214.293 Bq kg(-1), 87.47 nGy h(-1), and 0.106 mSv y(-1), respectively, in virgin soils, with average Hex of 0.525. Results were discussed and compared with those reported in similar studies and with internationally recommended values.
    Matched MeSH terms: Soil/chemistry*
  14. Jumaidin R, Sapuan SM, Jawaid M, Ishak MR, Sahari J
    Int J Biol Macromol, 2017 Jun;99:265-273.
    PMID: 28249765 DOI: 10.1016/j.ijbiomac.2017.02.092
    The aim of this paper is to investigate the characteristics of thermoplastic sugar palm starch/agar (TPSA) blend containing Eucheuma cottonii seaweed waste as biofiller. The composites were prepared by melt-mixing and hot pressing at 140°C for 10min. The TPSA/seaweed composites were characterized for their mechanical, thermal and biodegradation properties. Incorporation of seaweed from 0 to 40wt.% has significantly improved the tensile, flexural, and impact properties of the TPSA/seaweed composites. Scanning electron micrograph of the tensile fracture showed homogeneous surface with formation of cleavage plane. It is also evident from TGA results that thermal stability of the composites were enhanced with addition of seaweed. After soil burial for 2 and 4 weeks, the biodegradation of the composites was enhanced with addition of seaweed. Overall, the incorporation of seaweed into TPSA enhances the properties of TPSA for short-life product application such as tray, plate, etc.
    Matched MeSH terms: Soil/chemistry
  15. Khan AM, Behkami S, Yusoff I, Md Zain SB, Bakar NKA, Bakar AFA, et al.
    Chemosphere, 2017 Oct;184:673-678.
    PMID: 28628904 DOI: 10.1016/j.chemosphere.2017.06.032
    Rare earth elements (REEs) are becoming significant due to their huge applications in many industries, large-scale mining and refining activities. Increasing usage of such metals pose negative environmental impacts. In this research ICP-MS has been used to analyze soil samples collected from former ex-mining areas in the depths of 0-20 cm, 21-40 cm, and 41-60 cm of residential, mining, natural, and industrial areas of Perak. Principal component analysis (PCA) revealed that soil samples taken from different mining, industrial, residential, and natural areas are separated into four clusters. It was observed that REEs were abundant in most of the samples from mining areas. Concentration of the rare elements decrease in general as we move from surface soil to deeper soils.
    Matched MeSH terms: Soil/chemistry*
  16. Bull AT, Idris H, Sanderson R, Asenjo J, Andrews B, Goodfellow M
    Extremophiles, 2018 Jan;22(1):47-57.
    PMID: 29101684 DOI: 10.1007/s00792-017-0976-5
    The data reported in this paper are among the first relating to the microbiology of hyper-arid, very high altitude deserts and they provide base line information on the structure of actinobacterial communities. The high mountain Cerro Chajnantor landscape of the Central Andes in northern Chile is exposed to the world's most intense levels of solar radiation and its impoverished soils are severely desiccated. The purpose of this research was to define the actinobacterial community structures in soils at altitudes ranging from 3000 to 5000 m above sea level. Pyrosequencing surveys have revealed an extraordinary degree of microbial dark matter at these elevations that includes novel candidate actinobacterial classes, orders and families. Ultraviolet-B irradiance and a range of edaphic factors were found to be highly significant in determining community compositions at family and genus levels of diversity.
    Matched MeSH terms: Soil/chemistry
  17. Sahibin AR, Shamshuddin J, Fauziah CI, Radziah O, Wan Mohd Razi I, Enio MSK
    Sci Total Environ, 2019 Feb 20;652:573-582.
    PMID: 30368186 DOI: 10.1016/j.scitotenv.2018.10.232
    A study was conducted in an oil palm plantation in Peninsular Malaysia to elucidate the effects of applying Magnesium Rich Synthetic Gypsum (MRSG), a by-product of chemical plant, on the chemical properties of soil, the uptake of heavy metals by the palm trees, the oil quality and its impact on the surrounding environment. The results showed that MRSG application onto soil cropped to oil palm could bring positive impact in terms of soil chemical properties and oil palm production. The quality of the oil was not significantly affected by the continuous MRSG application as shown by the low heavy metals and trace elements of concern content (Cu: 0.062 mg/kg; Fe: 2.10 mg/kg; Mn: 1.93 mg/kg; Pb: 0.006 mg/kg; Zn: 0.103 mg/kg; Cr: 0.354 mg/kg; Ni: 0.037 mg/kg). From the I-geochem index, the soil was found to have values ranging from -3.81 to -1.03 which is considered as uncontaminated. Further, its application did not result in negative impact on the surrounding environment; hence, the quality of the soil and surface water in the plantation and/or the surrounding area remained intact. Phytotoxic elements in the oil palm tissue (As: 0.12 mg/kg; Se: 0.05 mg/kg; Zn: 1.48 mg/kg; Ce: 0.47 mg/kg; La: 0.26 mg/kg; Sr: 3.03 mg/kg) and cytotoxic elements in the oil were below the acceptable limit. Based on the results of the Environmental Monitoring out during the period of the study, it was concluded that application of the by-product of the chemical plant as a source of Mg to enhance soil fertility in the oil palm plantation was considered safe and sustainable. The effects of applying MRSG and Chinese kieserite was almost similar. So, MRSG can be used as a possible source of Mg to replace Chinese kieserite for oil palm production on the Ultisols in Peninsular Malaysia.
    Matched MeSH terms: Soil/chemistry
  18. Alizamir M, Kisi O, Ahmed AN, Mert C, Fai CM, Kim S, et al.
    PLoS One, 2020;15(4):e0231055.
    PMID: 32287272 DOI: 10.1371/journal.pone.0231055
    Soil temperature has a vital importance in biological, physical and chemical processes of terrestrial ecosystem and its modeling at different depths is very important for land-atmosphere interactions. The study compares four machine learning techniques, extreme learning machine (ELM), artificial neural networks (ANN), classification and regression trees (CART) and group method of data handling (GMDH) in estimating monthly soil temperatures at four different depths. Various combinations of climatic variables are utilized as input to the developed models. The models' outcomes are also compared with multi-linear regression based on Nash-Sutcliffe efficiency, root mean square error, and coefficient of determination statistics. ELM is found to be generally performs better than the other four alternatives in estimating soil temperatures. A decrease in performance of the models is observed by an increase in soil depth. It is found that soil temperatures at three depths (5, 10 and 50 cm) could be mapped utilizing only air temperature data as input while solar radiation and wind speed information are also required for estimating soil temperature at the depth of 100 cm.
    Matched MeSH terms: Soil/chemistry*
  19. Syafri E, Jamaluddin, Wahono S, Irwan A, Asrofi M, Sari NH, et al.
    Int J Biol Macromol, 2019 Sep 15;137:119-125.
    PMID: 31252021 DOI: 10.1016/j.ijbiomac.2019.06.174
    The cellulose microfibers (CMF) from water hyacinth (WH) fiber as a filler in sago starch (SS) biocomposites was investigated. The CMF was isolated by pulping, bleaching and acid hydrolysis methods. The addition of CMF in sago matrix was varied i.e. 0, 5, 10, 15 and 20 wt%. Biocomposites were made by using solution casting and glycerol as a plasticizer. The biocomposites were also determined by tensile test, FTIR, X-Ray, thermogravimetric, SEM, and soil burial tests. The results show that the SS15CMF sample has the highest tensile strength of 10.23 MPa than those other samples. Scanning Electron Microscope (SEM) images show that the strong interaction was formed between CMF WH and matrix. Fourier Transform Infra-red (FTIR) indicated that the functional group of biocomposites was a hydrophilic cluster. The addition of CMF WH in sago starch biocomposites lead to the moisture barrier, crystallinity, and thermal stability increased; it is due to the pure sago starch film was more rapidly degraded than its biocomposites.
    Matched MeSH terms: Soil/chemistry
  20. Nuhu H, Hashim S, Aziz Saleh M, Syazwan Mohd Sanusi M, Hussein Alomari A, Jamal MH, et al.
    PLoS One, 2021;16(7):e0254099.
    PMID: 34320010 DOI: 10.1371/journal.pone.0254099
    In this study geogenic radon potential (GRP) mapping was carried out on the bases of field radon in soil gas concentration and soil gas permeability measurements by considering the corresponding geological formations. The spatial pattern of soil gas radon concentration, soil permeability, and GRP and the relationship between geological formations and these parameters was studied by performing detailed spatial analysis. The radon activity concentration in soil gas ranged from 0.11 to 434.5 kBq m-3 with a mean of 18.96 kBq m-3, and a standard deviation was 55.38 kBq m-3. The soil gas permeability ranged from 5.2×10-14 to 5.2×10-12 m2, with a mean of 5.65×10-13 m2. The GRP values were computed from the 222Rn activity concentration and soil gas permeability data. The range of GRP values was from 0.04 to 154.08. Locations on igneous granite rock geology were characterized by higher soil radon gas activity and higher GRP, making them radon-prone areas according to international standards. The other study locations fall between the low to medium risk, except for areas with high soil permeability, which are not internationally classified as radon prone. A GRP map was created displaying radon-prone areas for the study location using Kriging/Cokriging, based on in situ and predicted measured values. The GRP map assists in human health risk assessment and risk reduction since it indicates the potential of the source of radon and can serve as a vital tool for radon combat planning.
    Matched MeSH terms: Soil/chemistry*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links