Displaying publications 41 - 60 of 247 in total

Abstract:
Sort:
  1. Salih M, Shaharuddin B, Abdelrazeg S
    Curr Stem Cell Res Ther, 2020;15(3):211-218.
    PMID: 31995019 DOI: 10.2174/1574888X15666200129145251
    Organ and tissue transplantation are limited by the scarcity of donated organs or tissue sources. The success of transplantation is limited by the risk of disease transmission and immunological- related rejection. There is a need for new strategies and innovative solutions to make transplantation readily available, safer and with less complications to increase the success rates. Accelerating progress in stem cell biology and biomaterials development have pushed tissue and organ engineering to a higher level. Among stem cells repertoire, Mesenchymal Stem Cells (MSC) are gaining interest and recognized as a cell population of choice. There is accumulating evidence that MSC growth factors, its soluble and insoluble proteins are involved in several key signaling pathways to promote tissue development, cellular differentiation and regeneration. MSC as multipotent non-hematopoietic cells with paracrine factors is advantageous for regenerative therapies. In this review, we discussed and summarized the important features of MSC including its immunomodulatory properties, mechanism of homing in the direction of tissue injury, licensing of MSC and the role of MSC soluble factors in cell-free therapy. Special consideration is highlighted on the rapidly growing research interest on the roles of MSC in ocular surface regeneration.
    Matched MeSH terms: Mesenchymal Stromal Cells/cytology*
  2. Yong KW, Choi JR, Dolbashid AS, Wan Safwani WKZ
    Regen Med, 2018 03;13(2):219-232.
    PMID: 29509072 DOI: 10.2217/rme-2017-0078
    An outstanding amount of resources has been used in research on manipulation of human stem cells, especially mesenchymal stem cells (MSCs), for various clinical applications. However, human MSCs have not been fully utilized in clinical applications due to restrictions with regard to their certain biosafety and bioefficacy concerns, for example, genetic abnormality, tumor formation, induction of host immune response and failure of homing and engraftment. This review summarizes the biosafety and bioefficacy assessment of human MSCs in terms of genetic stability, tumorigenicity, immunogenicity, homing and engraftment. The strategies used to reduce the biosafety concerns and improve the bioefficacy of human MSCs are highlighted. In addition, the approaches that can be implemented to improve their biosafety and bioefficacy assessment are briefly discussed.
    Matched MeSH terms: Mesenchymal Stromal Cells*
  3. Lau MN, Kunasekaran W, On YY, Tan LJ, Zaharin NA, H A Ghani S, et al.
    PLoS One, 2022;17(12):e0279129.
    PMID: 36574419 DOI: 10.1371/journal.pone.0279129
    The objective of this study was to compare the characteristics of Dental Pulp Stem Cells (DPSCs) derived from healthy human permanent teeth with those that were orthodontically-intruded to serve as potential Mesenchymal Stem Cells (MSC). Recruited subjects were treated with orthodontic intrusion on one side of the maxillary first premolar while the opposite side served as the control for a period of six weeks before the dental pulp was extracted. Isolated DPSCs from both the control and intruded samples were analyzed, looking at the morphology, growth kinetics, cell surface marker profile, and multilineage differentiation for MSC characterisation. Our study showed that cells isolated from both groups were able to attach to the cell culture flask, exhibited fibroblast-like morphology under light microscopy, able to differentiate into osteogenic, adipogenic and chondrogenic lineages as well as tested positive for MSCs cell surface markers CD90 and CD105 but negative for haematopoietic cell surface markers CD34 and HLA-DR. Both groups displayed a trend of gradually increasing population doubling time from passage 1 to passage 5. Viable DPSCs from both groups were successfully recovered from their cryopreserved state. In conclusion, DPSCs in the dental pulp of upper premolar not only remained viable after 6 weeks of orthodontic intrusion using fixed appliances but also able to develop into MSCs.
    Matched MeSH terms: Mesenchymal Stromal Cells*
  4. Wong RS, Cheong SK
    Clin Exp Med, 2014 Aug;14(3):235-48.
    PMID: 23794030 DOI: 10.1007/s10238-013-0247-4
    Mesenchymal stem cells (MSCs) have captured the attention of researchers today due to their multipotent differentiation capacity. Also, they have been successfully applied clinically, in the treatment of various diseases of the heart and musculoskeletal systems, with encouraging results. Their supportive role in haematopoiesis and their anti-inflammatory and immunomodulatory properties have enhanced their contribution towards the improvement of engraftment and the treatment of graft-versus-host disease in patients receiving haematopoietic stem cell transplantation. However, there is a growing body of research that supports the involvement of MSCs in leukaemogenesis with several genetic and functional abnormalities having been detected in the MSCs of leukaemia patients. MSCs also exert leukaemia-enhancing effects and induce chemotherapy resistance in leukaemia cells. This paper addresses the key issues in the therapeutic value as well as the harmful effects of the MSCs in leukaemia with a sharp focus on the recent updates in the published literature.
    Matched MeSH terms: Mesenchymal Stromal Cells/physiology*
  5. Koh B, Sulaiman N, Fauzi MB, Law JX, Ng MH, Yuan TL, et al.
    Int J Mol Sci, 2023 Feb 13;24(4).
    PMID: 36835154 DOI: 10.3390/ijms24043745
    Xeno-free three-dimensional cultures are gaining attention for mesenchymal stem cell (MSCs) expansion in clinical applications. We investigated the potential of xeno-free serum alternatives, human serum and human platelet lysate, to replace the current conventional use of foetal bovine serum for subsequent MSCs microcarrier cultures. In this study, Wharton's Jelly MSCs were cultured in nine different media combinations to identify the best xeno-free culture media for MSCs culture. Cell proliferation and viability were identified, and the cultured MSCs were characterised in accordance with the minimal criteria for defining multipotent mesenchymal stromal cells by the International Society for Cellular Therapy (ISCT). The selected culture media was then used in the microcarrier culture of MSCs to determine the potential of a three-dimensional culture system in the expansion of MSCs for future clinical applications, and to identify the immunomodulatory potential of cultured MSCs. Low Glucose DMEM (LG) + Human Platelet (HPL) lysate media appeared to be good candidates for replacing conventional MSCs culture media in our monolayer culture system. MSCs cultured in LG-HPL achieved high cell yield, with characteristics that remained as described by ISCT, although the overall mitochondrial activity of the cells was lower than the control and the subsequent effects remained unknown. MSC microcarrier culture, on the other hand, showed comparable cell characteristics with monolayer culture, yet had stagnated cell proliferation, which is potentially due to the inactivation of FAK. Nonetheless, both the MSCs monolayer culture and the microcarrier culture showed high suppressive activity on TNF-α, and only the MSC microcarrier culture has a better suppression of IL-1 secretion. In conclusion, LG-HPL was identified as a good xeno-free media for WJMSCs culture, and although further mechanistic research is needed, the results show that the xeno-free three-dimensional culture maintained MSC characteristics and improved immunomodulatory activities, suggesting the potential of translating the monolayer culture into this culture system in MSC expansion for future clinical application.
    Matched MeSH terms: Mesenchymal Stromal Cells*
  6. Shaz N, Maran S, Genasan K, Choudhary R, Alias R, Swamiappan S, et al.
    Int J Biol Macromol, 2024 Jan;256(Pt 1):128059.
    PMID: 37989428 DOI: 10.1016/j.ijbiomac.2023.128059
    This study aimed to functionalize a novel porous PLGA (Poly lactic-co-glycolic acid) composite scaffold in combination with nano‑calcium sulphate (nCS) and/or fucoidan (FU) to induce osteogenic differentiation of human bone marrow stromal cells. The composite scaffolds (PLGA-nCS-FU, PLGA-nCS or PLGA-FU) were fabricated and subjected to characterization using Fourier-transform infrared spectroscopy (FTIR), X-ray powder diffraction (XRD), Scanning electron microscopy (SEM) and Energy Dispersive X-Ray (EDX). The biocompatibility and osteogenic induction potential of scaffolds on seeded human bone marrow derived mesenchymal stromal cells (hBMSCs) were studied using cell attachment and alamar blue cell viability and alkaline phosphatase (ALP), osteocalcin and osteogenic gene expression, respectively. The composition of different groups was reflected in FTIR, XRD and EDX. The SEM micrographs revealed a difference in the surface of the scaffold before and after FU addition. The confocal imaging and SEM micrographs confirmed the attachment of cells onto all three composite scaffolds. However, the AB assay indicated a significant increase (p 
    Matched MeSH terms: Mesenchymal Stromal Cells*
  7. Abdul Halim NS, Fakiruddin KS, Ali SA, Yahaya BH
    Int J Mol Sci, 2014;15(9):15044-60.
    PMID: 25162825 DOI: 10.3390/ijms150915044
    Mesenchymal stem cells (MSCs) hold tremendous potential for therapeutic use in stem cell-based gene therapy. Ex vivo genetic modification of MSCs with beneficial genes of interest is a prerequisite for successful use of stem cell-based therapeutic applications. However, genetic manipulation of MSCs is challenging because they are resistant to commonly used methods to introduce exogenous DNA or RNA. Herein we compared the effectiveness of several techniques (classic calcium phosphate precipitation, cationic polymer, and standard electroporation) with that of microporation technology to introduce the plasmid encoding for angiopoietin-1 (ANGPT-1) and enhanced green fluorescent protein (eGFP) into human adipose-derived MSCs (hAD-MSCs). The microporation technique had a higher transfection efficiency, with up to 50% of the viable hAD-MSCs being transfected, compared to the other transfection techniques, for which less than 1% of cells were positive for eGFP expression following transfection. The capability of cells to proliferate and differentiate into three major lineages (chondrocytes, adipocytes, and osteocytes) was found to be independent of the technique used for transfection. These results show that the microporation technique is superior to the others in terms of its ability to transfect hAD-MSCs without affecting their proliferation and differentiation capabilities. Therefore, this study provides a foundation for the selection of techniques when using ex vivo gene manipulation for cell-based gene therapy with MSCs as the vehicle for gene delivery.
    Matched MeSH terms: Mesenchymal Stromal Cells/cytology; Mesenchymal Stromal Cells/metabolism*; Mesenchymal Stromal Cells/physiology
  8. Shamsul BS, Aminuddin BS, Ng MH, Ruszymah BH
    Med J Malaysia, 2004 May;59 Suppl B:196-7.
    PMID: 15468885
    Bone marrow harvested by aspiration contains connective tissue progenitor cells which can be selectively isolated and induced to express bone phenotype in vitro. The osteoblastic progenitor can be estimated by counting the number of cells attach using the haemacytometer. This study was undertaken to test the hypothesis that human aging is associated with a significant change on the number of osteoblastic progenitors in the bone marrow. Bone marrow aspirates were harvested from 38 patients, 14 men (age 11-70) and 24 women (age 10-70) and cultured in F12: DMEM (1:1). In total 15 bone marrow samples have been isolated from patients above 40 years old (men/women) of age. Fourteen (93.3%) of this samples failed to proliferate. Only one (6.7%) bone marrow sample from a male patient, aged 59 years old was successfully cultured. Seventy percent (16/23) of the samples from patient below than 40 years old were successfully cultured. However, our observation on the survival rate for cells of different gender from patient below 40 years old does not indicate any significant difference. From this study, we conclude that the growth of bone marrow stromal cells possibly for bone engineering is better from bone marrow aspirates of younger patient.
    Matched MeSH terms: Stromal Cells/cytology; Mesenchymal Stromal Cells/cytology*
  9. Salehinejad P, Alitheen NB, Mandegary A, Nematollahi-Mahani SN, Janzamin E
    In Vitro Cell Dev Biol Anim, 2013 Aug;49(7):515-23.
    PMID: 23708920 DOI: 10.1007/s11626-013-9631-3
    Mesenchymal stem cells have been increasingly introduced to have great potential in regenerative medicine, immunotherapy, and gene therapy due to their unique properties of self-renewal and differentiation into multiple cell lineages. Studies have shown that these properties may be limited and changed by senescence-associated growth arrest under different culture conditions. This study aimed to present the ability of some growth factors on human umbilical cord mesenchymal (hUCM) cells expansion and telomerase activity. To optimize hUCM cell growth, epidermal growth factor (EGF) and fibroblast growth factor (FGF) were utilized in culture media, and the ability of these growth factors on the expression of the telomerase reverse transcriptase (TERT) gene and cell cycle phases was investigated. TERT mRNA expression increased in the hUCM cells treated by EGF and FGF. So, the untreated hUCM cells expressed 30.49 ± 7.15% of TERT, while EGF-treated cells expressed 51.82 ± 12.96% and FGF-treated cells expressed 33.77 ± 11.55% of TERT. Exposure of hUCM cells to EGF or FGF also promoted the progression of cells from G1 to S phase of the cell cycle and induced them to decrease the number of cells entering the G2/M phase. Our study showed that EGF and, to a lesser extent, FGF amplify the proliferation and expansion of hUCM cells.
    Matched MeSH terms: Mesenchymal Stromal Cells/cytology; Mesenchymal Stromal Cells/drug effects*; Mesenchymal Stromal Cells/metabolism
  10. Lian J, Lin J, Zakaria N, Yahaya BH
    Adv Exp Med Biol, 2020;1298:149-166.
    PMID: 32424492 DOI: 10.1007/5584_2020_538
    Acute lung injury (ALI) is a severe clinical condition with high morbidity and mortality that usually results in the development of multiple organ dysfunction. The complex pathophysiology of ALI seems to provide a wide range of targets that offer numerous therapeutic options. However, despite extensive studies of ALI pathophysiology and treatment, no effective pharmacotherapy is available. Increasing evidence from both preclinical and clinical studies supports the preventive and therapeutic effects of mesenchymal stem cells (MSCs) for treating ALI. As cell-based therapy poses the risk of occlusion in microvasculature or unregulated growth, MSC-derived extracellular vesicles (MSC-EVs) have been extensively studied as a new therapeutic strategy for non-cell based therapy. It is widely accepted that the therapeutic properties of MSCs are derived from soluble factors with paracrine or endocrine effects, and EVs are among the most important paracrine or endocrine vehicles that can deliver various soluble factors with a similar phenotype as the parent cell. Therapeutic effects of MSCs have been reported for various delivery approaches, diverse doses, multiple origins, and different times of administration, and MSC-EVs treatment may include but is not limited to these choices. The mechanisms by which MSCs and MSC-EVs may contribute to ALI treatment remain elusive and need further exploration. This review provides an overview of preclinical studies that support the application of MSC-EVs for treating ALI, and it discusses emerging opportunities and their associated challenges.
    Matched MeSH terms: Mesenchymal Stromal Cells
  11. Choo KB, Tai L, Hymavathee KS, Wong CY, Nguyen PN, Huang CJ, et al.
    Int J Med Sci, 2014;11(11):1201-7.
    PMID: 25249788 DOI: 10.7150/ijms.8356
    On in vitro expansion for therapeutic purposes, the regenerative potentials of mesenchymal stem cells (MSCs) decline and rapidly enter pre-mature senescence probably involving oxidative stress. To develop strategies to prevent or slow down the decline of regenerative potentials in MSC culture, it is important to first address damages caused by oxidative stress-induced premature senescence (OSIPS). However, most existing OSIPS study models involve either long-term culture to achieve growth arrest or immediate growth arrest post oxidative agent treatment and are unsuitable for post-induction studies.
    Matched MeSH terms: Mesenchymal Stromal Cells/cytology*; Mesenchymal Stromal Cells/drug effects
  12. Mok PL, Cheong SK, Leong CF
    Malays J Pathol, 2008 Jun;30(1):11-9.
    PMID: 19108406 MyJurnal
    Mesenchymal stem cells are pluripotent progenitors that could be found in human bone marrow. Mesenchymal stem cells are capable of renewing themselves without differentiation in long-term culture. These cells also have low immunogenicity and can suppress alloreactive T cell responses. In the current study, mesenchymal stem cells isolated and propagated previously from the bone marrow of a megaloblastic anaemia patient were tested for their capabilities to differentiate into adipocytes, chondrocytes and osteoblasts in vitro. The differentiated cells were determined by Oil Red O, Alcian Blue-PAS and Alizarin Red S staining, and reverse transcriptase-polymerase chain reaction to determine the expression of mRNA specific for adipogenesis, chondrogenesis and osteogenesis. The results showed that the fibroblast-like cells were capable of differentiating into adipocytes, chondrocytes and osteoblasts upon chemical induction. The adipocytes, chondrocytes and osteoblasts were stained positively to Oil Red O, Alcian Blue-PAS and Alizarin Red S respectively. The differentiated cells were also found to express mRNA specific for adipogenesis ('peroxisome proliferation-activated receptor gamma2' and lipoprotein lipase), chondrogenesis (collagen type II) and osteogenesis (osteocalcin, osteopontin and alkaline phosphatase). In conclusion, this research has successfully isolated fibroblast-like cells from human bone marrow and these cells demonstrated morphological, cytochemical and immunochemical characteristics similar to mesenchymal stem cells. These cells maintain their proliferative properties and could be differentiated into the mesoderm lineage. The success of this study is vital because mesenchymal stem cells can be used in cellular therapy to regenerate or replace damaged tissues, or as a vehicle for therapeutic gene delivery in the future.
    Matched MeSH terms: Mesenchymal Stromal Cells/cytology*; Mesenchymal Stromal Cells/metabolism
  13. Yazid AG, Anuar A, Onhmar HT, Ng AM, Ruszymah BH, Amaramalar SN
    Med J Malaysia, 2008 Jul;63 Suppl A:113-4.
    PMID: 19025011
    Spinal cord, sciatic nerve, olfactory ensheathing cell and bone marrow derived mesenchymal stem cells were evaluated as an alternative source for tissue engineering of nerve conduit. All cell sources were cultured in alpha-MEM medium. Olfactory Ensheathing Cell (OEC) showed the best result with higher growth kinetic compared to the others. Spinal cord and sciatic nerve were positive for GFAP, OEC were positive for GFAP, S100b and anti-cytokeratin 18 but negative for anti-Human Fibroblast.
    Matched MeSH terms: Mesenchymal Stromal Cells/cytology; Mesenchymal Stromal Cells/physiology*
  14. Yong KW, Safwani WKZW, Xu F, Zhang X, Choi JR, Abas WABW, et al.
    J Tissue Eng Regen Med, 2017 08;11(8):2217-2226.
    PMID: 26756982 DOI: 10.1002/term.2120
    Cryopreservation represents an efficient way to preserve human mesenchymal stem cells (hMSCs) at early culture/passage, and allows pooling of cells to achieve sufficient cells required for off-the-shelf use in clinical applications, e.g. cell-based therapies and regenerative medicine. To fully apply cryopreserved hMSCs in a clinical setting, it is necessary to evaluate their biosafety, e.g. chromosomal abnormality and tumourigenic potential. To date, many studies have demonstrated that cryopreserved hMSCs display no chromosomal abnormalities. However, the tumourigenic potential of cryopreserved hMSCs has not yet been evaluated. In the present study, we cryopreserved human adipose-derived mesenchymal stem cells (hASCs) for 3 months, using a slow freezing method with various cryoprotective agents (CPAs), followed by assessment of the tumourigenic potential of the cryopreserved hASCs after thawing and subculture. We found that long-term cryopreserved hASCs maintained normal levels of the tumour suppressor markers p53, p21, p16 and pRb, hTERT, telomerase activity and telomere length. Further, we did not observe significant DNA damage or signs of p53 mutation in cryopreserved hASCs. Our findings suggest that long-term cryopreserved hASCs are at low risk of tumourigenesis. These findings aid in establishing the biosafety profile of cryopreserved hASCs, and thus establishing low hazardous risk perception with the use of long-term cryopreserved hASCs for future clinical applications. Copyright © 2016 John Wiley & Sons, Ltd.
    Matched MeSH terms: Mesenchymal Stromal Cells/metabolism*; Mesenchymal Stromal Cells/pathology
  15. Halim NS, Aizat WM, Yahaya BH
    Regen Med, 2019 01;14(1):15-31.
    PMID: 30566028 DOI: 10.2217/rme-2018-0020
    AIM: This study was aimed to investigate the effect of mesenchymal stem cell (MSC)-secreted factors on airway repair.

    MATERIALS & METHODS: An indirect in vitro coculture model of injured airway epithelium explant with MSCs was developed. LC-MS/MS analysis was performed to determine factors secreted by MSCs and their involvement in epithelium repair was evaluated by histopathological assessment.

    RESULTS: The identification of 54 of MSC proteins of which 44 of them were secretory/extracellular proteins. 43 of the secreted proteins were found to be involved in accelerating airway epithelium repair by stimulating the migratory, proliferative and differentiation abilities of the endogenous repair mechanisms. MSC-secreted proteins also initiated epithelial-mesenchymal transition process during early repair.

    CONCLUSION: MSC-secreted factors accelerated airway epithelial repair by stimulating the endogenous reparative and regenerative ability of lung cells.

    Matched MeSH terms: Mesenchymal Stromal Cells/cytology; Mesenchymal Stromal Cells/metabolism*
  16. Zakaria N, Yahaya BH
    Adv Exp Med Biol, 2020;1292:83-95.
    PMID: 31916234 DOI: 10.1007/5584_2019_464
    INTRODUCTION: Mesenchymal stem cells (MSCs) have been used in cancer therapy as vehicles to deliver therapeutic materials such as drugs, apoptosis inducers and cytokines due to their ability to migrate and home at the tumour site. Furthermore, MSCs have been genetically engineered to produce anticancer molecules such as TRAIL that can induce apoptosis of cancer cells. However, MSCs' presence in the tumour microenvironment has shown to be involved in promoting tumour growth and progression. Therefore, the roles of MSCs either promoting or suppressing tumorigenesis need to be investigated.

    METHODS: Human adipose-derived MSCs (Ad-MSCs) and A549 cells are co-cultured together in indirect co-culture system using Transwell insert. Following co-culture, both cells were analysed in terms of growth rate, migration ability, apoptosis and gene expression for genes involved in migration and stemness characteristics.

    RESULTS: The result shows that Ad-MSCs promoted the growth of A549 cells when indirectly co-cultured for 48 and 72 h. Furthermore, Ad-MSCs significantly enhanced the migration rate of A549 cells. The increased in migration rate was in parallel with the significant increase of MMP9. There are no significant changes observed in the expression of TWIST2, CDH2 and CDH1, genes involved in the epithelial-to-mesenchymal transition (EMT). Ad-MSCs also protect A549 cancer cells from undergoing apoptosis and increase the survival of cancer cells.

    CONCLUSION: Secretion of soluble factors from Ad-MSCs has been shown to promote the growth and metastatic characteristics of A549 cancer cells. Therefore, the use of Ad-MSCs in cancer therapy needs to be carefully evaluated in the long-term aspect.

    Matched MeSH terms: Mesenchymal Stromal Cells/cytology; Mesenchymal Stromal Cells/pathology*
  17. Maqbool M, Vidyadaran S, George E, Ramasamy R
    Cell Biol Int, 2011 Dec;35(12):1247-51.
    PMID: 21649586 DOI: 10.1042/CBI20110070
    We have previously shown that human MSC (mesenchymal stem cells) inhibit the proliferation of most of the immune cells. However, there are innate immune cells such as neutrophils and other PMN (polymorphonuclear) cells that do not require an extensive proliferation prior to their effector function. In this study, the effect of MSC on neutrophils in the presence of complete and serum-deprived culture media was investigated. In the presence of MSC, the viability of neutrophils increase as measured in 24 h of incubation at various supplementation of serum concentration. We have utilized Annexin V and PI (propidium iodide) staining to confirm whether the enhancement of neutrophil's viability is due to a reduction in PCD (programmed cell death). MSC significantly rescue neutrophils from apoptosis at 1, 5 and 10% of FBS (fetal bovine serum) supplementation. The fractions of viable and dead cells were increased and decreased respectively in the presence of MSC. Our results indicate MSC rescue neutrophils from nutrient- or serum-deprived cell death. However, whether this effect is exerted through a specific signalling pathway or confining neutrophils in resting state by MSC requires further investigation.
    Matched MeSH terms: Mesenchymal Stromal Cells/cytology; Mesenchymal Stromal Cells/metabolism*
  18. Kawai H, Tsujigiwa H, Siar CH, Nakano K, Takabatake K, Fujii M, et al.
    Int J Med Sci, 2018;15(12):1406-1414.
    PMID: 30275769 DOI: 10.7150/ijms.24370
    Background: The tumor microenvironment and its stromal cells play an important role in cancer development and metastasis. Bone marrow-derived cells (BMDCs), a rich source of hematopoietic and mesenchymal stem cells, putatively contribute to this tumoral stroma. However their characteristics and roles within the tumor microenvironment are unclear. In the present study, BMDCs in the tumor microenvironment were traced using the green fluorescent protein (GFP) bone marrow transplantation model. Methods: C57BL/6 mice were irradiated and rescued by bone marrow transplantation from GFP-transgenic mice. Lewis lung cancer cells were inoculated into the mice to generate subcutaneous allograft tumors or lung metastases. Confocal microscopy, immunohistochemistry for GFP, α-SMA, CD11b, CD31, CD34 and CD105, and double-fluorescent immunohistochemistry for GFP-CD11b, GFP-CD105 and GFP-CD31 were performed. Results: Round and dendritic-shaped GFP-positive mononuclear cells constituted a significant stromal subpopulation in primary tumor peripheral area (PA) and metastatic tumor area (MA) microenvironment, thus implicating an invasive and metastatic role for these cells. CD11b co-expression in GFP-positive cells suggests that round/dendritic cell subpopulations are possibly BM-derived macrophages. Identification of GFP-positive mononuclear infiltrates co-expressing CD31 suggests that these cells might be BM-derived angioblasts, whereas their non-reactivity for CD34, CD105 and α-SMA implies an altered vascular phenotype distinct from endothelial cells. Significant upregulation of GFP-positive, CD31-positive and GFP/CD31 double-positive cell densities positively correlated with PA and MA (P<0.05). Conclusion: Taken together, in vivo evidence of traceable GFP-positive BMDCs in primary and metastatic tumor microenvironment suggests that recruited BMDCs might partake in cancer invasion and metastasis, possess multilineage potency and promote angiogenesis.
    Matched MeSH terms: Stromal Cells; Mesenchymal Stromal Cells*
  19. Sulaiman S, Chowdhury SR, Fauzi MB, Rani RA, Yahaya NHM, Tabata Y, et al.
    Int J Mol Sci, 2020 Apr 13;21(8).
    PMID: 32294921 DOI: 10.3390/ijms21082688
    Recent advancement in cartilage tissue engineering has explored the potential of 3D culture to mimic the in vivo environment of human cartilaginous tissue. Three-dimensional culture using microspheres was described to play a role in driving the differentiation of mesenchymal stem cells to chondrocyte lineage. However, factors such as mechanical agitation on cell chondrogenesis during culture on the microspheres has yet to be elucidated. In this study, we compared the 2D and 3D culture of bone-marrow-derived mesenchymal stem cells (BMSCs) on gelatin microspheres (GMs) in terms of MSC stemness properties, immune-phenotype, multilineage differentiation properties, and proliferation rate. Then, to study the effect of mechanical agitation on chondrogenic differentiation in 3D culture, we cultured BMSCs on GM (BMSCs-GM) in either static or dynamic bioreactor system with two different mediums, i.e., F12: DMEM (1:1) + 10% FBS (FD) and chondrogenic induction medium (CIM). Our results show that BMSCs attached to the GM surface and remained viable in 3D culture. BMSCs-GM proliferated faster and displayed higher stemness properties than BMSCs on a tissue culture plate (BMSCs-TCP). GMs also enhanced the efficiency of in-vitro chondrogenesis of BMSCs, especially in a dynamic culture with higher cell proliferation, RNA expression, and protein expression compared to that in a static culture. To conclude, our results indicate that the 3D culture of BMSCs on gelatin microsphere was superior to 2D culture on a standard tissue culture plate. Furthermore, culturing BMSCs on GM in dynamic culture conditions enhanced their chondrogenic differentiation.
    Matched MeSH terms: Mesenchymal Stromal Cells/cytology*; Mesenchymal Stromal Cells/metabolism
  20. Wu Y, Yang Z, Law JB, He AY, Abbas AA, Denslin V, et al.
    Tissue Eng Part A, 2017 01;23(1-2):43-54.
    PMID: 27824280 DOI: 10.1089/ten.TEA.2016.0123
    Stem cell differentiation is guided by contact with the physical microenvironment, influence by both topography and mechanical properties of the matrix. In this study, the combined effect of substratum nano-topography and mechanical stiffness in directing mesenchymal stem cell (MSC) chondrogenesis was investigated. Three polyesters of varying stiffness were thermally imprinted to create nano-grating or pillar patterns of the same dimension. The surface of the nano-patterned substrate was coated with chondroitin sulfate (CS) to provide an even surface chemistry, with cell-adhesive and chondro-inductive properties, across all polymeric substrates. The surface characteristic, mechanical modulus, and degradation of the CS-coated patterned polymeric substrates were analyzed. The cell morphology adopted on the nano-topographic surfaces were accounted by F-actin distribution, and correlated to the cell proliferation and chondrogenic differentiation outcomes. Results show that substratum stiffness and topographical cues affected MSC morphology and aggregation, and influenced the phenotypic development at the earlier stage of chondrogenic differentiation. Hyaline-like cartilage with middle/deep zone cartilage characteristics was generated on softer pillar surface, while on stiffer nano-pillar material MSCs showed potential to generate constituents of hyaline/fibro/hypertrophic cartilage. Fibro/superficial zone-like cartilage could be derived from nano-grating of softer stiffness, while stiffer nano-grating resulted in insignificant chondrogenesis. This study demonstrates the possibility of refining the phenotype of cartilage generated from MSCs by manipulating surface topography and material stiffness.
    Matched MeSH terms: Mesenchymal Stromal Cells/cytology; Mesenchymal Stromal Cells/metabolism*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links