Displaying publications 41 - 60 of 69 in total

Abstract:
Sort:
  1. Tay ST, Kho KL, Lye SF, Ngeow YF
    J Vet Med Sci, 2018 Apr 18;80(4):653-661.
    PMID: 29311425 DOI: 10.1292/jvms.17-0448
    Bartonella bovis is a small Gram-negative bacterium recognized as an etiological agent for bacteremia and endocarditis in cattle. As few reports are available on the taxonomic position of B. bovis and its mechanism of virulence, this study aims to resolve the phylogeny of B. bovis and investigate putative virulence genes based on whole genome sequence analysis. Genome-wide comparisons based on single nucleotide polymorphisms (SNP) and orthologous genes were performed in this study for phylogenetic inference of 27 Bartonella species. Rapid Annotation using Subsystem Technology (RAST) analysis was used for annotation of putative virulence genes. The phylogenetic tree generated from the genome-wide comparison of orthologous genes exhibited a topology almost similar to that of the tree generated from SNP-based comparison, indicating a high concordance in the nucleotide and amino acid sequences of Bartonella spp. The analyses show consistent grouping of B. bovis in a cluster related to ruminant-associated species, including Bartonella australis, Bartonella melophagi and Bartonella schoenbuchensis. RAST analysis revealed genes encoding flagellar components, in corroboration with the observation of flagella-like structure of BbUM strain under negative straining. Genes associated with virulence, disease and defence, prophages, membrane transport, iron acquisition, motility and chemotaxis are annotated in B. bovis genome. The flagellin (flaA) gene of B. bovis is closely related to Bartonella bacilliformis and Bartonella clarridgeiae but distinct from other Gram-negative bacteria. The absence of type IV secretion systems, the bona fide pathogenicity factors of bartonellae, in B. bovis suggests that it may have a different mechanism of pathogenicity.
    Matched MeSH terms: Virulence Factors/genetics*
  2. Choo SW, Yusoff AM, Wong YL, Wee WY, Ong CS, Ng KP, et al.
    J Bacteriol, 2012 Sep;194(18):5128.
    PMID: 22933758 DOI: 10.1128/JB.01096-12
    The genome of Mycobacterium massiliense M172, isolated from a human sputum sample, was sequenced using Illumina GA IIX technology and found to contain 5,204,460 bp, including putative genes for virulence and antibiotic resistance as well as a 92-kb genomic region most likely to correspond to a mycobacteriophage.
    Matched MeSH terms: Virulence Factors/genetics
  3. Ghasemzadeh-Moghaddam H, Ghaznavi-Rad E, Sekawi Z, Yun-Khoon L, Aziz MN, Hamat RA, et al.
    Int J Med Microbiol, 2011 Apr;301(4):347-53.
    PMID: 21193348 DOI: 10.1016/j.ijmm.2010.10.004
    Despite the association of methicillin-susceptible S. aureus (MSSA) with several life-threatening diseases, relatively little is known about their clinical epidemiology in Malaysia. We characterized MSSA isolates (n=252) obtained from clinical and community (carriage) sources based on spa sequencing and multilocus sequence typing (MLST). The prevalence of several important virulence genes was determined to further define the molecular characteristics of MSSA clones circulating in Malaysia. Among the 142 clinical and 110 community-acquired MSSA isolates, 98 different spa types were identified, corresponding to 8 different spa clonal clusters (spa-CCs). In addition, MLST analysis revealed 22 sequence types (STs) with 5 singletons corresponding to 12 MLST-CCs. Interestingly, spa-CC084/085 (MLST-CC15) (p=0.038), spa-non-founder 2 (MLST-ST188) (p=0.002), and spa-CC127 (MLST-CC1) (p=0.049) were identified significantly more often among clinical isolates. spa-CC3204 (MLST-CC121) (p=0.02) and spa-CC015 (MLST-CC45) (p=0.0002) were more common among community isolates. Five dominant MLST-CCs (CC8, CC121, CC1, CC45, and CC5) having clear counterparts among the major MRSA clones were also identified in this study. While the MSSA strains are usually genetically heterogeneous, a relatively high frequency (19/7.5%) of ST188 (t189) strains was found, with 57.8% of these strains carrying the Panton-Valentine leukocidin (PVL). Analysis of additional virulence genes showed a frequency of 36.5% and 36.9% for seg and sei and 0.8% and 6.3% for etb and tst genes, respectively. Arginine catabolic mobile element (ACME) was detected in 4 community isolates only. These represent the first isolates harbouring this gene in an Asian region. In conclusion, MSSA from the Malaysian community and their clinical counterparts are genetically diverse, but certain clones occur more often among clinical isolates than among carriage isolates and vice versa.
    Matched MeSH terms: Virulence Factors/genetics
  4. Ghaznavi-Rad E, Nor Shamsudin M, Sekawi Z, Khoon LY, Aziz MN, Hamat RA, et al.
    J Clin Microbiol, 2010 Mar;48(3):867-72.
    PMID: 20089756 DOI: 10.1128/JCM.01112-09
    We define the epidemiology of predominant and sporadic methicillin-resistant Staphylococcus aureus (MRSA) strains in a central teaching and referral hospital in Kuala Lumpur, Malaysia. This is done on the basis of spa sequencing, multilocus sequence typing (MLST), staphylococcal cassette chromosome mec (SCCmec) typing, and virulence gene profiling. During the period of study, the MRSA prevalence was 44.1%, and 389 MRSA strains were included. The prevalence of MRSA was found to be significantly higher in the patients of Indian ethnicity (P < 0.001). The majority (92.5%) of the isolates belonged to ST-239, spa type t037, and possessed the type III or IIIA SCCmec. The arginine catabolic mobile element (ACME) arcA gene was detected in three (1.05%) ST-239 isolates. We report the first identification of ACME arcA gene-positive ST-239. Apart from this predominant clone, six (1.5%) isolates of ST-22, with two related spa types (t032 and t4184) and a singleton (t3213), carrying type IVh SCCmec, were detected for the first time in Asia. A limited number of community-acquired (CA) MRSA strains were also detected. These included ST-188/t189 (2.1%), ST-1/t127 (2.3%), and ST-7/t091 (1%). Panton-Valentin leukocidin (PVL) was detected in all ST-1 and ST-188 strains and in 0.7% of the ST-239 isolates. The majority of the isolates carried agr I, except that ST-1 strains were agr III positive. Virulence genes seg and sei were seen only among ST-22 isolates. In conclusion, current results revealed the predominance of ST-239-SCCmec III/IIIA and the penetration of ST-22 with different virulence gene profiles. The emergence in Malaysia of novel clones of known epidemic and pathogenic potential should be taken seriously.
    Matched MeSH terms: Virulence Factors/genetics
  5. Ghazali AK, Eng SA, Khoo JS, Teoh S, Hoh CC, Nathan S
    Microb Genom, 2021 02;7(2).
    PMID: 33565959 DOI: 10.1099/mgen.0.000527
    Burkholderia pseudomallei, a soil-dwelling Gram-negative bacterium, is the causative agent of the endemic tropical disease melioidosis. Clinical manifestations of B. pseudomallei infection range from acute or chronic localized infection in a single organ to fulminant septicaemia in multiple organs. The diverse clinical manifestations are attributed to various factors, including the genome plasticity across B. pseudomallei strains. We previously characterized B. pseudomallei strains isolated in Malaysia and noted different levels of virulence in model hosts. We hypothesized that the difference in virulence might be a result of variance at the genome level. In this study, we sequenced and assembled four Malaysian clinical B. pseudomallei isolates, UKMR15, UKMPMC2000, UKMD286 and UKMH10. Phylogenomic analysis showed that Malaysian subclades emerged from the Asian subclade, suggesting that the Malaysian strains originated from the Asian region. Interestingly, the low-virulence strain, UKMH10, was the most distantly related compared to the other Malaysian isolates. Genomic island (GI) prediction analysis identified a new island of 23 kb, GI9c, which is present in B. pseudomallei and Burkholderia mallei, but not Burkholderia thailandensis. Genes encoding known B. pseudomallei virulence factors were present across all four genomes, but comparative analysis of the total gene content across the Malaysian strains identified 104 genes that are absent in UKMH10. We propose that these genes may encode novel virulence factors, which may explain the reduced virulence of this strain. Further investigation on the identity and role of these 104 proteins may aid in understanding B. pseudomallei pathogenicity to guide the design of new therapeutics for treating melioidosis.
    Matched MeSH terms: Virulence Factors/genetics
  6. Mohd-Shaharuddin N, Lim YAL, Ngui R, Nathan S
    Parasit Vectors, 2021 Mar 23;14(1):176.
    PMID: 33757548 DOI: 10.1186/s13071-021-04680-y
    BACKGROUND: Ascaris lumbricoides is the most common causative agent of soil-transmitted helminth infections worldwide, with an estimated 450 million people infected with this nematode globally. It is suggested that helminths are capable of evading and manipulating the host immune system through the release of a spectrum of worm proteins which underpins their long-term survival in the host. We hypothesise that the worm overexpresses these proteins when infecting adults compared to children to cirvumvent the more robust defence mechanisms of adults. However, little is known about the parasite's genes and encoded proteins involved during A. lumbricoides infection. Hence, this study was conducted to assess the expression profile of putative virulence-associated genes during an active infection of adults and children.

    METHODS: In this study, quantitative PCR was performed to evaluate the expression profile of putative virulence-associated genes in A. lumbricoides isolated from infected children and adults. The study was initiated by collecting adult worms expelled from adults and children following anthelminthic treatment. High-quality RNA was successfully extracted from each of six adult worms expelled by three adults and three children, respectively. Eleven putative homologues of helminth virulence-associated genes reported in previous studies were selected, primers were designed and specific amplicons of A. lumbricoides genes were noted. The expression profiles of these putative virulence-associated genes in A. lumbricoides from infected adults were compared to those in A. lumbricoides from infected children.

    RESULTS: The putative virulence-associated genes VENOM, CADHERIN and PEBP were significantly upregulated at 166-fold, 13-fold and fivefold, respectively, in adults compared to children. Conversely, the transcription of ABA-1 (fourfold), CATH-L (threefold) and INTEGRIN (twofold) was significantly suppressed in A. lumbricoides from infected adults.

    CONCLUSIONS: On the basis of the expression profile of the putative virulence-associated genes, we propose that the encoded proteins have potential roles in evasion mechanisms, which could guide the development of therapeutic interventions.

    Matched MeSH terms: Virulence Factors/genetics
  7. Bala JA, Balakrishnan KN, Abdullah AA, Mohamed R, Haron AW, Jesse FFA, et al.
    Microb Pathog, 2018 Jul;120:55-63.
    PMID: 29709684 DOI: 10.1016/j.micpath.2018.04.057
    Orf disease is known to be enzootic among small ruminants in Asia, Africa, and some other parts of the world. The disease caused by orf virus is highly contagious among small ruminant species. Unfortunately, it has been neglected for decades because of the general belief that it only causes a self-limiting disease. On the other hand, in the past it has been reported to cause huge cumulative financial losses in livestock farming. Orf disease is characterized by localized proliferative and persistent skin nodule lesions that can be classified into three forms: generalized, labial and mammary or genitals. It can manifest as benign or malignant types. The later type of orf can remain persistent, often fatal and usually causes a serious outbreak among small ruminant population. Morbidity and mortality rates of orf are higher especially in newly infected kids and lambs. Application of antibiotics together with antipyretic and/or analgesic is highly recommended as a supportive disease management strategy for prevention of subsequent secondary microbial invasion. The presence of various exotic orf virus strains of different origin has been reported in many countries mostly due to poorly controlled cross-border virus transmission. There have been several efforts to develop orf virus vaccines and it was with variable success. The use of conventional vaccines to control orf is a debatable topic due to the concern of short term immunity development. Following re-infection in previously vaccinated animals, it is uncommon to observe the farms involved to experience rapid virus spread and disease outbreak. Meanwhile, cases of zoonosis from infected animals to animal handler are not uncommon. Despite failures to contain the spread of orf virus by the use of conventional vaccines, vaccination of animals with live orf virus is still considered as one of the best choice. The review herein described pertinent issues with regard to the development and use of potential effective vaccines as a control measure against orf virus infection.
    Matched MeSH terms: Virulence Factors/genetics
  8. Ali MS, Isa NM, Abedelrhman FM, Alyas TB, Mohammed SE, Ahmed AE, et al.
    BMC Microbiol, 2019 06 11;19(1):126.
    PMID: 31185900 DOI: 10.1186/s12866-019-1470-2
    BACKGROUND: Methicillin-resistant Staphylococcus aureus (MRSA) is known as a leading cause of morbidity and mortality. Investigation of the MRSA's virulence and resistance mechanisms is a continuing concern toward controlling such burdens through using high throughput whole Genome Sequencing (WGS) and molecular diagnostic assays. The objective of the present study is to perform whole-genome sequencing of MRSA isolated from Sudan using Illumina Next Generation Sequencing (NGS) platform.

    RESULTS: The genome of MRSA strain SO-1977 consists of 2,827,644 bp with 32.8% G + C, 59 RNAs and 2629 predicted coding sequences (CDSs). The genome has 26 systems, one of which is the major class in the disease virulence and defence. A total of 83 genes were annotated to virulence disease and defence category some of these genes coding as functional proteins. Based on genome analysis, it is speculated that the SO-1977 strain has resistant genes to Teicoplanin, Fluoroquinolones, Quinolone, Cephamycins, Tetracycline, Acriflavin and Carbapenems. The results revealed that the SO-1977, strain isolated from Sudan has a wide range of antibiotic resistance compared to related strains.

    CONCLUSION: The study reports for the first time the whole genome sequence of Sudan MRSA isolates. The release of the genome sequence of the strain SO-1977 will avail MRSA in public databases for further investigations on the evolution of resistant mechanism and dissemination of the -resistant genes of MRSA.

    Matched MeSH terms: Virulence Factors/genetics
  9. Schmidt HM, Andres S, Nilsson C, Kovach Z, Kaakoush NO, Engstrand L, et al.
    Eur J Clin Microbiol Infect Dis, 2010 Apr;29(4):439-51.
    PMID: 20157752 DOI: 10.1007/s10096-010-0881-7
    Helicobacter pylori-related disease is at least partially attributable to the genotype of the infecting strain, particularly the presence of specific virulence factors. We investigated the prevalence of a novel combination of H. pylori virulence factors, including the cag pathogenicity island (PAI), and their association with severe disease in isolates from the three major ethnicities in Malaysia and Singapore, and evaluated whether the cag PAI was intact and functional in vitro. Polymerase chain reaction (PCR) was used to detect dupA, cagA, cagE, cagT, cagL and babA, and to type vacA, the EPIYA motifs, HP0521 alleles and oipA ON status in 159 H. pylori clinical isolates. Twenty-two strains were investigated for IL-8 induction and CagA translocation in vitro. The prevalence of cagA, cagE, cagL, cagT, babA, oipA ON and vacA s1 and i1 was >85%, irrespective of the disease state or ethnicity. The prevalence of dupA and the predominant HP0521 allele and EPIYA motif varied significantly with ethnicity (p < 0.05). A high prevalence of an intact cag PAI was found in all ethnic groups; however, no association was observed between any virulence factor and disease state. The novel association between the HP0521 alleles, EPIYA motifs and host ethnicity indicates that further studies to determine the function of this gene are important.
    Matched MeSH terms: Virulence Factors/genetics*
  10. Lai YM, Zaw MT, Shamsudin SB, Lin Z
    J Infect Dev Ctries, 2016 Oct 31;10(10):1053-1058.
    PMID: 27801366 DOI: 10.3855/jidc.6944
    INTRODUCTION: Uropathogenic virulence factors have been identified by comparing the prevalence of these among urinary tract isolates and environmental strains. The uropathogenic-specific protein (USP) gene is present on the pathogenicity island (PAI) of uropathogenic Escherichia coli (UPEC) and, depending on its two diverse gene types and the sequential patterns of three open reading frame units (orfUs) following it, there is a method to characterize UPEC epidemiologically called PAIusp subtyping.
    METHODOLOGY: A total of 162 UPEC isolates from Sabah, Malaysia, were tested for the presence of the usp gene and the sequential patterns of three orfUs following it using polymerase chain reaction (PCR). In addition, by means of triplex PCR, the prevalence of the usp gene was compared with other two VFs of UPEC, namely alpha hemolysin (α-hly) and cytotoxic necrotizing factor (cnf-1) genes encoding two toxins.
    RESULTS: The results showed that the usp gene was found in 78.40% of UPEC isolates, indicating that its prevalence was comparable to that found in a previous study in Japan. The two or three orfUs were also associated with the usp gene in this study. All the PAIusp subtypes observed in Japan were present in this study, while subtype IIa was the most common in both studies. The usp gene was observed in a higher percentage of isolates when compared with α-hly and cnf-1 genes.
    CONCLUSIONS: The findings in Japan and Sabah, East Malaysia, were similar, indicating that PAIusp subtyping is applicable to the characterization of UPEC strains epidemiologically elsewhere in the world.
    Matched MeSH terms: Virulence Factors/genetics*
  11. Shabani NRM, Mokhtar M, Leow CH, Lean QY, Chuah C, Singh KKB, et al.
    Infect Genet Evol, 2020 11;85:104532.
    PMID: 32911076 DOI: 10.1016/j.meegid.2020.104532
    Shigella is an intracellular bacterial pathogen that causes bacterial dysentery called shigellosis. The assessment of pro- and anti-inflammatory mediators produced by immune cells against this bacteria are vital in identifying the effectiveness of the immune reaction in protecting the host. In Malaysia, Shigella is ranked as the third most common bacteria causing diarrheal disease among children below 5 years old. In the present study, we aim to examine the differential cytokine gene expressions of macrophages in response to two types of clinical strains of Shigella flexneri 2a (S. flexneri 2a) isolated from patients admitted in Hospital Universiti Sains Malaysia, Kelantan, Malaysia. THP-1-derived macrophages, as the model of human macrophages, were infected separately with S. flexneri 2a mild (SH062) and virulence (SH057) strains for 6, 12, and 24 h, respectively. The gene expression level of inflammatory mediators was identified using real-time quantitative polymerase chain reaction (RT-qPCR). The production of nitric oxide (NO) by the macrophages was measured by using a commercialized NO assay kit. The ability of macrophages to kill the intracellular bacteria was assessed by intracellular killing assay. Induction of tumor necrosis factor-alpha (TNFα), interleukin (IL)-1β, IL-6, IL-12, inducible NO synthase (iNOS), and NO, confirmed the pro-inflammatory reaction of the THP-1-derived macrophages in response to S. flexneri 2a, especially against the SH507 strain. The SH057 also induced a marked increase in the expression levels of the anti-inflammatory cytokine mRNAs at 12 h and 24 h post-infection. In the intracellular killing assay, both strains showed less viable, indicating the generation of pro-inflammatory cytokines in the presence of iNOS and NO was crucial in the stimulation of macrophages for the host defense against shigellosis. Transcription analysis of THP-1-derived macrophages in this study identifies differentially expressed cytokine genes that correlated with the virulence factor of S. flexneri 2a.
    Matched MeSH terms: Virulence Factors/genetics*
  12. Chua AL, Elina HT, Lim BH, Yean CY, Ravichandran M, Lalitha P
    J Med Microbiol, 2011 Apr;60(Pt 4):481-485.
    PMID: 21183596 DOI: 10.1099/jmm.0.027433-0
    Vibrio cholerae has caused severe outbreaks of cholera worldwide with thousands of recorded deaths annually. Molecular diagnosis for cholera has become increasingly important for rapid detection of cholera as the conventional methods are time-consuming and labour intensive. However, traditional PCR tests still require cold-chain transportation and storage as well as trained personnel to perform, which makes them user-unfriendly. The aim of this study was to develop a thermostabilized triplex PCR test for cholera which is in a ready-to-use form and requires no cold chain. The PCR test specifically detects both toxigenic and non-toxigenic strains of V. cholerae based on the cholera toxin A (ctxA) and outer-membrane lipoprotein (lolB) genes. The thermostabilized triplex PCR also incorporates an internal amplification control that helps to check for PCR inhibitors in samples. PCR reagents and the specific primers were lyophilized into a pellet form in the presence of trehalose, which acts as an enzyme stabilizer. The triplex PCR was validated with 174 bacteria-spiked stool specimens and was found to be 100 % sensitive and specific. The stability of the thermostabilized PCR was evaluated using the Q10 method and it was found to be stable for approximately 7 months at 24 °C. The limit of detection of the thermostabilized triplex PCR assay was 2×10(4) c.f.u. at the bacterial cell level and 100 pg DNA at the genomic DNA level, comparable to conventional PCR methods. In conclusion, a rapid thermostabilized triplex PCR assay was developed for detecting toxigenic and non-toxigenic V. cholerae which requires minimal pipetting steps and is cold chain-free.
    Matched MeSH terms: Virulence Factors/genetics*
  13. Mujawar S, Mishra R, Pawar S, Gatherer D, Lahiri C
    PMID: 31281799 DOI: 10.3389/fcimb.2019.00203
    Nosocomial infections have become alarming with the increase of multidrug-resistant bacterial strains of Acinetobacter baumannii. Being the causative agent in ~80% of the cases, these pathogenic gram-negative species could be deadly for hospitalized patients, especially in intensive care units utilizing ventilators, urinary catheters, and nasogastric tubes. Primarily infecting an immuno-compromised system, they are resistant to most antibiotics and are the root cause of various types of opportunistic infections including but not limited to septicemia, endocarditis, meningitis, pneumonia, skin, and wound sepsis and even urinary tract infections. Conventional experimental methods including typing, computational methods encompassing comparative genomics, and combined methods of reverse vaccinology and proteomics had been proposed to differentiate and develop vaccines and/or drugs for several outbreak strains. However, identifying proteins suitable enough to be posed as drug targets and/or molecular vaccines against the multidrug-resistant pathogenic bacterial strains has probably remained an open issue to address. In these cases of novel protein identification, the targets either are uncharacterized or have been unable to confer the most coveted protection either in the form of molecular vaccine candidates or as drug targets. Here, we report a strategic approach with the 3,766 proteins from the whole genome of A. baumannii ATCC19606 (AB) to rationally identify plausible candidates and propose them as future molecular vaccine candidates and/or drug targets. Essentially, we started with mapping the vaccine candidates (VaC) and virulence factors (ViF) of A. baumannii strain AYE onto strain ATCC19606 to identify them in the latter. We move on to build small networks of VaC and ViF to conceptualize their position in the network space of the whole genomic protein interactome (GPIN) and rationalize their candidature for drugs and/or molecular vaccines. To this end, we propose new sets of known proteins unearthed from interactome built using key factors, KeF, potent enough to compete with VaC and ViF. Our method is the first of its kind to propose, albeit theoretically, a rational approach to identify crucial proteins and pose them for candidates of vaccines and/or drugs effective enough to combat the deadly pathogenic threats of A. baumannii.
    Matched MeSH terms: Virulence Factors/genetics
  14. Alfizah H, Ramelah M, Rizal AM, Anwar AS, Isa MR
    Helicobacter, 2012 Oct;17(5):340-9.
    PMID: 22967117 DOI: 10.1111/j.1523-5378.2012.00956.x
    Polymorphisms of Helicobacter pylori cagA and vacA genes do exist and may contribute to differences in H. pylori infection and gastroduodenal diseases among races in the Malaysian population. This study was conducted to characterize the polymorphisms in H. pylori cagA and vacA in Malaysian population.
    Matched MeSH terms: Virulence Factors/genetics*
  15. De Bruyne L, Van Poucke C, Di Mavungu DJ, Zainudin NA, Vanhaecke L, De Vleesschauwer D, et al.
    Mol Plant Pathol, 2016 Aug;17(6):805-17.
    PMID: 26456797 DOI: 10.1111/mpp.12329
    Brown spot disease, caused by Cochliobolus miyabeanus, is currently considered to be one of the most important yield reducers of rice (Oryza sativa L.). Despite its agricultural importance, little is known about the virulence mechanisms deployed by the fungus. Therefore, we set out to identify novel virulence factors with a role in disease development. This article reports, for the first time, the production of tentoxin by C. miyabeanus as a virulence factor during brown spot disease and the identification of the non-ribosomal protein synthetase (NRPS) CmNps3, responsible for tentoxin biosynthesis. We compared the chemical compounds produced by C. miyabeanus strains differing in virulence ability using ultra-high-performance liquid chromatography (UHPLC) coupled to high-resolution Orbitrap mass spectrometry (HRMS). The production of tentoxin by a highly virulent strain was revealed by principal component analysis of the detected ions and confirmed by UHPLC coupled to tandem-quadrupole mass spectrometry (MS/MS). The corresponding NRPS was identified by in silico genome analysis and confirmed by gene deletion. Infection tests with wild-type and Cmnps3 mutants showed that tentoxin acts as a virulence factor and is correlated with chlorosis development during the second phase of infection. Although rice has previously been classified as a tentoxin-insensitive plant species, our data demonstrate that tentoxin production by C. miyabeanus affects symptom development.
    Matched MeSH terms: Virulence Factors/genetics*
  16. Noordin A, Sapri HF, Mohamad Sani NA, Leong SK, Tan XE, Tan TL, et al.
    J Med Microbiol, 2016 Dec;65(12):1476-1481.
    PMID: 27902380 DOI: 10.1099/jmm.0.000387
    The annual prevalence of methicillin-resistant Staphylococcus aureus (MRSA) in Malaysia has been estimated to be 30 % to 40 % of all S. aureus infections. Nevertheless, data on the antimicrobial resistance and genetic diversity of Malaysian MRSAs remain few. In 2009, we collected 318 MRSA strains from various wards of our teaching hospital located in Kuala Lumpur, the capital city of Malaysia, and performed antimicrobial susceptibility testing on these strains. The strains were then molecularly characterized via staphylococcal cassette chromosome (SCC) mec and virulence gene (cna, sea, seb, sec, sed, see, seg, seh, sei, eta, etb, Panton-Valentine leukocidin and toxic shock syndrome toxin-1) typing; a subset of 49 strains isolated from the intensive care unit was also typed using PFGE. Most strains were found to be resistant to ciprofloxacin (92.5 %), erythromycin (93.4 %) and gentamicin (86.8 %). The majority (72.0 %) of strains were found to harbour SCCmec type III-SCCmercury with the presence of ccrC, and carried the sea+cna gene combination (49.3 %), with cna as the most prevalent virulence gene (94.0 %) detected. We identified four PFGE clusters, with pulsotype C (n=19) as the dominant example in the intensive care unit, where this pulsotype was found to be associated with carriage of SCCmec type III and the sea gene (P=0.05 and P=0.02, respectively). In summary, the dominant MRSA circulating in our hospital in 2009 was a clone that was ciprofloxacin, erythromycin and gentamicin resistant, carried SCCmec type III-SCCmercury with ccrC and also harboured the sea+cna virulence genes. This clone also appears to be the dominant MRSA circulating in major hospitals in Kuala Lumpur.
    Matched MeSH terms: Virulence Factors/genetics
  17. Zhang X, Sun J, Chen F, Qi H, Chen L, Sung YY, et al.
    Microb Genom, 2021 05;7(5).
    PMID: 33952389 DOI: 10.1099/mgen.0.000549
    The virulence of Vibrio parahaemolyticus is variable depending on its virulence determinants. A V. parahaemolyticus strain, in which the virulence is governed by the pirA and pirB genes, can cause acute hepatopancreatic necrosis disease (AHPND) in shrimps. Some V. parahaemolyticus that are non-AHPND strains also cause shrimp diseases and result in huge economic losses, while their pathogenicity and pathogenesis remain unclear. In this study, a non-AHPND V. parahaemolyticus, TJA114, was isolated from diseased Penaeus vannamei associated with a high mortality. To understand its virulence and adaptation to the external environment, whole-genome sequencing of this isolate was conducted, and its phenotypic profiles including pathogenicity, growth characteristics and nutritional requirements were investigated. Shrimps following artificial infection with this isolate presented similar clinical symptoms to the naturally diseased ones and generated obvious pathological lesions. The growth characteristics indicated that the isolate TJA114 could grow well under different salinity (10-55 p.p.t.), temperature (23-37 °C) and pH (6-10) conditions. Phenotype MicroArray results showed that this isolate could utilize a variety of carbon sources, amino acids and a range of substrates to help itself adapt to the high hyperosmotic and alkaline environments. Antimicrobial-susceptibility test showed that it was a multidrug-resistant bacterium. The whole-genomic analysis showed that this V. parahaemolyticus possessed many important functional genes associated with multidrug resistance, stress response, adhesions, haemolysis, putative secreted proteases, dedicated protein secretion systems and a variety of nutritional metabolic mechanisms. These annotated functional genes were confirmed by the phenotypic profiles. The results in this study indicated that this V. parahaemolyticus isolate possesses a high pathogenicity and strong environmental adaptability.
    Matched MeSH terms: Virulence Factors/genetics
  18. Hsieh CF, Jheng JR, Lin GH, Chen YL, Ho JY, Liu CJ, et al.
    Emerg Microbes Infect, 2020 Dec;9(1):1194-1205.
    PMID: 32397909 DOI: 10.1080/22221751.2020.1767512
    Enterovirus A71 (EV-A71), a positive-stranded RNA virus of the Picornaviridae family, may cause neurological complications or fatality in children. We examined specific factors responsible for this virulence using a chemical genetics approach. Known compounds from an anti-EV-A71 herbal medicine, Salvia miltiorrhiza (Danshen), were screened for anti-EV-A71. We identified a natural product, rosmarinic acid (RA), as a potential inhibitor of EV-A71 by cell-based antiviral assay and in vivo mouse model. Results also show that RA may affect the early stage of viral infection and may target viral particles directly, thereby interfering with virus-P-selectin glycoprotein ligand-1 (PSGL1) and virus-heparan sulfate interactions without abolishing the interaction between the virus and scavenger receptor B2 (SCARB2). Sequencing of the plaque-purified RA-resistant viruses revealed a N104K mutation in the five-fold axis of the structural protein VP1, which contains positively charged amino acids reportedly associated with virus-PSGL1 and virus-heparan sulfate interactions via electrostatic attraction. The plasmid-derived recombinant virus harbouring this mutation was confirmed to be refractory to RA inhibition. Receptor pull-down showed that this non-positively charged VP1-N104 is critical for virus binding to heparan sulfate. As the VP1-N104 residue is conserved among different EV-A71 strains, RA may be useful for inhibiting EV-A71 infection, even for emergent virus variants. Our study provides insight into the molecular mechanism of virus-host interactions and identifies a promising new class of inhibitors based on its antiviral activity and broad spectrum effects against a range of EV-A71.
    Matched MeSH terms: Virulence Factors/genetics
  19. Ahmad A, Dada AC, Usup G, Heng LY
    Mar Pollut Bull, 2014 May 15;82(1-2):26-38.
    PMID: 24725825 DOI: 10.1016/j.marpolbul.2014.03.028
    Median enterococci counts of beach water samples gradually increased at statistically significant levels (χ2: 26.53, df: 4; p<0.0001) with increasing proximity to river influx. The difference in proportion of antibiotic resistant enterococci in beach water and river water samples was statistically significant (p<0.05) for the tested antibiotics with river isolates generally presenting higher resistance frequencies. Virulence genes cyl, esp, gelE and asa were detected at varying frequencies (7.32%, 21.95%, 100% and 63.41% respectively) among river isolates. On the other hand, the prevalence of these genes was lower (0%, 20%, 67.27% and 41.82% respectively) among beach water isolates. Multi-Locus-Sequence-Typing analysis of Enterococcus faecalis presented four sequence types (ST) one of which shared six out of seven tested loci with ST6, a member of the clonal complex of multi-drug resistant strains associated with hospital outbreaks.
    Matched MeSH terms: Virulence Factors/genetics*
  20. Soheili S, Ghafourian S, Sekawi Z, Neela V, Sadeghifard N, Ramli R, et al.
    ScientificWorldJournal, 2014;2014:623174.
    PMID: 25147855 DOI: 10.1155/2014/623174
    Enterococcus, a Gram-positive facultative anaerobic cocci belonging to the lactic acid bacteria of the phylum Firmicutes, is known to be able to resist a wide range of hostile conditions such as different pH levels, high concentration of NaCl (6.5%), and the extended temperatures between 5(°)C and 65(°)C. Despite being the third most common nosocomial pathogen, our understanding on its virulence factors is still poorly understood. The current study was aimed to determine the prevalence of different virulence genes in Enterococcus faecalis and Enterococcus faecium. For this purpose, 79 clinical isolates of Malaysian enterococci were evaluated for the presence of virulence genes. pilB, fms8, efaAfm, and sgrA genes are prevalent in all clinical isolates. In conclusion, the pathogenicity of E. faecalis and E. faecium could be associated with different virulence factors and these genes are widely distributed among the enterococcal species.
    Matched MeSH terms: Virulence Factors/genetics*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links