Affiliations 

  • 1 Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia; Faculty of Health Sciences, Universiti Teknologi MARA, Cawangan Pulau Pinang, Kampus Bertam, 13200 Kepala Batas, Penang, Malaysia
  • 2 Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia
  • 3 Institute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800 Gelugor, Penang, Malaysia
  • 4 Faculty of Pharmacy, Universiti Teknologi MARA, Cawangan Pulau Pinang, Kampus Bertam, 13200 Kepala Batas, Penang, Malaysia
  • 5 School of Medical Sciences, Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia; Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Sungai Long Campus, Jalan Sungai Long, Bandar Sungai Long, 43200 Kajang, Selangor, Malaysia
  • 6 School of Medical Sciences, Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia
  • 7 Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia. Electronic address: yee.leow@usm.my
Infect Genet Evol, 2020 11;85:104532.
PMID: 32911076 DOI: 10.1016/j.meegid.2020.104532

Abstract

Shigella is an intracellular bacterial pathogen that causes bacterial dysentery called shigellosis. The assessment of pro- and anti-inflammatory mediators produced by immune cells against this bacteria are vital in identifying the effectiveness of the immune reaction in protecting the host. In Malaysia, Shigella is ranked as the third most common bacteria causing diarrheal disease among children below 5 years old. In the present study, we aim to examine the differential cytokine gene expressions of macrophages in response to two types of clinical strains of Shigella flexneri 2a (S. flexneri 2a) isolated from patients admitted in Hospital Universiti Sains Malaysia, Kelantan, Malaysia. THP-1-derived macrophages, as the model of human macrophages, were infected separately with S. flexneri 2a mild (SH062) and virulence (SH057) strains for 6, 12, and 24 h, respectively. The gene expression level of inflammatory mediators was identified using real-time quantitative polymerase chain reaction (RT-qPCR). The production of nitric oxide (NO) by the macrophages was measured by using a commercialized NO assay kit. The ability of macrophages to kill the intracellular bacteria was assessed by intracellular killing assay. Induction of tumor necrosis factor-alpha (TNFα), interleukin (IL)-1β, IL-6, IL-12, inducible NO synthase (iNOS), and NO, confirmed the pro-inflammatory reaction of the THP-1-derived macrophages in response to S. flexneri 2a, especially against the SH507 strain. The SH057 also induced a marked increase in the expression levels of the anti-inflammatory cytokine mRNAs at 12 h and 24 h post-infection. In the intracellular killing assay, both strains showed less viable, indicating the generation of pro-inflammatory cytokines in the presence of iNOS and NO was crucial in the stimulation of macrophages for the host defense against shigellosis. Transcription analysis of THP-1-derived macrophages in this study identifies differentially expressed cytokine genes that correlated with the virulence factor of S. flexneri 2a.

* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.