Displaying publications 41 - 60 of 119 in total

Abstract:
Sort:
  1. Rendana M, Idris WMR
    J Infect Public Health, 2021 Oct;14(10):1320-1327.
    PMID: 34175236 DOI: 10.1016/j.jiph.2021.05.019
    BACKGROUND: World Health Organization has reported fifty countries have now detected the new coronavirus (B.1.1.7 variant) since a couple of months ago. In Indonesia, the B.1.1.7 cases have been found in several provinces since January 2021, although they are still in a lower number than the old variant of COVID-19. Therefore, this study aims to create a forecast analysis regarding the occasions of COVID-19 and B.1.1.7 cases based on data from the 1st January to 18th March 2021, and also analyze the association between meteorological factors with B.1.1.7 incidences in three different provinces of Indonesia such as the West Java, South Sumatra and East Kalimantan.

    METHODS: We used the Autoregressive Moving Average Models (ARIMA) to forecast the number of cases in the upcoming 14 days and the Spearman correlation analysis to analyze the relationship between B.1.1.7 cases and meteorological variables such as temperature, humidity, rainfall, sunshine, and wind speed.

    RESULTS: The results of the study showed the fitted ARIMA models forecasted there was an increase in the daily cases in three provinces. The total cases in three provinces would increase by 36% (West Java), 13.5% (South Sumatra), and 30% (East Kalimantan) as compared with actual cases until the end of 14 days later. The temperature, rainfall and sunshine factors were the main contributors for B.1.1.7 cases with each correlation coefficients; r = -0.230; p < 0.05, r = 0.211; p < 0.05 and r = -0.418; p < 0.01, respectively.

    CONCLUSIONS: We recapitulated that this investigation was the first preliminary study to analyze a short-term forecast regarding COVID-19 and B.1.1.7 cases as well as to determine the associated meteorological factors that become primary contributors to the virus spread.

    Matched MeSH terms: Weather*
  2. Jin BL, Jaal Z
    Trop Biomed, 2009 Aug;26(2):140-8.
    PMID: 19901900 MyJurnal
    Changes in the abundance of the house fly, Musca domestica, was studied for a period of one year in two poultry farms in Penang, Malaysia: one in Balik Pulau, located in Penang island, and the other in Juru, located on mainland Penang. The sampling of house flies were carried out from March 2007 to April 2008 using the Scudder grill, and the correlation with meteorological conditions particularly rainfall, relative humidity and temperature were observed. In Balik Pulau, the fly abundance showed an inverse relationship to relative humidity and total rainfall. However, no significant correlations were found between the abundance of flies and the above mentioned climatic factors. In contrast, the occurrence of flies in Juru showed strong correlation indices with relative humidity (r=0.803, p<0.05) and total rainfall (r=0.731, p<0.05). Temperature had no significant effect on the abundance of flies in both poultry farms due to imperceptible changes in monthly temperature.
    Matched MeSH terms: Weather*
  3. Farzanmanesh, Raheleh, Ahmad Makmom Abdullah, Shakiba, Alireza, Jamil Amanollahi
    MyJurnal
    Iran is situated in a very diverse environmental area. The climate of the region is varied and influencedby different patterns. In order to best describe the expected climate change impacts for the region,climate change scenarios and climate variables must be developed on a regional, or even site-specific,scale. The weather generator is one of the valid downscaling methods. In the current study, LARSWG(a weather generator) and the outputs from ECHO-G for present climate, as well as future timeslice of 2010-2039 based on A1 scenario, were used to evaluate LARS-WG as a tool at 13 synopticstations located in the north and northeast parts of Iran. The results obtained in this study illustratethat LARS-WG has a reasonable capability of simulating the minimum and maximum temperaturesand precipitation. In addition, the results showed that the mean precipitation decreased in Semnan, thesouth of Khorasan and Golestan. Meanwhile, the mean temperature during 2010-2039 would increaseby 0.5°C, especially in the cold season.
    Matched MeSH terms: Weather
  4. Anarkooli AJ, Hosseinpour M, Kardar A
    Accid Anal Prev, 2017 Sep;106:399-410.
    PMID: 28728062 DOI: 10.1016/j.aap.2017.07.008
    Rollover crashes are responsible for a notable number of serious injuries and fatalities; hence, they are of great concern to transportation officials and safety researchers. However, only few published studies have analyzed the factors associated with severity outcomes of rollover crashes. This research has two objectives. The first objective is to investigate the effects of various factors, of which some have been rarely reported in the existing studies, on the injury severities of single-vehicle (SV) rollover crashes based on six-year crash data collected on the Malaysian federal roads. A random-effects generalized ordered probit (REGOP) model is employed in this study to analyze injury severity patterns caused by rollover crashes. The second objective is to examine the performance of the proposed approach, REGOP, for modeling rollover injury severity outcomes. To this end, a mixed logit (MXL) model is also fitted in this study because of its popularity in injury severity modeling. Regarding the effects of the explanatory variables on the injury severity of rollover crashes, the results reveal that factors including dark without supplemental lighting, rainy weather condition, light truck vehicles (e.g., sport utility vehicles, vans), heavy vehicles (e.g., bus, truck), improper overtaking, vehicle age, traffic volume and composition, number of travel lanes, speed limit, undulating terrain, presence of central median, and unsafe roadside conditions are positively associated with more severe SV rollover crashes. On the other hand, unpaved shoulder width, area type, driver occupation, and number of access points are found as the significant variables decreasing the probability of being killed or severely injured (i.e., KSI) in rollover crashes. Land use and side friction are significant and positively associated only with slight injury category. These findings provide valuable insights into the causes and factors affecting the injury severity patterns of rollover crashes, and thus can help develop effective countermeasures to reduce the severity of rollover crashes. The model comparison results show that the REGOP model is found to outperform the MXL model in terms of goodness-of-fit measures, and also is significantly superior to other extensions of ordered probit models, including generalized ordered probit and random-effects ordered probit (REOP) models. As a result, this research introduces REGOP as a promising tool for future research focusing on crash injury severity.
    Matched MeSH terms: Weather
  5. Khan M, Kakar S, Marwat K, Khan I
    Sains Malaysiana, 2013;42:1395-1401.
    Time of weed control and fertilizer application usually decide the profitability of crop production. The effects of weed control and macronutrients on maize crop were investigated. The study was undertaken in March 2009, using a RCBD design with split plot arrangements. The experimental set up was established at the Agricultural University Peshawar and seedbeds were prepared with the proper moisture regime. Maize was planted with one plot left weed free for first six weeks while another infested with weed. The combinations of macronutrients used were nitrogen, phosphorus, potassium, nitrogen-phosphorus, nitrogen-potassium, phosphorus-potassium and nitrogen-phosphorus-potassium. Control (no fertilizer) was included for comparison. The observations revealed that when a comparison was made between the application of fertilizers and weed control, the latter proved more important because weed infested plots had no harvestable maize plants. The role of main nutrients in crop production is well known and cannot be left aside, however weed infestation does not provide us a fair choice of fertilizers application. The maximum maize grain yield was recorded under nitrogen-phosphorus combination and promising results were obtained. The weeds and maize benefited equally in terms of fresh and dry weed biomass with an application of fertilizer in particular N singly or together with P. In view of this, application of fertilizer should be changed from broadcast to band and/or placement. In general, a positive interaction was seen between N and P promoting the growth of maize and weeds. It can be said that herbicide application for weed control is important because of the fact that hand weeding is not economical, difficult, time consuming because of perennial weeds and hot weather conditions in the month of June.
    Matched MeSH terms: Weather
  6. Ng CK, Goh CH, Lin JC, Tan MS, Bong W, Yong CS, et al.
    Environ Monit Assess, 2018 Jun 15;190(7):402.
    PMID: 29904816 DOI: 10.1007/s10661-018-6784-2
    El Niño and Southern Oscillation (ENSO) is a natural forcing that affects global climate patterns, thereon influencing freshwater quality and security. In the advent of a strong El Niño warming event in 2016 which induced an extreme dry weather in Malaysia, water quality variation was investigated in Kampar River which supplies potable water to a population of 92,850. Sampling points were stratified into four ecohydrological units and 144 water samples were examined from October 2015 to March 2017. The Malaysian Water Quality Index (WQI) and some supplementary parameters were analysed in the context of reduced precipitation. Data shows that prolonged dry weather, episodic and sporadic pollution incidents have caused some anomalies in dissolved oxygen (DO), total suspended solids (TSS), turbidity and ammoniacal nitrogen (AN) values recorded and the possible factors are discussed. The month of March and August 2016 recorded the lowest precipitation, but the overall resultant WQI remained acceptable. Since the occurrence of a strong El Niño event is infrequent and far between in decadal time scale, this paper gives some rare insights that may be central to monitoring and managing freshwater resource that has a crucial impact to the mass population in the region of Southeast Asia.
    Matched MeSH terms: Weather
  7. Tsong JL, Khor SM
    Anal Methods, 2023 Jul 06;15(26):3125-3148.
    PMID: 37376849 DOI: 10.1039/d3ay00647f
    Unpredictable natural disasters, disease outbreaks, climate change, pollution, and war constantly threaten food crop production. Smart and precision farming encourages using information or data obtained by using advanced technology (sensors, AI, and IoT) to improve decision-making in agriculture and achieve high productivity. For instance, weather prediction, nutrient information, pollutant assessment, and pathogen determination can be made with the help of new analytical and bioanalytical methods, demonstrating the potential for societal impact such as environmental, agricultural, and food science. As a rising technology, biosensors can be a potential tool to promote smart and precision farming in developing and underdeveloped countries. This review emphasizes the role of on-field, in vivo, and wearable biosensors in smart and precision farming, especially those biosensing systems that have proven with suitably complex and analytically challenging samples. The development of various agricultural biosensors in the past five years that fulfill market requirements such as portability, low cost, long-term stability, user-friendliness, rapidity, and on-site monitoring will be reviewed. The challenges and prospects for developing IoT and AI-integrated biosensors to increase crop yield and advance sustainable agriculture will be discussed. Using biosensors in smart and precision farming would ensure food security and revenue for farming communities.
    Matched MeSH terms: Weather
  8. Rusli R, Haque MM, Saifuzzaman M, King M
    Traffic Inj Prev, 2018;19(7):741-748.
    PMID: 29932734 DOI: 10.1080/15389588.2018.1482537
    OBJECTIVE: Traffic crashes along mountainous highways may lead to injuries and fatalities more often than along highways on plain topography; however, research focusing on the injury outcome of such crashes is relatively scant. The objective of this study was to investigate the factors affecting the likelihood that traffic crashes along rural mountainous highways result in injuries.

    METHOD: This study proposes a combination of decision tree and logistic regression techniques to model crash severity (injury vs. noninjury), because the combined approach allows the specification of nonlinearities and interactions in addition to main effects. Both a scobit model and a random parameters logit model, respectively accounting for an imbalance response variable and unobserved heterogeneities, are tested and compared. The study data set contains a total of 5 years of crash data (2008-2012) on selected mountainous highways in Malaysia. To enrich the data quality, an extensive field survey was conducted to collect detailed information on horizontal alignment, longitudinal grades, cross-section elements, and roadside features. In addition, weather condition data from the meteorology department were merged using the time stamp and proximity measures in AutoCAD-Geolocation.

    RESULTS: The random parameters logit model is found to outperform both the standard logit and scobit models, suggesting the importance of accounting for unobserved heterogeneity in crash severity models. Results suggest that proportion of segment lengths with simple curves, presence of horizontal curves along steep gradients, highway segments with unsealed shoulders, and highway segments with cliffs along both sides are positively associated with injury-producing crashes along rural mountainous highways. Interestingly, crashes during rainy conditions are associated with crashes that are less likely to involve injury. It is also found that the likelihood of injury-producing crashes decreases for rear-end collisions but increases for head-on collisions and crashes involving heavy vehicles. A higher order interaction suggests that single-vehicle crashes involving light and medium-sized vehicles are less severe along straight sections compared to road sections with horizontal curves. One the other hand, crash severity is higher when heavy vehicles are involved in crashes as single vehicles traveling along straight segments of rural mountainous highways.

    CONCLUSION: In addition to unobserved heterogeneity, it is important to account for higher order interactions to have a better understanding of factors that influence crash severity. A proper understanding of these factors will help develop targeted countermeasures to improve road safety along rural mountainous highways.

    Matched MeSH terms: Weather
  9. Rusli R, Haque MM, Afghari AP, King M
    Accid Anal Prev, 2018 Oct;119:80-90.
    PMID: 30007211 DOI: 10.1016/j.aap.2018.07.006
    Road safety in rural mountainous areas is a major concern as mountainous highways represent a complex road traffic environment due to complex topology and extreme weather conditions and are associated with more severe crashes compared to crashes along roads in flatter areas. The use of crash modelling to identify crash contributing factors along rural mountainous highways suffers from limitations in data availability, particularly in developing countries like Malaysia, and related challenges due to the presence of excess zero observations. To address these challenges, the objective of this study was to develop a safety performance function for multi-vehicle crashes along rural mountainous highways in Malaysia. To overcome the data limitations, an in-depth field survey, in addition to utilization of secondary data sources, was carried out to collect relevant information including roadway geometric factors, traffic characteristics, real-time weather conditions, cross-sectional elements, roadside features, and spatial characteristics. To address heterogeneity resulting from excess zeros, three specialized modelling techniques for excess zeros including Random Parameters Negative Binomial (RPNB), Random Parameters Negative Binomial - Lindley (RPNB-L) and Random Parameters Negative Binomial - Generalized Exponential (RPNB-GE) were employed. Results showed that the RPNB-L model outperformed the other two models in terms of prediction ability and model fit. It was found that heavy rainfall at the time of crash and the presence of minor junctions along mountainous highways increase the likelihood of multi-vehicle crashes, while the presence of horizontal curves along a steep gradient, the presence of a passing lane and presence of road delineation decrease the likelihood of multi-vehicle crashes. Findings of this study have significant implications for road safety along rural mountainous highways, particularly in the context of developing countries.
    Matched MeSH terms: Weather
  10. Abu Bakar, M.A., Ahmad, S., Kuntjoro, W.
    MyJurnal
    Kenaf fibre that is known as Hibiscus cannabinus, L. family Malvaceae is an herbaceous plant that can be grown under a wide range of weather conditions. The uses of kenaf fibres as a reinforcement material in the polymeric matrix have been widely investigated. It is known that epoxy has a disadvantage of brittleness and exhibits low toughness. In this research, liquid epoxidized natural rubber (LENR) was introduced to the epoxy to increase its toughness. Kenaf fibres, with five different fibre loadings of 5%, 10%, 15%, 20% and 25% by weight, were used to reinforce the epoxy resins (with and without addition of epoxidized natural rubber) as the matrices. The flexural strength, flexural modulus and fracture toughness of the rubber toughened epoxy reinforced kenaf fibre composites were investigated. The results showed that the addition of liquid epoxidized natural rubber (LENR) had improved the flexural modulus, flexural strength and fracture toughness by 48%, 30%, and 1.15% respectively at 20% fibre loading. The fractured surfaces of these composites were investigated by using scanning electron microscopic (SEM) technique to determine the interfacial bonding between the matrix and the fibre reinforcement.
    Matched MeSH terms: Weather
  11. Mediani A, Abas F, Ping TC, Khatib A, Lajis NH
    Plant Foods Hum Nutr, 2012 Dec;67(4):344-50.
    PMID: 23054393 DOI: 10.1007/s11130-012-0317-x
    The impact of tropical seasons (dry and wet) and growth stages (8, 10 and 12 weeks) of Cosmos caudatus on the antioxidant activity (AA), total phenolic content (TPC) as well as the level of bioactive compounds were evaluated using high performance liquid chromatography (HPLC). The plant morphology (plant height) also showed variation between the two seasons. Samples planted from June to August (during the dry season) exhibited a remarkably higher bioactivity and height than those planted from October to December (during the wet season). The samples that were harvested at eight weeks of age during the dry season showed the highest bioactivity with values of 26.04 g GAE/100 g and 22.1 μg/ml for TPC and IC₅₀, respectively. Identification of phytochemical constituents in the C. caudatus extract was carried out by liquid chromatography coupled with diode array detection and electrospray tandem mass (LC-DAD-ESIMS/MS) technique and the confirmation of constituents was achieved by comparison with literature data and/or co-chromatography with authentic standards. Six compounds were indentified including quercetin 3-O-rhamnoside, quercetin 3-O-glucoside, rutin, quercetin 3-O-arabinofuranoside, quercetin 3-O-galactoside and chlorogenic acid. Their concentrations showed significant variance among the 8, 10 and 12-week-old herbs during both seasons.
    Matched MeSH terms: Weather
  12. Cheong YL, Burkart K, Leitão PJ, Lakes T
    Int J Environ Res Public Health, 2013 Nov 26;10(12):6319-34.
    PMID: 24287855 DOI: 10.3390/ijerph10126319
    The number of dengue cases has been increasing on a global level in recent years, and particularly so in Malaysia, yet little is known about the effects of weather for identifying the short-term risk of dengue for the population. The aim of this paper is to estimate the weather effects on dengue disease accounting for non-linear temporal effects in Selangor, Kuala Lumpur and Putrajaya, Malaysia, from 2008 to 2010. We selected the weather parameters with a Poisson generalized additive model, and then assessed the effects of minimum temperature, bi-weekly accumulated rainfall and wind speed on dengue cases using a distributed non-linear lag model while adjusting for trend, day-of-week and week of the year. We found that the relative risk of dengue cases is positively associated with increased minimum temperature at a cumulative percentage change of 11.92% (95% CI: 4.41-32.19), from 25.4 °C to 26.5 °C, with the highest effect delayed by 51 days. Increasing bi-weekly accumulated rainfall had a positively strong effect on dengue cases at a cumulative percentage change of 21.45% (95% CI: 8.96, 51.37), from 215 mm to 302 mm, with the highest effect delayed by 26-28 days. The wind speed is negatively associated with dengue cases. The estimated lagged effects can be adapted in the dengue early warning system to assist in vector control and prevention plan.
    Matched MeSH terms: Weather*
  13. Aiken SR, Frost DB, Leigh CH
    Soc Sci Med Med Geogr, 1980 Sep;14D(3):307-16.
    PMID: 7455728
    Matched MeSH terms: Weather*
  14. Mohd Nasir Selamat, Lilis Surienty
    MyJurnal
    Recent statistics from the Social Security Organization (SOCSO) of Malaysia shows Commuting Accident (CA)
    increased consistently by 1500 cases per year from 2008 to 2012. This has resulted in the rising of fatality rate,
    extensive claims of compensation payment and not to mention loss of valuable talents. However, little is known
    about the contributing factors to the occurrences of CA in Malaysia because CA is never considered to be work
    related before. This study aims to explore work related factors with occurrence of CA using 5-year statistical data
    from SOCSO, Malaysia. Moreover, we also reviewed studies published between 1990s and 2014 to support the
    statistical findings. Motorbike is found as the most common vehicle used which involved in CA. Individual factors
    concerning workers behaviour is a main risk factor of CA. Family related factors (parenting responsibility), work
    burden, workplace support as well as environmental factors such as bad weather and bad road conditions are also
    significant contributions of CA. It is very important to develop behavioural intervention strategies and provide proper
    training. Hence, more attention should be directed to young individual workers in balancing them with capabilities and
    organization performance demand. This may lead to the elimination of the other causes of CA. In conclusion, solutions
    to this problem involve not only a particular party to ensure the wellbeing of workers in Malaysia, but all authorities
    should play roles in enhancing safety and health matter of workers especially on the occurrence of accident.
    Matched MeSH terms: Weather
  15. Tan SN, Sani D, Lim CW, Ideris A, Stanslas J, Lim CTS
    PMID: 32051689 DOI: 10.1155/2020/8068797
    Edible bird's nest (EBN) which is solidified swiftlet's saliva contains high nutritional value. It is widely consumed in countries like Malaysia, Indonesia, and Thailand. However, previous proximate analysis of Malaysia EBN was not representative of all the regions in Malaysia. In recent years, safety issues such as high nitrate and nitrite contents, presence of heavy metal, adulteration, fungal infection, and cancer cell stimulation were associated with EBN. Hence, this study aimed to determine the proximate analysis, safety profile during normal weather and hazy periods, and its effect on cancer cells stimulation in Malaysia-farmed EBN. Seven raw cleaned EBN samples were sourced from 6 different regions in Malaysia. Proximate analysis and safety profile were performed using official AOCA methods and Malaysian Standard. High protein (53.03-56.37%) and carbohydrate content (27.97-31.68%) with an acceptable level of moisture (10.8-14.04%) and ash (2.22-3.38%) were reported. A good safety profile was obtained with low nitrite and nitrate levels, with undetectable heavy metals and no significant growth of pathogenic microorganism except mould. Epidermal growth factor was detected but below the quantification level with the chicken EGF ELISA kit. The microculture tetrazolium (MTT) assay was performed for growth stimulation assessment comparing human EGF and EBN. There was no significant cell growth observed in cancer cells after EBN treatment. In conclusion, EBN Malaysia has a good nutritional profile, free of heavy metals, and an acceptable level of nitrate, nitrite, and microorganism profile except for mould contents. Furthermore, the in vitro study indicated that EBN was not associated with cancer cell growth.
    Matched MeSH terms: Weather
  16. Anyamba A, Chretien JP, Small J, Tucker CJ, Linthicum KJ
    Int J Health Geogr, 2006 Dec 28;5:60.
    PMID: 17194307
    BACKGROUND: El Niño/Southern Oscillation (ENSO) related climate anomalies have been shown to have an impact on infectious disease outbreaks. The Climate Prediction Center of the National Oceanic and Atmospheric Administration (NOAA/CPC) has recently issued an unscheduled El Niño advisory, indicating that warmer than normal sea surface temperatures across the equatorial eastern Pacific may have pronounced impacts on global tropical precipitation patterns extending into the northern hemisphere particularly over North America. Building evidence of the links between ENSO driven climate anomalies and infectious diseases, particularly those transmitted by insects, can allow us to provide improved long range forecasts of an epidemic or epizootic. We describe developing climate anomalies that suggest potential disease risks using satellite generated data.

    RESULTS: Sea surface temperatures (SSTs) in the equatorial east Pacific ocean have anomalously increased significantly during July - October 2006 indicating the typical development of El Niño conditions. The persistence of these conditions will lead to extremes in global-scale climate anomalies as has been observed during similar conditions in the past. Positive Outgoing Longwave Radiation (OLR) anomalies, indicative of severe drought conditions, have been observed across all of Indonesia, Malaysia and most of the Philippines, which are usually the first areas to experience ENSO-related impacts. This dryness can be expected to continue, on average, for the remainder of 2006 continuing into the early part of 2007. During the period November 2006 - January 2007 climate forecasts indicate that there is a high probability for above normal rainfall in the central and eastern equatorial Pacific Islands, the Korean Peninsula, the U.S. Gulf Coast and Florida, northern South America and equatorial east Africa. Taking into consideration current observations and climate forecast information, indications are that the following regions are at increased risk for disease outbreaks: Indonesia, Malaysia, Thailand and most of the southeast Asia Islands for increased dengue fever transmission and increased respiratory illness; Coastal Peru, Ecuador, Venezuela, and Colombia for increased risk of malaria; Bangladesh and coastal India for elevated risk of cholera; East Africa for increased risk of a Rift Valley fever outbreak and elevated malaria; southwest USA for increased risk for hantavirus pulmonary syndrome and plague; southern California for increased West Nile virus transmission; and northeast Brazil for increased dengue fever and respiratory illness.

    CONCLUSION: The current development of El Niño conditions has significant implications for global public health. Extremes in climate events with above normal rainfall and flooding in some regions and extended drought periods in other regions will occur. Forecasting disease is critical for timely and efficient planning of operational control programs. In this paper we describe developing global climate anomalies that suggest potential disease risks that will give decision makers additional tools to make rational judgments concerning implementation of disease prevention and mitigation strategies.

    Matched MeSH terms: Weather
  17. Lau ASY, Mitsuyama E, Odamaki T, Xiao JZ, Liong MT
    J Med Food, 2019 Mar;22(3):230-240.
    PMID: 30183458 DOI: 10.1089/jmf.2018.4276
    Changes in weather often trigger a myriad of negative impacts on the environment, which eventually affect human health. During the early months of 2016, Malaysia experienced El Niño, with an extremely dry season of almost zero rainfall. At the same time, an increase of more than twofold in fecal secretary immunoglobulin-A (SIgA) levels of healthy preschool children aged 2-6 years was observed, accompanied by an increase in phylum Bacteroidetes, predominantly attributed to genus Bacteroides and Odoribacter, which also positively correlated with fecal SIgA levels. Here, we present evidence to illustrate the detrimental effects of weather change on a microscopic "environment," the human gut ecosystem. We also discuss the protective effects of probiotic against dysbiosis as induced by weather change. The increase in Bacteroidetes was at an expense of decreased genus Faecalibacterium and Veillonella (phylum Firmicutes), whereas children consuming probiotic had a decrease in genus Collinsella, Atopobium, and Eggerthella (phylum Actinobacteria) instead.
    Matched MeSH terms: Weather
  18. Ganasegeran K, Ch'ng ASH, Aziz ZA, Looi I
    Sci Rep, 2020 Jul 09;10(1):11353.
    PMID: 32647336 DOI: 10.1038/s41598-020-68335-1
    Stroke has emerged as a major public health concern in Malaysia. We aimed to determine the trends and temporal associations of real-time health information-seeking behaviors (HISB) and stroke incidences in Malaysia. We conducted a countrywide ecological correlation and time series study using novel internet multi-timeline data stream of 6,282 hit searches and conventional surveillance data of 14,396 stroke cases. We searched popular search terms related to stroke in Google Trends between January 2004 and March 2019. We explored trends by comparing average relative search volumes (RSVs) by month and weather through linear regression bootstrapping methods. Geographical variations between regions and states were determined through spatial analytics. Ecological correlation analysis between RSVs and stroke incidences was determined via Pearson's correlations. Forecasted model was yielded through exponential smoothing. HISB showed both cyclical and seasonal patterns. Average RSV was significantly higher during Northeast Monsoon when compared to Southwest Monsoon (P 
    Matched MeSH terms: Weather
  19. Lowe BG
    Health Phys, 1978 May;34(5):439-44.
    PMID: 568609
    Matched MeSH terms: Weather
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links