Displaying publications 41 - 60 of 161 in total

Abstract:
Sort:
  1. Reijnders MRF, Ansor NM, Kousi M, Yue WW, Tan PL, Clarkson K, et al.
    Am J Hum Genet, 2017 Sep 07;101(3):466-477.
    PMID: 28886345 DOI: 10.1016/j.ajhg.2017.08.007
    RAC1 is a widely studied Rho GTPase, a class of molecules that modulate numerous cellular functions essential for normal development. RAC1 is highly conserved across species and is under strict mutational constraint. We report seven individuals with distinct de novo missense RAC1 mutations and varying degrees of developmental delay, brain malformations, and additional phenotypes. Four individuals, each harboring one of c.53G>A (p.Cys18Tyr), c.116A>G (p.Asn39Ser), c.218C>T (p.Pro73Leu), and c.470G>A (p.Cys157Tyr) variants, were microcephalic, with head circumferences between -2.5 to -5 SD. In contrast, two individuals with c.151G>A (p.Val51Met) and c.151G>C (p.Val51Leu) alleles were macrocephalic with head circumferences of +4.16 and +4.5 SD. One individual harboring a c.190T>G (p.Tyr64Asp) allele had head circumference in the normal range. Collectively, we observed an extraordinary spread of ∼10 SD of head circumferences orchestrated by distinct mutations in the same gene. In silico modeling, mouse fibroblasts spreading assays, and in vivo overexpression assays using zebrafish as a surrogate model demonstrated that the p.Cys18Tyr and p.Asn39Ser RAC1 variants function as dominant-negative alleles and result in microcephaly, reduced neuronal proliferation, and cerebellar abnormalities in vivo. Conversely, the p.Tyr64Asp substitution is constitutively active. The remaining mutations are probably weakly dominant negative or their effects are context dependent. These findings highlight the importance of RAC1 in neuronal development. Along with TRIO and HACE1, a sub-category of rare developmental disorders is emerging with RAC1 as the central player. We show that ultra-rare disorders caused by private, non-recurrent missense mutations that result in varying phenotypes are challenging to dissect, but can be delineated through focused international collaboration.
    Matched MeSH terms: Zebrafish/genetics; Zebrafish/growth & development
  2. Raza H, Abbasi MA, Aziz-Ur-Rehman, Siddiqui SZ, Hassan M, Abbas Q, et al.
    Bioorg Chem, 2020 01;94:103445.
    PMID: 31826809 DOI: 10.1016/j.bioorg.2019.103445
    In the current research work, different N-(substituted-phenyl)-4-{(4-[(E)-3-phenyl-2-propenyl]-1-piperazinyl}butanamides have been synthesized according to the protocol described in scheme 1. The synthesis was initiated by reacting various substituted anilines (1a-e) with 4-chlorobutanoyl chloride (2) in aqueous basic medium to give various electrophiles, 4-chloro-N-(substituted-phenyl)butanamides (3a-e). These electrophiles were then coupled with 1-[(E)-3-phenyl-2-propenyl]piperazine (4) in polar aprotic medium to attain the targeted N-(substituted-phenyl)-4-{(4-[(E)-3-phenyl-2-propenyl]-1-piperazinyl}butanamides (5a-e). The structures of all derivatives were identified and characterized by proton-nuclear magnetic resonance (1H NMR), carbon-nuclear magnetic resonance (13C NMR) and Infra-Red (IR) spectral data along with CHN analysis. The in vitro inhibitory potential of these butanamides was evaluated against Mushroom tyrosinase, whereby all compounds were found to be biologically active. Among them, 5b exhibited highest inhibitory potential with IC50 value of 0.013 ± 0.001 µM. The same compound 5b was also assayed through in vivo approach, and it was explored that it significantly reduced the pigments in zebrafish. The in silico studies were also in agreement with aforesaid results. Moreover, these molecules were profiled for their cytotoxicity through hemolytic activity, and it was found that except 5e, all other compounds showed minimal toxicity. The compound 5a also exhibited comparable results. Hence, some of these compounds might be worthy candidates for the formulation and development of depigmentation drugs with minimum side effects.
    Matched MeSH terms: Zebrafish
  3. Ramlan NF, Sata NSAM, Hassan SN, Bakar NA, Ahmad S, Zulkifli SZ, et al.
    Behav Brain Res, 2017 08 14;332:40-49.
    PMID: 28559182 DOI: 10.1016/j.bbr.2017.05.048
    Exposure to ethanol during critical period of development can cause severe impairments in the central nervous system (CNS). This study was conducted to assess the neurotoxic effects of chronic embryonic exposure to ethanol in the zebrafish, taking into consideration the time dependent effect. Two types of exposure regimen were applied in this study. Withdrawal exposure group received daily exposure starting from gastrulation until hatching, while continuous exposure group received daily exposure from gastrulation until behavioural assessment at 6dpf (days post fertilization). Chronic embryonic exposure to ethanol decreased spontaneous tail coiling at 24hpf (hour post fertilization), heart rate at 48hpf and increased mortality rate at 72hpf. The number of apoptotic cells in the embryos treated with ethanol was significantly increased as compared to the control. We also measured the morphological abnormalities and the most prominent effects can be observed in the treated embryos exposed to 1.50% and 2.00%. The treated embryos showed shorter body length, larger egg yolk, smaller eye diameter and heart edema as compared to the control. Larvae received 0.75% continuous ethanol exposure exhibited decreased swimming activity and increased anxiety related behavior, while withdrawal ethanol exposure showed increased swimming activity and decreased anxiety related behavior as compared to the respective control. Biochemical analysis exhibited that ethanol exposure for both exposure regimens altered proteins, lipids, carbohydrates and nucleic acids of the zebrafish larvae. Our results indicated that time dependent effect of ethanol exposure during development could target the biochemical processes thus leading to induction of apoptosis and neurobehavioral deficits in the zebrafish larvae. Thus it raised our concern about the safe limit of alcohol consumption for pregnant mother especially during critical periods of vulnerability for developing nervous system.
    Matched MeSH terms: Zebrafish/embryology*; Zebrafish/metabolism; Zebrafish/physiology
  4. Prasad P, Ogawa S, Parhar IS
    Biol Reprod, 2015 Oct;93(4):102.
    PMID: 26157069 DOI: 10.1095/biolreprod.115.129965
    Selective serotonin reuptake inhibitors (SSRIs) are widely used antidepressants for the treatment of depression. However, SSRIs cause sexual side effects such as anorgasmia, erectile dysfunction, and diminished libido that are thought to be mediated through the serotonin (5-hydroxytryptamine, 5-HT) system. In vertebrates, gonadotropin-releasing hormone (GnRH) neurons play an important role in the control of reproduction. To elucidate the neuroendocrine mechanisms of SSRI-induced reproductive failure, we examined the neuronal association between 5-HT and GnRH (GnRH2 and GnRH3) systems in the male zebrafish. Double-label immunofluorescence and confocal laser microscopy followed by three-dimensional construction analysis showed close associations between 5-HT fibers with GnRH3 fibers and preoptic-GnRH3 cell bodies, but there was no association with GnRH2 cell bodies and fibers. Quantitative real-time PCR showed that short-term treatment (2 wk) with low to medium doses (4 and 40 μg/L, respectively) of citalopram significantly decreased mRNA levels of gnrh3, gonadotropins (lhb and fshb) and 5-HT-related genes (tph2 and sert) in the male zebrafish. In addition, short-term citalopram treatment significantly decreased the fluorescence density of 5-HT and GnRH3 fibers compared with controls. Short-term treatment with low, medium, and high (100 μg/L) citalopram doses had no effects on the profiles of different stages of spermatogenesis, while long-term (1 mo) citalopram treatment with medium and high doses significantly inhibited the different stages of spermatogenesis. These results show morphological and functional associations between the 5-HT and the hypophysiotropic GnHR3 system, which involve SSRI-induced reproductive failures.
    Matched MeSH terms: Zebrafish
  5. Paudel YN, Kumari Y, Abidin SAZ, Othman I, Shaikh MF
    Int J Mol Sci, 2020 Apr 03;21(7).
    PMID: 32260203 DOI: 10.3390/ijms21072492
    Epilepsy is a devastating neurological condition exhibited by repeated spontaneous and unpredictable seizures afflicting around 70 million people globally. The basic pathophysiology of epileptic seizures is still elusive, reflecting an extensive need for further research. Developing a novel animal model is crucial in understanding disease mechanisms as well as in assessing the therapeutic target. Most of the pre-clinical epilepsy research has been focused on rodents. Nevertheless, zebrafish disease models are relevant to human disease pathophysiology hence are gaining increased attention nowadays. The current study for the very first time developed a pilocarpine-induced chronic seizure-like condition in adult zebrafish and investigated the modulation in several neuroinflammatory genes and neurotransmitters after pilocarpine exposures. Seizure score analysis suggests that compared to a single dose, repeated dose pilocarpine produces chronic seizure-like effects maintaining an average seizure score of above 2 each day for a minimum of 10 days. Compared to the single dose pilocarpine treated group, there was increased mRNA expression of HMGB1, TLR4, TNF-α, IL-1, BDNF, CREB-1, and NPY; whereas decreased expression of NF-κB was upon the repeated dose of pilocarpine administration. In addition, the epileptic group demonstrates modulation in neurotransmitters levels such as GABA, Glutamate, and Acetylcholine. Moreover, proteomic profiling of the zebrafish brain from the normal and epileptic groups from LCMS/MS quantification detected 77 and 13 proteins in the normal and epileptic group respectively. Summing up, the current investigation depicted that chemically induced seizures in zebrafish demonstrated behavioral and molecular alterations similar to classical rodent seizure models suggesting the usability of adult zebrafish as a robust model to investigate epileptic seizures.
    Matched MeSH terms: Zebrafish; Zebrafish Proteins/genetics; Zebrafish Proteins/metabolism
  6. Paudel YN, Othman I, Shaikh MF
    Front Pharmacol, 2020;11:613009.
    PMID: 33732146 DOI: 10.3389/fphar.2020.613009
    Epilepsy is a chronic brain disease afflicting around 70 million global population and is characterized by persisting predisposition to generate epileptic seizures. The precise understanding of the etiopathology of seizure generation is still elusive, however, brain inflammation is considered as a major contributor to epileptogenesis. HMGB1 protein being an initiator and crucial contributor of inflammation is known to contribute significantly to seizure generation via activating its principal receptors namely RAGE and TLR4 reflecting a potential therapeutic target. Herein, we evaluated an anti-seizure and memory ameliorating potential of an anti-HMGB1 monoclonal antibody (mAb) (1, 2.5 and 5 mg/kg, I.P.) in a second hit Pentylenetetrazol (PTZ) (80 mg/kg, I.P.) induced seizure model earlier stimulated with Pilocarpine (400 mg/kg, I.P.) in adult zebrafish. Pre-treatment with anti-HMGB1 mAb dose-dependently lowered the second hit PTZ-induced seizure but does not alter the disease progression. Moreover, anti-HMGB1 mAb also attenuated the second hit Pentylenetetrazol induced memory impairment in adult zebrafish as evidenced by an increased inflection ration at 3 and 24 h trail in T-maze test. Besides, decreased level of GABA and an upregulated Glutamate level was observed in the second hit PTZ induced group, which was modulated by pre-treatment with anti-HMGB1 mAb. Inflammatory responses occurred during the progression of seizures as evidenced by upregulated mRNA expression of HMGB1, TLR4, NF-κB, and TNF-α, in a second hit PTZ group, which was in-turn downregulated upon pre-treatment with anti-HMGB1 mAb reflecting its anti-inflammatory potential. Anti-HMGB1 mAb modulates second hit PTZ induced changes in mRNA expression of CREB-1 and NPY. Our findings indicates anti-HMGB1 mAb attenuates second hit PTZ-induced seizures, ameliorates related memory impairment, and downregulates the seizure induced upregulation of inflammatory markers to possibly protect the zebrafish from the incidence of further seizures through via modulation of neuroinflammatory pathway.
    Matched MeSH terms: Zebrafish
  7. Paudel YN, Khan SU, Othman I, Shaikh MF
    ACS Chem Neurosci, 2021 09 15;12(18):3288-3302.
    PMID: 34463468 DOI: 10.1021/acschemneuro.0c00825
    Glycyrrhizin (GL) is a well-known pharmacological inhibitor of high mobility group box 1 (HMGB1) and is abundantly present in the licorice root (Glycyrrhiza radix). HMGB1 protein, a key mediator of neuroinflammation, has been implicated in several neurological disorders, including epilepsy. Epilepsy is a devastating neurological disorder with no effective disease-modifying treatment strategies yet, suggesting a pressing need for exploring novel therapeutic options. In the current investigation, using a second hit pentylenetetrazol (PTZ) induced chronic seizure model in adult zebrafish, regulated mRNA expression of HMGB1 was inhibited by pretreatment with GL (25, 50, and 100 mg/kg, ip). A molecular docking study suggests that GL establishes different binding interactions with the various amino acid chains of HMGB1 and Toll-like receptor-4 (TLR4). Our finding suggests that GL pretreatment reduces/suppresses second hit PTZ induced seizure, as shown by the reduction in the seizure score. GL also regulates the second hit PTZ induced behavioral impairment and rescued second hit PTZ related memory impairment as demonstrated by an increase in the inflection ratio (IR) at the 3 h and 24 h T-maze trial. GL inhibited seizure-induced neuronal activity as demonstrated by reduced C-fos mRNA expression. GL also modulated mRNA expression of BDNF, CREB-1, and NPY. The possible mechanism underlying the anticonvulsive effect of GL could be attributed to its anti-inflammatory activity, as demonstrated by the downregulated mRNA expression level of HMGB1, TLR4, NF-kB, and TNF-α. Overall, our finding suggests that GL exerts an anticonvulsive effect and ameliorates seizure-related memory disruption plausibly through regulating of the HMGB1-TLR4-NF-kB axis.
    Matched MeSH terms: Zebrafish/metabolism
  8. Patsiou D, Del Rio-Cubilledo C, Catarino AI, Summers S, Mohd Fahmi A, Boyle D, et al.
    Sci Total Environ, 2020 May 01;715:136941.
    PMID: 32041050 DOI: 10.1016/j.scitotenv.2020.136941
    Lead-halide perovskite nanoparticles (NPs) are a new technology, and investigation of toxicity is of considerable importance due to the potential lead (Pb) release into the environment. The aim of the study was to investigate aqueous and dietary toxicity of Pb-halide perovskite NP and Pb in zebrafish Danio rerio. Perovskite NP toxicity was evaluated in zebrafish by mortality, gene expression, histopathology, and phylogenetic analysis of gut microbiota. Zebrafish larvae were exposed to five Pb-halide perovskite NPs in parallel with Pb(NO3)2 exposures, and zebrafish adults were exposed to the three perovskite NPs that caused the strongest effect and Pb(NO3)2. No median lethal concentration (LC50) was observed for zebrafish larvae exposed to up to 200 mg/L of perovskite NPs for 96 h. Mortality, metallothionein 2 (mt2) and δ-aminolevulinic acid dehydratase (ala-d) gene expression (24-h exposure) in zebrafish larvae after aqueous perovskite NPs exposures did not differ from total Pb concentration - response curves. The lack of differences in mortality and gene expression between perovskite NPs and soluble Pb after aqueous exposure suggest that toxicity from perovskite NPs can be attributed to bioavailable Pb rather than nano-specific effects. Induction of mt2 and reduction of ala-d expression levels in liver tissues showed Pb bioavailability after 2-d and 4-d dietary exposure to perovskite-spiked feeds. Changes in gut microbiota of adult zebrafish were detected after 14-d exposure to Pb-spiked food, but no changes were detected from perovskite-NP spiked food. The phylogenetic analysis identified different microbiome profiles of Pb-fed fish compared to perovskite-fed fish suggesting a different mechanism of toxicity. Exposure to Pb-halide perovskite NPs led to absorption of Pb likely from release of Pb ions rather than absorption of NPs. Pb-halide perovskite NPs can release bioavailable Pb and this needs to be considered during the development of this technology.
    Matched MeSH terms: Zebrafish
  9. Parhar IS, Ogawa S, Ubuka T
    PMID: 27065948 DOI: 10.3389/fendo.2016.00028
    Social behaviors are key components of reproduction, because they are essential for successful fertilization. Social behaviors, such as courtship, mating, and aggression, are strongly associated with sex steroids, such as testosterone, estradiol, and progesterone. Secretion of sex steroids from the gonads is regulated by the hypothalamus-pituitary-gonadal (HPG) axis in vertebrates. Gonadotropin-releasing hormone (GnRH) is a pivotal hypothalamic neuropeptide that stimulates gonadotropin release from the pituitary. In recent years, the role of neuropeptides containing the C-terminal Arg-Phe-NH2 (RFamide peptides) has been emphasized in vertebrate reproduction. In particular, two key RFamide peptides, kisspeptin and gonadotropin-inhibitory hormone (GnIH), emerged as critical accelerator and suppressor of gonadotropin secretion. Kisspeptin stimulates GnRH release by directly acting on GnRH neurons, whereas GnIH inhibits gonadotropin release by inhibiting kisspeptin, GnRH neurons, or pituitary gonadotropes. These neuropeptides can regulate social behavior by regulating the HPG axis. However, distribution of neuronal fibers of GnRH, kisspeptin, and GnIH neurons is not limited within the hypothalamus, and the existence of extrahypothalamic neuronal fibers suggests direct control of social behavior within the brain. It has traditionally been shown that central administration of GnRH can stimulate female sexual behavior in rats. Recently, it was shown that Kiss1, one of the paralogs of kisspeptin peptide family, regulates fear responses in zebrafish and GnIH inhibits sociosexual behavior in birds. Here, we highlight recent findings regarding the role of GnRH, kisspeptin, and GnIH in the regulation of social behaviors in fish, birds, and mammals and discuss their importance in future biological and biomedical research.
    Matched MeSH terms: Zebrafish
  10. Othman N, Nagoor NH
    Int J Oncol, 2017 Dec;51(6):1757-1764.
    PMID: 29075783 DOI: 10.3892/ijo.2017.4174
    Lung cancer remains a major health problem with a low 5-year survival rate of patients. Recent studies have shown that dysregulation of microRNAs (miRNAs) are prevalent in lung cancer and these aberrations play a significant role in the progression of tumour progression. In the present study, bioinformatics analyses was employed to predict potential miR-608 targets, which are associated with signaling pathways involved in cancer. Luciferase reporter assay identified AKT2 as a novel target of miR-608, and suppression of its protein levels was validated through western blot analysis. Zebrafish embryos were microinjected with cells transfected with miR-608 to elucidate the role of miR-608 in vivo, and immunostained with antibodies to detect activated caspase-3. We present the first evidence that miR-608 behaves as a tumour suppressor in A549 and SK-LU-1 cells through the regulation of AKT2, suggesting that selective targeting of AKT2 via miR-608 may be developed as a potential therapeutic strategy for miRNA-based non-small cell lung cancer (NSCLC) therapy.
    Matched MeSH terms: Zebrafish
  11. Othman N, Nagoor NH
    Int J Oncol, 2019 01;54(1):306-314.
    PMID: 30365047 DOI: 10.3892/ijo.2018.4602
    The silencing of Bcl‑xL in the non‑small cell lung cancer (NSCLC) cell line, A549, downregulates miR‑361‑5p expression. This study aimed to determine the biological effects of miR‑361‑5p on NSCLC, and to elucidate the molecular mechanisms through which apoptosis is regulated. MicroRNA (miRNA or miR) functional analyses were performed via transfection of miR‑361‑5p mimics and inhibitors, demonstrating that the inhibition of miR‑361‑5p induced the apoptosis of NSCLC cells. To elucidate the function of miR‑361‑5p in vivo, cells transfected with miR‑361‑5p inhibitors were microinjected into zebrafish embryos, and immunostained using antibodies to detect the active form of caspase‑3. Co-transfection with siBcl‑xL and miR‑361‑5p mimics illustrated the association between Bcl‑xL, miR‑361‑5p and apoptosis; miR‑361‑5p mimics blocked the apoptosis initiated by siBcl‑xL. Luciferase reporter assays identified mothers against decapentaplegic homolog 2 (SMAD2) as a novel target of miR‑361‑5p and the reduction of its protein level was validated by western blot analysis. To confirm the molecular mechanisms through which apoptosis is regulated, gene rescue experiments revealed that the ectopic expression of SMAD2 attenuated the inhibitory effects on apoptosis induced by miR‑361‑5p. In this study, to the best of our knowledge, we provide the first evidence that miR‑361‑5p functions as an oncomiR in A549 and SK‑LU‑1 cells through the regulation of SMAD2, suggesting that miR‑361‑5p may be employed as a potential therapeutic target for the miRNA-based therapy of NSCLC.
    Matched MeSH terms: Zebrafish/embryology
  12. Ooi KK, Yeo CI, Mahandaran T, Ang KP, Akim AM, Cheah YK, et al.
    J Inorg Biochem, 2017 01;166:173-181.
    PMID: 27865929 DOI: 10.1016/j.jinorgbio.2016.11.008
    Phosphanegold(I) thiolates, Ph3PAu[SC(OR)=NPh], R=Me (1), Et (2) and iPr (3), were previously shown to be significantly cytotoxic toward HT-29 cancer cells and to induce cell death by both intrinsic and extrinsic apoptotic pathways whereby 1 activated the p73 gene, and each of 2 and 3 activated p53; 2 also caused apoptotic cell death via the c-Jun N-terminal kinase/mitogen-activated protein kinase pathway. Apoptosis pathways have been further evaluated by mitochondrial cytochrome c measurements and annexin V screening, confirming apoptotic pathways of cell death. Cell cycle analysis showed the majority of treated HT-29 cells were arrested at the G2/M checkpoint after 24h; results of both assays were confirmed by changes in populations of relevant genes (PCR array analysis). Cell invasion studies showed inhibition of metastasis through Matrigel™ matrix to 17-22% cf. untreated cells. LC50values were determined in zebrafish (8.36, 8.17, and 7.64μM for 1-3). Finally, the zebrafish tolerated doses of 1 and 2 up to 0.625μM, and 3 was tolerated at even higher doses of up to 1.25μM.
    Matched MeSH terms: Zebrafish/embryology*
  13. Okuda KS, Lee HM, Velaithan V, Ng MF, Patel V
    Microcirculation, 2016 08;23(6):389-405.
    PMID: 27177346 DOI: 10.1111/micc.12289
    Cancer metastasis which predominantly occurs through blood and lymphatic vessels, is the leading cause of death in cancer patients. Consequently, several anti-angiogenic agents have been approved as therapeutic agents for human cancers such as metastatic renal cell carcinoma. Also, anti-lymphangiogenic drugs such as monoclonal antibodies VGX-100 and IMC-3C5 have undergone phase I clinical trials for advanced and metastatic solid tumors. Although anti-tumor-associated angiogenesis has proven to be a promising therapeutic strategy for human cancers, this approach is fraught with toxicities and development of drug resistance. This emphasizes the need for alternative anti-(lymph)angiogenic drugs. The use of zebrafish has become accepted as an established model for high-throughput screening, vascular biology, and cancer research. Importantly, various zebrafish transgenic lines have now been generated that can readily discriminate different vascular compartments. This now enables detailed in vivo studies that are relevant to both human physiological and tumor (lymph)angiogenesis to be conducted in zebrafish. This review highlights recent advancements in the zebrafish anti-vascular screening platform and showcases promising new anti-(lymph)angiogenic compounds that have been derived from this model. In addition, this review discusses the promises and challenges of the zebrafish model in the context of anti-(lymph)angiogenic compound discovery for cancer treatment.
    Matched MeSH terms: Zebrafish*
  14. Ogawa S, Ramadasan PN, Goschorska M, Anantharajah A, Ng KW, Parhar IS
    J. Comp. Neurol., 2012 Sep 1;520(13):2991-3012.
    PMID: 22430310 DOI: 10.1002/cne.23103
    The tachykinins are a family of neuropeptides, including substance P (SP), neurokinin A (NKA), and neurokinin B (NKB), that are encoded by the tac1 (SP and NKA) or tac2/3 (NKB) genes. Tachykinins are widely distributed in the central nervous system and have roles as neurotransmitters and/or neuromodulators. Recent studies in mammals have demonstrated the coexpression of NKB and kisspeptin and their comodulatory roles over the control of reproduction. We have recently identified two kisspeptin-encoding genes, kiss1 and kiss2, in teleosts. However, such relationship between tachykinins and kisspeptins has not been demonstrated in non-mammalian species. To determine the involvement of tachykinins in the reproduction in teleosts, we identified tac1 and two tac2 (tac2a and tac2b) sequences in the zebrafish genome using in silico data mining. Zebrafish tac1 encodes SP and NKA, whereas the tac2 sequences encode NKB and an additional peptide homologous to NKB (NKB-related peptide). Digoxigenin in situ hybridization in the brain of zebrafish showed tac1 mRNA-containing cells in the olfactory bulb, telencephalon, preoptic region, hypothalamus, mesencephalon, and rhombencephalon. The zebrafish tac2a mRNA-containing cells were observed in the preoptic region, habenula, and hypothalamus, whereas the tac2b mRNA-containing cells were predominantly observed in the dorsal telencephalic area. Furthermore, we examined the coexpression of tachykinins and two kisspeptin genes in the brain of zebrafish. Dual fluorescent in situ hybridization showed no coexpression of tachykinins mRNA with kisspeptins mRNA in hypothalamic nuclei or the habenula. These results suggest the presence of independent pathways for kisspeptins and NKB neurons in the brain of zebrafish.
    Matched MeSH terms: Zebrafish/metabolism*
  15. Ogawa S, Ng KW, Ramadasan PN, Nathan FM, Parhar IS
    Endocrinology, 2012 May;153(5):2398-407.
    PMID: 22454151 DOI: 10.1210/en.2012-1062
    The Kiss1/KISS1 gene has recently been implicated as a potent hypothalamic regulator of reproductive functions, in particular, the onset of puberty in mammals. In zebrafish (Danio rerio), there are two kiss1 homologues (kiss1 and kiss2) expressed in the brain: Kiss2-expressing neurons in the hypothalamic nuclei are considered potent regulators of reproduction, whereas the role of Kiss1-expressing neurons in the habenula remains unknown. We first analyzed the expression of kiss1 mRNA in a transgenic zebrafish, in which the habenula-interpeduncular nucleus (IPN) pathway is labelled with green fluorescent protein, and our application of a biocytin neural tracer into the habenula showed the presence of neuronal projections of Kiss1 neurons to the ventral IPN. Therefore, we speculated that kiss1 neurons might regulate the serotonergic system in the raphe. However, laser microdissection followed by real-time PCR revealed the expression of Kiss1 receptor (kissr1) mRNA in the habenula and the ventral IPN but not in the dorsal IPN or the serotonergic neurons in the raphe nuclei. Dual-fluorescent in situ hybridization revealed the coexpression of kiss1 and kissr1 mRNA in the habenula. Administration of Kiss1 significantly decreased the level of kiss1 mRNA (0.3- to 0.5-fold, P < 0.001), but the level of c-fos mRNA was increased (≈ 3-fold, P < 0.05) in the ventral habenula, suggesting that there is autocrine regulation of the kiss1 gene. Kiss1 administration significantly increased the c-fos mRNA levels in the raphe nuclei (2.5-fold, P < 0.001) and genes involved in the regulation of serotonin levels (pet1 and slc6a4a; 3.3- and 2.2-fold, P < 0.01). These findings suggest that the autocrine-regulated habenular Kiss1 neurons indirectly regulate the serotonergic system in the raphe nuclei through the IPN in the zebrafish.
    Matched MeSH terms: Zebrafish; Zebrafish Proteins/metabolism*; Zebrafish Proteins/pharmacology
  16. Ogawa S, Sivalingam M, Anthonysamy R, Parhar IS
    Cell Tissue Res, 2020 Feb;379(2):349-372.
    PMID: 31471710 DOI: 10.1007/s00441-019-03089-5
    Kisspeptin is a hypothalamic neuropeptide, which acts directly on gonadotropin-releasing hormone (GnRH)-secreting neurons via its cognate receptor (GPR54 or Kiss-R) to stimulate GnRH secretion in mammals. In non-mammalian vertebrates, there are multiple kisspeptins (Kiss1 and Kiss2) and Kiss-R types. Recent gene knockout studies have demonstrated that fish kisspeptin systems are not essential in the regulation of reproduction. Studying the detailed distribution of kisspeptin receptor in the brain and pituitary is important for understanding the multiple action sites and potential functions of the kisspeptin system. In the present study, we generated a specific antibody against zebrafish Kiss2-R (=Kiss1Ra/GPR54-1/Kiss-R2/KissR3) and examined its distribution in the brain and pituitary. Kiss2-R-immunoreactive cell bodies are widely distributed in the brain including in the dorsal telencephalon, preoptic area, hypothalamus, optic tectum, and in the hindbrain regions. Double-labeling showed that not all but a subset of preoptic GnRH3 neurons expresses Kiss2-R, while Kiss2-R is expressed in most of the olfactory GnRH3 neurons. In the posterior preoptic region, Kiss2-R immunoreactivity was seen in vasotocin cells. In the pituitary, Kiss2-R immunoreactivity was seen in corticotropes, but not in gonadotropes. The results in this study suggest that Kiss2 and Kiss2-R signaling directly serve non-reproductive functions and indirectly subserve reproductive functions in teleosts.
    Matched MeSH terms: Zebrafish/metabolism*; Zebrafish Proteins/metabolism*
  17. Ogawa S, Ramadasan PN, Anthonysamy R, Parhar IS
    PMID: 33763023 DOI: 10.3389/fendo.2020.534343
    Substance P (SP) and neurokinin A (NKA), encoded by TAC1/Tac1 gene are members of the tachykinin family, which exert their neuromodulatory roles in vertebrate reproduction. In mammals, SP and NKA have been shown to regulate gonadotropin-releasing hormone (GnRH) and luteinizing hormone (LH) secretion via kisspeptin neurons. On the other hand, the role of SP/NKA in the regulation of reproduction in non-mammalian vertebrates is not well known. In the present study, we first localized expression of tac1 mRNA in the brain of male and female zebrafish, Danio rerio. Next, using an antibody against zebrafish tachykinin1 (Tac1), we examined the neural association of SP/NKA neural processes with GnRH3 neurons, and with kisspeptin (kiss2) neurons, in the brains of male and female zebrafish. In situ hybridization showed an apparent male-dominant tac1 expression in the ventral telencephalic area, the anterior and posterior parts of the parvocellular preoptic nucleus, and the suprachiasmatic nucleus. On the other hand, there was female-dominant tac1 expression in the ventral periventricular hypothalamus. Confocal images of double-labeled zebrafish Tac1 and GnRH3 showed associations between Tac1-immunoreactive processes and GnRH3 neurons in the ventral telencephalic area. In contrast, there was no apparent proximity of Tac1 processes to kiss2 mRNA-expressing neurons in the hypothalamus. Lastly, to elucidate possible direct action of SP/NKA on GnRH3 or Kiss2 neurons, expression of SP/NKA receptor, tacr1a mRNA was examined in regions containing GnRH3 or Kiss2 neurons by in situ hybridization. Expression of tacr1a mRNA was seen in several brain regions including the olfactory bulb, preoptic area and hypothalamus, where GnRH3 and Kiss2 cells are present. These results suggest that unlike in mammals, Tac1 may be involved in male reproductive functions via direct action on GnRH3 neurons but independent of kisspeptin in the zebrafish.
    Matched MeSH terms: Zebrafish; Zebrafish Proteins/metabolism
  18. Ogawa S, Parhar IS
    PMID: 29867758 DOI: 10.3389/fendo.2018.00222
    Kisspeptin is a neuropeptide, encoded by kisspeptin 1 (KISS1)/Kiss1 gene, which primarily acts as the regulator of reproductive functions via its receptor, kisspeptin receptor (KissR) in vertebrates. In the brain, Kiss1 gene is mainly expressed in the hypothalamic region, but KissR gene is widely distributed throughout the brain, suggesting that kisspeptin-KissR system may be involved in not only reproductive, but also non-reproductive functions. In non-mammalian vertebrates, there are two or more kisspeptin and KissR types. The zebrafish (Danio rerio) possess two kisspeptin (Kiss1 and Kiss2) and their respective receptors [Kiss1 receptor (KissR1) and KissR2]. In the brain of zebrafish, while Kiss2 is expressed in the preoptic-hypothalamic area, Kiss1 is predominantly expressed in the habenula, an evolutionarily conserved epithalamic structure. Similarly, KissR1 is expressed only in the habenula, while KissR2 is widely distributed in the brain, suggesting that the two kisspeptin systems play specific roles in the brain. The habenular Kiss1 is involved in the modulation of the raphe nuclei and serotonin-related behaviors such as fear response in the zebrafish. This review summarizes the roles of multiple kisspeptin-KissR systems in reproductive and non-reproductive functions and neuronal mechanism, and debates the biological and evolutional significance of habenular kisspeptin-KissR systems in teleost species.
    Matched MeSH terms: Zebrafish
  19. Ogawa S, Nathan FM, Parhar IS
    Proc Natl Acad Sci U S A, 2014 Mar 11;111(10):3841-6.
    PMID: 24567386 DOI: 10.1073/pnas.1314184111
    Kisspeptin, a neuropeptide encoded by the KISS1/Kiss1, and its cognate G protein-coupled receptor, GPR54 (kisspeptin receptor, Kiss-R), are critical for the control of reproduction in vertebrates. We have previously identified two kisspeptin genes (kiss1 and kiss2) in the zebrafish, of which kiss1 neurons are located in the habenula, which project to the median raphe. kiss2 neurons are located in the hypothalamic nucleus and send axonal projections to gonadotropin-releasing hormone neurons and regulate reproductive functions. However, the physiological significance of the Kiss1 expressed in the habenula remains unknown. Here we demonstrate the role of habenular Kiss1 in alarm substance (AS)-induced fear response in the zebrafish. We found that AS-evoked fear experience significantly reduces kiss1 and serotonin-related genes (plasmacytoma expressed transcript 1 and solute carrier family 6, member 4) in the zebrafish. Furthermore, Kiss1 administration suppressed the AS-evoked fear response. To further evaluate the role of Kiss1 in fear response, zebrafish Kiss1 peptide was conjugated to saporin (SAP) to selectively inactivate Kiss-R1-expressing neurons. The Kiss1-SAP injection significantly reduced Kiss1 immunoreactivity and c-fos mRNA in the habenula and the raphe compared with control. Furthermore, 3 d after Kiss1-SAP injection, the fish had a significantly reduced AS-evoked fear response. These findings provide an insight into the role of the habenular kisspeptin system in inhibiting fear.
    Matched MeSH terms: Zebrafish/metabolism; Zebrafish/physiology*
  20. Nurul Farhana Ramlan, Noraini Abu Bakar, Albert, Emmellie Laura, Syaizwan Zahmir Zulkifli, Syahida Ahmad, Mohammad Noor Amal Azmai, et al.
    MyJurnal
    An ideal model organism for neurotoxicology research should meet several characteristics, such as low cost and amenable for high throughput testing. Javanese medaka (JM) has been widely used in the ecotoxicological studies related to the marine and freshwater environment, but rarely utilized for biomedical research. Therefore, in this study, the applicability of using JM in the neurotoxicology research was assessed using biochemical comparison with an established model organism, the zebrafish. Identification of biochemical changes due to the neurotoxic effects of ethanol and endosulfan was assessed using Fourier Transform Infrared (FTIR) analysis. Treatment with ethanol affected the level of lipids, proteins, glycogens and nucleic acids in the brain of JM. Meanwhile, treatment with endosulfan showed alteration in the level of lipids and nucleic acids. For the zebrafish, exposure to ethanol affected the level of protein, fatty acid and amino acid, and exposure to endosulfan induced alteration in the fatty acids, amino acids, nucleic acids and protein in the brain of zebrafish. The sensitive response of the JM toward chemicals exposure proved that it was a valuable model for neurotoxicology research. More studies need to be conducted to further develop JM as an ideal model organism for neurotoxicology research.
    Matched MeSH terms: Zebrafish
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links