Displaying publications 41 - 51 of 51 in total

Abstract:
Sort:
  1. Xue Mei L, Mohammadi Nafchi A, Ghasemipour F, Mat Easa A, Jafarzadeh S, Al-Hassan AA
    Int J Biol Macromol, 2020 Dec 01;164:4603-4612.
    PMID: 32941902 DOI: 10.1016/j.ijbiomac.2020.09.082
    The development of intelligent packaging based on natural and biodegradable resources is getting more attention by researchers in recent years. The aim of this study was to develop and characterize a pH-sensitive films based on sago starch and incorporated with anthocyanin from torch ginger. The pH-sensitive films were fabricated by casting method with incorporation of different torch ginger extract (TGE) concentration. The surface morphology, physicochemical, barrier, and mechanical properties as well as the pH-sensitivity of films were investigated. The film with the highest concentration of TGE showed the lowest tensile strength (4.26 N/m2), toughness (2.54 MJ/m3), Young's modulus (73.96 MPa) and water vapour permeability (2.6 × 10-4 g·m/day·kPa·m2). However, its elongation at break (85.14%), moisture content (0.27%) and water solubility (37.92%) were the highest compared to other films. pH sensitivity analysis showed that the films containing TGE extract, changes in colour by changing the pH. The colour of films changed from pink to slightly green as the pH increased from pH 4 to 9. Thus, the developed pH-sensitive film with torch ginger extract has potential as intelligent packaging for detection of food freshness or spoilage to ensure their quality and safe consumption.
    Matched MeSH terms: Zingiberaceae/chemistry*
  2. Kiat TS, Pippen R, Yusof R, Ibrahim H, Khalid N, Rahman NA
    Bioorg Med Chem Lett, 2006 Jun 15;16(12):3337-40.
    PMID: 16621533
    Boesenbergia rotunda (L.) cyclohexenyl chalcone derivatives, 4-hydroxypanduratin A and panduratin A, showed good competitive inhibitory activities towards dengue 2 virus NS3 protease with the Ki values of 21 and 25 microM, respectively, whilst those of pinostrobin and cardamonin were observed to be non-competitive. NMR and GCMS spectroscopic data formed the basis of assignment of structures of the six compounds isolated.
    Matched MeSH terms: Zingiberaceae/chemistry*
  3. Chatsumpun N, Sritularak B, Likhitwitayawuid K
    Molecules, 2017 Oct 30;22(11).
    PMID: 29084164 DOI: 10.3390/molecules22111862
    Roots of Boesenbergia rotunda (L.) Mansf. are prominent ingredients in the cuisine of several Asian countries, including Thailand, Malaysia, Indonesia, India, and China. An extract prepared from the roots of this plant showed strong inhibitory activity against enzymes α-glucosidase and pancreatic lipase and was subjected to chromatographic separation to identify the active components. Three new biflavonoids of the flavanone-chalcone type (9, 12, and 13) were isolated, along with 12 known compounds. Among the 15 isolates, the three new compounds showed stronger inhibitory activity against α-glucosidase than the drug acarbose but displayed lower pancreatic lipase inhibitory effect than the drug orlistat. The results indicated the potential of B. rotunda roots as a functional food for controlling after-meal blood glucose levels.
    Matched MeSH terms: Zingiberaceae/chemistry*
  4. Haque MA, Jantan I, Arshad L, Bukhari SNA
    Food Funct, 2017 Oct 18;8(10):3410-3431.
    PMID: 28714500 DOI: 10.1039/c7fo00595d
    Plant-derived immunomodulators and anti-cancer agents have attracted a lot of interest from natural product scientists for their efficacy and safety and their significant contribution towards understanding targeted drug action and drug delivery mechanisms. Zerumbone, the main constituent of Zingiber zerumbet rhizomes, has been investigated for its wide-spectrum role in treating multitargeted diseases. The rhizomes have been used as food flavoring agents in various cuisines and in herbal medicine. Many in vivo and in vitro studies have provided evidence of zerumbone as a potent immunomodulator as well as a potential anti-cancer agent. This review is an interesting compilation of all those significant outcomes from investigations carried out to date to explore the immunomodulatory and anticancer properties of zerumbone. The ultimate objective of this comprehensive review is to provide updated information and a critical assessment on zerumbone including its chemistry and immunomodulating and anticancer properties, which may be of paramount importance to provide a new path for ensuing research to discover new agents to treat cancers and immune-related diseases. In addition, updated information on the toxicology of zerumbone has also been summarized to provide its safety profile.
    Matched MeSH terms: Zingiberaceae/chemistry*
  5. Akhtar NMY, Jantan I, Arshad L, Haque MA
    BMC Complement Altern Med, 2019 Nov 21;19(1):331.
    PMID: 31752812 DOI: 10.1186/s12906-019-2748-5
    BACKGROUND: Zingiber zerumbet rhizome and its bioactive metabolites have previously been reported to exhibit innumerable pharmacological properties particularly anti-inflammatory activities. In the present study, the 80% ethanol extract, essential oil and zerumbone of Z. zerumbet rhizomes were explored for their in vitro immunosuppressive properties on chemotaxis, CD11b/CD18 expression, phagocytosis and chemiluminescence of isolated human polymorphonuclear neutrophils (PMNs).

    METHODS: The extract was analyzed quantitatively by performing a validated reversed phase high performance liquid chromatography (RP-HPLC). Zerumbone was isolated by chromatographic technique while the essential oil was acquired through hydro-distillation of the rhizomes and further analyzed by gas chromatography (GC) and GC-MS. Chemotaxis assay was assessed by using a 24-well cell migration assay kit, while CD18 integrin expression and phagocytic engulfment were measured using flow cytometry. The reactive oxygen species (ROS) production was evaluated by applying lucigenin- and luminol-enhanced chemiluminescence assays.

    RESULTS: Zerumbone was found to be the most abundant compound in the extract (242.73 mg/g) and the oil (58.44%). Among the samples tested, the oil revealed the highest inhibition on cell migration with an IC50 value of 3.24 μg/mL. The extract, oil and zerumbone showed moderate inhibition of CD18 integrin expression in a dose-dependent trend. Z. zerumbet extract showed the highest inhibitory effect on phagocytic engulfment with percentage of phagocytizing cells of 55.43% for PMN. Zerumbone exhibited strong inhibitory activity on oxidative burst of zymosan- and PMA-stimulated neutrophils. Zerumbone remarkably inhibited extracellular ROS production in PMNs with an IC50 value of 17.36 μM which was comparable to that of aspirin.

    CONCLUSION: The strong inhibition on the phagocytosis of neutrophils by Z. zerumbet extract and its essential oil might be due the presence of its chemical components particularly zerumbone which was capable of impeding phagocytosis at different stages.

    Matched MeSH terms: Zingiberaceae/chemistry*
  6. Alafiatayo AA, Syahida A, Mahmood M
    PMID: 25371557
    BACKGROUND: Natural products such as herbs, fruits, spices, beverages, vegetables are becoming more popular among scientific community and consumers because of their potential to arrest the effect of free radicals in human system. This study determined the total antioxidant capacity of ten selected species of Zingiberaceae (Ginger) used as spices and for medicinal purposes in Southeast Asia.

    MATERIALS AND METHODS: Methanol was used as the extraction solvent, 2,2 - diphenyl-1-picrylhydrazil (DPPH) for free radical scavenging activity and ferric reducing antioxidant power (FRAP) assays. Phenolic compounds were measured using Total flavonoid, Phenolic acid and Polyphenols content assay to evaluate the quality of the antioxidant capacity of the rhizomes and vitamin C as positive control.

    RESULTS: The results obtained revealed that Curcuma longa and Zingiber officinale had the highest free radical scavenging capacity of 270.07mg/TE/g DW and 266.95mg/TE/g DW and FRAP assay, Curcuma longa and Zingiber officinale also gave the highest ferric reducing power of 231.73mg/TE/g DW and 176.26mg/TE/g DW respectively. For Phenolic compounds, Curcuma longa and Curcuma xanthorrhiza gave the highest values of flavonoid (741.36mg/NGN/g DW and 220.53mg/NGN/g DW), phenolic acid (42.71mg/GAE/g DW and 22.03mg/GAE/g DW) and polyphenols (39.38mg/GAE/g DW and 38.01mg/GAE/g DW) respectively. Significant and positive linear correlations were found between Total antioxidant capacity and Phenolic compounds (R = 0.65 - 0.96).

    CONCLUSION: This study provides evidence that extracts of Zingiberaceae (Ginger) rhizomes are a potential source of natural antioxidants and could serve as basis for future drugs and food supplements.

    Matched MeSH terms: Zingiberaceae/chemistry*
  7. Jani NA, Sirat MH, Ali NM, Aziz A
    Nat Prod Commun, 2013 Apr;8(4):513-4.
    PMID: 23738467
    The chemical compositions of the essential oil of the rhizome, leaf and stem of Hornstedtia leonurus Retz., collected from Negeri Sembilan, Malaysia,are reported for the first time. The essential oils were extracted using hydrodistillation and analyzed by gas chromatography (GC-FID) and gas chromatography/mass spectrometry (GC/MS). Seventeen (96.4%), thirteen (89.2%) and nine components (98.8%) were successfully identified from the rhizome, stem and leaf oils, respectively. Phenylpropanoids were found to be the major fraction, with methyleugenol being the most abundant compound in all oils with percentage compositions of 76.4% (rhizome), 80.3% (stem) and 74.5% (leaf).
    Matched MeSH terms: Zingiberaceae/chemistry*
  8. Tang SW, Sukari MA, Rahmani M, Lajis NH, Ali AM
    Molecules, 2011 Apr 07;16(4):3018-28.
    PMID: 21475124 DOI: 10.3390/molecules16043018
    A new abietene diterpene, kaempfolienol (5S,6S,7S,9S,10S,11R,13S-abiet-8(14)-enepenta-6,7,9,11,13-ol, 1), was isolated from a rhizome extract of Kaempferia angustifolia Rosc. along with the known compounds crotepoxide, boesenboxide, zeylenol, 2'-hydroxy-4,4',6'-trimethoxychalcone, (24S)-24-methyl-5α-lanosta-9(11),25-dien-3β-ol, β-sitosterol and β-sitosterol-3-O-β-D-glucopyranoside. The structures of all compounds were elucidated on the basis of mass spectroscopic and NMR data. Zeylenol (2), the major constituent of the plant, was derivatized into diacetate, triacetate and epoxide derivatives through standard organic reactions. The cytotoxic activity of compounds 1, 2 and the zeylenol derivatives was evaluated against the HL-60, MCF-7, HT-29 and HeLa cell lines.
    Matched MeSH terms: Zingiberaceae/chemistry*
  9. Zakaria ZA, Mohamad AS, Ahmad MS, Mokhtar AF, Israf DA, Lajis NH, et al.
    Biol Res Nurs, 2011 Oct;13(4):425-32.
    PMID: 21112917 DOI: 10.1177/1099800410386590
    Nonsteroidal anti-inflammatory drugs (NSAIDs) have been widely used for the treatment of inflammation. However, despite their effectiveness, most NSAIDs cause various side effects that negatively affect the management of inflammation and, in part, pain. Thus, there is a need to search for new anti-inflammatory agents with few, or no, side effects. Natural products of plant, animal, or microorganism origin have been good sources of new bioactive compounds. The present study was carried out to evaluate the acute and chronic anti-inflammatory activities of the essential oil of the rhizomes of Zingiber zerumbet (Zingiberaceae) using the carrageenan-induced paw edema and cotton pellet-induced granuloma tests, respectively. The effect of the essential oil on inflammatory- and noninflammatory-mediated pain was also assessed using the formalin test. Essential oil of Z. zerumbet, at doses of 30, 100, and 300 mg/kg, was administered intraperitoneally to rats. The substance exhibited significant anti-inflammatory activity both in acute and chronic animal models. The essential oil also inhibited inflammatory- and noninflammatory-mediated pain when assessed using the formalin test. In conclusion, the essential oil of Z. zerumbet possessed anti-inflammatory activity, in addition to its antinociceptive activity, which may explain its traditional uses to treat inflammatory-related ailments.
    Matched MeSH terms: Zingiberaceae/chemistry*
  10. Chan EW, Wong SK
    J Integr Med, 2015 Nov;13(6):368-79.
    PMID: 26559362 DOI: 10.1016/S2095-4964(15)60208-4
    In this review, the phytochemistry and pharmacology of two ornamental gingers, Hedychium coronarium (butterfly ginger) and Alpinia purpurata (red ginger), are updated, and their botany and uses are described. Flowers of H. coronarium are large, showy, white, yellow or white with a yellow centre and highly fragrant. Inflorescences of A. purpurata are erect spikes with attractive red or pink bracts. Phytochemical investigations on the rhizomes of H. coronarium generated research interest globally. This resulted in the isolation of 53 labdane-type diterpenes, with little work done on the leaves and flowers. Pharmacological properties of H. coronarium included antioxidant, antibacterial, antifungal, cytotoxic, chemopreventive, anti-allergic, larvicidal, anthelminthic, analgesic, anti-inflammatory, anti-urolithiatic, anti-angiogenic, neuro-pharmacological, fibrinogenolytic, coagulant and hepatoprotective activities. On the contrary, little is known on the phytochemistry of A. purpurata with pharmacological properties of antioxidant, antibacterial, larvicidal, cytotoxic and vasodilator activities reported in the leaves and rhizomes. There is much disparity in terms of research effort within and between these two ornamental gingers.
    Matched MeSH terms: Zingiberaceae/chemistry*
  11. Sharifi-Rad M, Varoni EM, Salehi B, Sharifi-Rad J, Matthews KR, Ayatollahi SA, et al.
    Molecules, 2017 Dec 04;22(12).
    PMID: 29207520 DOI: 10.3390/molecules22122145
    Plants of the genus Zingiber (Family Zingiberaceae) are widely used throughout the world as food and medicinal plants. They represent very popular herbal remedies in various traditional healing systems; in particular, rhizome of Zingiber spp. plants has a long history of ethnobotanical uses because of a plethora of curative properties. Antimicrobial activity of rhizome essential oil has been extensively confirmed in vitro and attributed to its chemical components, mainly consisting of monoterpene and sesquiterpene hydrocarbons such as α-zingiberene, ar-curcumene, β-bisabolene and β-sesquiphellandrene. In addition, gingerols have been identified as the major active components in the fresh rhizome, whereas shogaols, dehydrated gingerol derivatives, are the predominant pungent constituents in dried rhizome. Zingiber spp. may thus represent a promising and innovative source of natural alternatives to chemical food preservatives. This approach would meet the increasing concern of consumers aware of the potential health risks associated with the conventional antimicrobial agents in food. This narrative review aims at providing a literature overview on Zingiber spp. plants, their cultivation, traditional uses, phytochemical constituents and biological activities.
    Matched MeSH terms: Zingiberaceae/chemistry*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links