Displaying publications 41 - 60 of 158 in total

Abstract:
Sort:
  1. Maniyam MN, Ibrahim AL, Cass AEG
    Environ Technol, 2019 Jan;40(3):386-398.
    PMID: 29032742 DOI: 10.1080/09593330.2017.1393015
    The capability of the crude extract of Rhodococcus UKMP-5M was enhanced by adopting the technology of immobilization. Among the matrices screened to encapsulate the crude extract, gellan gum emerged as the most suitable immobilization material, exceeding the activity of cyanide-degrading enzyme by 61% and 361% in comparison to alginate carrier and non-immobilized crude extract, respectively. Improved bead mechanical strength which supported higher biocatalyst activity by 63% was observed when concentration of gellan gum, concentration of calcium chloride, number of beads and bead size were optimized. The immobilized crude extract demonstrated higher tolerance towards broad range of pH (5-10) and temperature (30°C-40°C), superior cyanide-degrading activity over time and improved storage stability by maintaining 76% of its initial activity after 30 days at 4°C. Furthermore, repeated use of the gellan gum beads up to 20 batches without substantial loss in the catalytic activity was documented in the present study, indicating that the durability of the beads and the stability of the enzyme are both above adequate. Collectively, the findings reported here revealed that the utilization of the encapsulated crude extract of Rhodococcus UKMP-5M can be considered as a novel attempt to develop an environmentally favourable and financially viable method in cyanide biodegradation.
    Matched MeSH terms: Alginates
  2. Tan PY, Tan TB, Chang HW, Tey BT, Chan ES, Lai OM, et al.
    Food Chem, 2018 Feb 15;241:79-85.
    PMID: 28958562 DOI: 10.1016/j.foodchem.2017.08.075
    Tocotrienol microcapsules (TM) were formed by firstly preparing Pickering emulsion containing tocotrienols, which was then gelled into microcapsules using alginate and chitosan. In this study, we examined the stability of TM during storage and when applied into a model food system, i.e. yogurt. During storage at 40°C, TM displayed remarkably lower tocotrienols loss (50.8%) as compared to non-encapsulated tocotrienols in bulk oil (87.5%). When the tocotrienols were incorporated into yogurt, the TM and bulk oil forms showed a loss of 23.5% and 81.0%, respectively. Generally, the tocotrienols were stable in the TM form and showed highest stability when these TM were added into yogurt. δ-Tocotrienol was the most stable isomer in both forms during storage and when incorporated into yogurt. The addition of TM into yogurt caused minimal changes in the yogurt's color and texture but slightly altered the yogurt's viscosity.
    Matched MeSH terms: Alginates
  3. Azarakhsh, N., Azizah, O., Ghazali H.M., Tan, C.P., Mohd Adzahan, N.
    MyJurnal
    The effects of alginate-based [sodium alginate, 0-2% (w/v), glycerol, 0-2% (w/v) and sunflower oil 0.025% (w/v)] and gellan-based [gellan, 0-1% (w/v), glycerol, 0-1% (w/v) and sunflower oil 0.025% (w/v)] edible coatings on fresh-cut pineapple were evaluated by response surface methodology (RSM). Weight loss, firmness and respiration rate were considered as response variables. The results showed that for all response variables the RSM models were significantly (p0.05) difference between predicted and experimental values. The overall optimum region predicted by RSM indicated that alginate and gellan-based coatings containing 1.29% (w/v) sodium alginate, 1.16% (w/v) glycerol and 0.56% (w/v) gellan gum, 0.89% (w/v) glycerol were optimized formulations respectively.
    Matched MeSH terms: Alginates
  4. Ayub NM, Kassim NFA, Sabar S, Webb CE, Xiang KZ, Hashim NA
    Int J Biol Macromol, 2023 Jan 01;224:1460-1470.
    PMID: 36328267 DOI: 10.1016/j.ijbiomac.2022.10.233
    The effective control of Aedes mosquitoes using traditional control agents is increasingly challenging due to the presence of insecticide resistance in many populations of key mosquito vectors. An alternative strategy to insecticides is the use of toxic sugar baits, however it is limited due to short-term efficacy. Alginate-Gelatin hydrogel beads (AGHBs) may be an effective alternative by providing longer periods of mosquito attraction and control, especially of key vectors of dengue viruses such as Aedes aegypti and Aedes albopictus. Sodium alginate (ALG) and gelatin (GLN) are natural polymers, which can be a potential candidate to develop the AGHBs baits due to their biodegradability and environmental safety. Here we provide an assessment of the preparation of AGHBs optimized by varying the concentrations of ALG, GLN, and its cross-linking time (TIME). Fourier transform infrared spectroscopy (FTIR) analysis results in the determination of liquid bait loaded in the AGHBs. The evaluation of AGHBs' effectiveness as the potential baiting tool based on the mortality rate of mosquitoes after the bait consumption. The 100 % percent mortality of Aedes mosquitoes was obtained within 72 h of bait consumption. The field evaluation also justifies the applicability of AGHBs for outdoor applications. We conclude that the AGHBs are applicable as a baiting tool in carrying liquid bait in achieving mosquito mortality.
    Matched MeSH terms: Alginates
  5. Loke YL, Beishenaliev A, Wang PW, Lin CY, Chang CY, Foo YY, et al.
    Ultrason Sonochem, 2023 Jun;96:106437.
    PMID: 37187119 DOI: 10.1016/j.ultsonch.2023.106437
    Sonodynamic therapy (SDT) emerges as a promising non-invasive alternative for eradicating malignant tumours. However, its therapeutic efficacy remains limited due to the lack of sonosensitisers with high potency and biosafety. Previously, gold nanorods (AuNRs) have been extensively studied for their applications in photodynamic or photothermal cancer therapy, but their sonosensitising properties are largely unexplored. Here, we reported the applicability of alginate-coated AuNRs (AuNRsALG) with improved biocompatibility profiles as promising nanosonosensitisers for SDT for the first time. AuNRsALG were found stable under ultrasound irradiation (1.0 W/cm2, 5 min) and maintained structural integrity for 3 cycles of irradiation. The exposure of the AuNRsALG to ultrasound irradiation (1.0 W/cm2, 5 min) was shown to enhance the cavitation effect significantly and generate a 3 to 8-fold higher amount of singlet oxygen (1O2) than other reported commercial titanium dioxide nanosonosensitisers. AuNRsALG exerted dose-dependent sonotoxicity on human MDA-MB-231 breast cancer cells in vitro, with ∼ 81% cancer cell killing efficacy at a sub-nanomolar level (IC50 was 0.68 nM) predominantly through apoptosis. The protein expression analysis showed significant DNA damage and downregulation of anti-apoptotic Bcl-2, suggesting AuNRsALG induced cell death through the mitochondrial pathway. The addition of mannitol, a reactive oxygen species (ROS) scavenger, inhibited cancer-killing effect of AuNRsALG-mediated SDT, further verifying that the sonotoxicity of AuNRsALG is driven by the production of ROS. Overall, these results highlight the potential application of AuNRsALG as an effective nanosonosensitising agent in clinical settings.
    Matched MeSH terms: Alginates
  6. Hussein-Al-Ali SH, Abudoleh SM, Abualassal QIA, Abudayeh Z, Aldalahmah Y, Hussein MZ
    IET Nanobiotechnol, 2022 May;16(3):92-101.
    PMID: 35332980 DOI: 10.1049/nbt2.12081
    Silver nanoparticles (AgNPs) have shown potential applications in drug delivery. In this study, the AgNPs was prepared from silver nitrate in the presence of alginate as a capping agent. The ciprofloxacin (Cipro) was loaded on the surface of AgNPs to produce Cipro-AgNPs nanocomposite. The characteristics of the Cipro-AgNPs nanocomposite were studied by X-ray diffraction (XRD), UV-Vis, transmission electron microscopy (TEM), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), Fourier-transform infra-red analysis (FT-IR) and zeta potential analyses. The XRD of AgNPs and Cipro-AgNPs nanocomposite data showed that both have a crystalline structure in nature. The FT-IR data indicate that the AgNPs have been wrapped by the alginate and loaded with the Cipro drug. The TEM image showed that the Cipro-AgNPs nanocomposites have an average size of 96 nm with a spherical shape. The SEM image for AgNPs and Cipro-AgNPs nanocomposites confirmed the needle-lumpy shape. The zeta potential for Cipro-AgNPs nanocomposites exhibited a positive charge with a value of 6.5 mV. The TGA for Cipro-AgNPs nanocomposites showed loss of 79.7% in total mass compared to 57.6% for AgNPs which is due to the Cipro loaded in the AgNPs. The release of Cipro from Cipro-AgNPs nanocomposites showed slow release properties which reached 98% release within 750 min, and followed the Hixson-Crowell kinetic model. In addition, the toxicity of AgNPs and Cipro-AgNPs nanocomposites was evaluated using normal (3T3) cell line. The present work suggests that Cipro-AgNPs are suitable for drug delivery.
    Matched MeSH terms: Alginates
  7. Khalil KA, Mustafa S, Mohammad R, Ariff AB, Ahmad SA, Dahalan FA, et al.
    Int J Microbiol, 2019;2019:4208986.
    PMID: 31093290 DOI: 10.1155/2019/4208986
    Bovine gelatin is a biopolymer which has good potential to be used in encapsulating matrices for probiotic candidate Bifidobacterium pseudocatenulatum strain G4 (G4) because of its amphoteric nature characteristic. Beads were prepared by the extrusion method using genipin and sodium alginate as a cross-linking agent. The optimisation of bovine gelatin-genipin-sodium alginate combinations was carried out using face central composition design (FCCD) to investigate G4 beads' strength, before and after exposed to simulated gastric (SGF), intestinal fluids (SIF), and encapsulation yield. A result of ANOVA and the polynomial regression model revealed the combinations of all three factors have a significant effect (p < 0.05) on the bead strength. Meanwhile, for G4 encapsulation yield, only genipin showed less significant effect on the response. However, the use of this matrix remained due to the intermolecular cross-linking ability with bovine gelatin. Optimum compositions of bovine gelatin-genipin-sodium alginate were obtained at 11.21% (w/v), 1.96 mM, and 2.60% (w/v), respectively. A model was validated for accurate prediction of the response and showed no significant difference (p > 0.05) with experimental values.
    Matched MeSH terms: Alginates
  8. Rezvanian M, Amin MCIM, Ng SF
    Carbohydr Polym, 2016 Feb 10;137:295-304.
    PMID: 26686133 DOI: 10.1016/j.carbpol.2015.10.091
    Previously, studies have demonstrated that topical application of simvastatin can promote wound healing in diabetic mice via augmentation of angiogenesis and lymphangiogenesis. This study aimed to formulate and characterize simvastatin in alginate-based composite film wound dressings. Biopolymers used for composite films were sodium alginate blended with pectin or gelatin. The films were prepared and characterized based on their physical properties, surface morphology, mechanical strength and rheology. Then, in vitro drug releases from the films were investigated and, finally, the cell viability assay was performed to assess the cytotoxicity profile. From the pre-formulation studies, alginate/pectin composite film showed to possess desirable wound dressing properties and superior mechanical properties. The in vitro drug release profile revealed that alginate/pectin film produced a controlled release drug profile, and cell viability assay showed that the film was non-toxic. In summary, alginate/pectin composite film is suitable to be formulated with simvastatin as a potential wound dressing.
    Matched MeSH terms: Alginates/chemistry*
  9. Haghshenas B, Abdullah N, Nami Y, Radiah D, Rosli R, Yari Khosroushahi A
    J Appl Microbiol, 2015 Apr;118(4):1048-57.
    PMID: 25619628 DOI: 10.1111/jam.12762
    Investigation on the use of herbal-based biopolymers for probiotic-Lactobacillus plantarum 15HN-encapsulation is presented. The objectives are to enhance its oral delivery, colonic release and survival rate of these probiotic cultures in gastrointestinal environment.
    Matched MeSH terms: Alginates*
  10. Darah I, Nisha M, Lim SH
    Appl Biochem Biotechnol, 2015 Mar;175(5):2629-36.
    PMID: 25547814 DOI: 10.1007/s12010-014-1447-4
    Bacterial cells of Enterobacter aerogenes NBO2 were entrapped in calcium alginate beads in order to enhance polygalacturonase production compared to free cells. The optimized condition of 5 % (w/v) sodium alginate concentration, agitation speed of 250 rpm, and 15 beads of calcium alginate with inoculum size of 4 % (v/v; 5.4 × 10(7) cells/ml) produced 23.48 U/mL of polygalacturonase compared to free cells of 18.54 U/ml. There was about 26.6 % increment in polygalaturonase production. However, in this study, there was 296.6 % of increment in polygalacturonase production after improvement parameters compared to before improvement parameters of calcium alginate bead immobilization cells (5.92 U/ml). This research has indicated that optimized physical parameters of calcium alginate bead immobilization cells have significantly enhanced the production of polygalacturonase.
    Matched MeSH terms: Alginates/chemistry
  11. Ong WD, Tey BT, Quek SY, Tang SY, Chan ES
    J Food Sci, 2015 Jan;80(1):E93-E100.
    PMID: 25529579 DOI: 10.1111/1750-3841.12729
    Oil-in-water (O/W) emulsion-gel systems containing high oil payloads are of increasing interest for food applications because of the reduction in encapsulation cost, consumption frequency or volume of food products. This study shows a facile approach to prepare stable alginate-based O/W emulsions at high oil loading using a mixture of nonionic surfactants (Tween 80 and Span 20) as a template to form gelled-emulsions. The synergistic effects of alginate and surfactants on the O/W emulsion properties were evaluated in terms of oil droplet size and emulsion stability. At 2% (w/v) of alginate and 1% (w/v) of surfactants, the size distribution of oil droplets was narrow and monomodal, even at an oil loading of 70% (v/v). The emulsions formed were stable against phase separation. The oil droplet size could be further reduced to below 1 μm using a high-shear homogenizer. The emulsions formed could be easily molded and gelled into solids of different shapes via ionic gelation. The findings of this study create possible avenues for applications in food industries.
    Matched MeSH terms: Alginates/chemistry*
  12. Cheong KW, Mirhosseini H, Hamid NS, Osman A, Basri M, Tan CP
    Molecules, 2014 Jun 24;19(6):8691-706.
    PMID: 24962400 DOI: 10.3390/molecules19068691
    This study was conducted to investigate the effect of main emulsion components namely, modified starch, propylene glycol alginate (PGA), sucrose laurate and sucrose stearate on creaming index, cloudiness, average droplet size and conductivity of soursop beverage emulsions. Generally, the use of different emulsifiers or a mixture of emulsifiers has a significant (p < 0.05) effect on the response variables studied. The addition of PGA had a significant (p < 0.05) effect on the creaming index at 55 °C, while PGA-stabilized (PGA1) emulsions showed low creaming stability at both 25 °C and 55 °C. Conversely, the utilization of PGA either as a mixture or sole emulsifier, showed significantly (p < 0.05) higher cloudiness, as larger average droplet size will affect the refractive index of the oil and aqueous phases. Additionally, the cloudiness was directly proportional to the mean droplet size of the dispersed phase. The inclusion of PGA into the formulation could have disrupted the properties of the interfacial film, thus resulting in larger droplet size. While unadsorbed ionized PGA could have contributed to higher conductivity of emulsions prepared at low pH. Generally, emulsions prepared using sucrose monoesters or as a mixture with modified starch emulsions have significantly (p < 0.05) lower creaming index and conductivity values, but higher cloudiness and average droplet size.
    Matched MeSH terms: Alginates/chemistry*
  13. Tan WS, Ting AS
    Bioresour Technol, 2014 May;160:115-8.
    PMID: 24405651 DOI: 10.1016/j.biortech.2013.12.056
    This study evaluated the use of alginate-immobilized bentonite to remove Cu(II) as an alternative to mitigate clogging problems. The adsorption efficacy (under the influence of time, pH and initial Cu(II) concentration) and reusability of immobilized-bentonite (1% w/v bentonite) was tested against plain alginate beads. Results revealed that immobilized bentonite demonstrated significantly higher sorption efficacy compared to plain alginate beads with 114.70 and 94.04 mg Cu(II) adsorbed g(-1) adsorbent, respectively. Both sorbents were comparable in other aspects where sorption equilibrium was achieved within 6 h, with optimum pH between pH 4 and 5 for adsorption, displayed maximum adsorption capacity at initial Cu(II) concentrations of 400 mg l(-1), and demonstrated excellent reusability potential with desorption greater than 90% throughout three consecutive adsorption-desorption cycles. Both sorbents also conformed to Langmuir isotherm and pseudo-second order kinetic model. Immobilized bentonite is therefore recommended for use in water treatments to remove Cu(II) without clogging the system.
    Matched MeSH terms: Alginates/chemistry*
  14. Arip MN, Heng LY, Ahmad M, Ujang S
    Talanta, 2013 Nov 15;116:776-81.
    PMID: 24148473 DOI: 10.1016/j.talanta.2013.07.065
    The characteristics of a potentiometric biosensor for the determination of permethrin in treated wood based on immobilised cells of the fungus Lentinus sajor-caju on a potentiometric transducer are reported this paper. The potentiometric biosensor was prepared by immobilisation of the fungus in alginate gel deposited on a pH-sensitive transducer employing a photocurable acrylic matrix. The biosensor gave a good response in detecting permethrin over the range of 1.0-100.0 µM. The slope of the calibration curve was 56.10 mV/decade with detection limit of 1.00 µM. The relative standard deviation for the sensor reproducibility was 4.86%. The response time of the sensor was 5 min at optimum pH 8.0 with 1.00 mg/electrode of fungus L. sajor-caju. The permethrin biosensor performance was compared with the conventional method for permethrin analysis using high performance liquid chromatography (HPLC), and the analytical results agreed well with the HPLC method (at 95% confidence limit). There was no interference from commonly used organophosphorus pesticides such as diazinon, parathion, paraoxon, and methyl parathion.
    Matched MeSH terms: Alginates/chemistry
  15. Tamilvanan S, Karmegam S
    Pharm Dev Technol, 2012 Jul-Aug;17(4):494-501.
    PMID: 21609308 DOI: 10.3109/10837450.2010.550622
    Methyl salicylate-lactose physical mixture (1:1 and 1:1.5 ratios) was incorporated into calcium alginate beads by a coacervation method involving an ionotropic gelation/polyelectrolyte complexation approach.
    Matched MeSH terms: Alginates/chemistry*
  16. Ngah WS, Fatinathan S
    J Environ Sci (China), 2010;22(3):338-46.
    PMID: 20614774
    The study examined the adsorption of Pb(II) ions from aqueous solution onto chitosan, chitosan-GLA and chitosan-alginate beads. Several important parameters influencing the adsorption of Pb(II) ions such as initial pH, adsorbent dosage and different initial concentration of Pb(II) ions were evaluated. The mechanism involved during the adsorption process was explored based on ion exchange study and using spectroscopic techniques. The adsorption capacities obtained based on non-linear Langmuir isotherm for chitosan, chitosan-GLA and chitosan-alginate beads in single metal system were 34.98, 14.24 and 60.27 mg/g, respectively. However, the adsorption capacity of Pb(II) ions were reduced in the binary metal system due to the competitive adsorption between Pb(II) and Cu(II) ions. Based on the ion exchange study, the release of Ca2+, Mg2+, K+ and Na+ ions played an important role in the adsorption of Pb(II) ions by all three adsorbents but only at lower concentrations of Pb(II) ions. Infrared spectra showed that the binding between Pb(II) ions and the adsorbents involved mostly the nitrogen and oxygen atoms. All three adsorbents showed satisfactory adsorption capacities and can be considered as an efficient adsorbent for the removal of Pb(II) ions from aqueous solutions.
    Matched MeSH terms: Alginates/chemistry
  17. Voo WP, Ravindra P, Tey BT, Chan ES
    J Biosci Bioeng, 2011 Mar;111(3):294-9.
    PMID: 21216192 DOI: 10.1016/j.jbiosc.2010.11.010
    A comparative study on the stability and potential of alginate and pectin based beads for production of poultry probiotic cells using MRS medium in repeated batch fermentation was conducted. The bead cores, made of three types of materials, i.e., ca-alginate, ca-pectinate and ca-alginate/pectinate, were compared. The effect of single and double layer coatings using chitosan and core material, respectively, on the bead stability and cell production were also studied. The pectin based beads were found to be more stable than that of the alginate beads and their stability was further improved by coating with chitosan. The cell concentration in pectin based beads was comparable to that in the alginate beads. On the other hand, pectin based beads gave significantly lower cell concentration in the growth medium for the initial fermentation cycles when compared to the alginate beads. In conclusion, pectin was found to be potential encapsulation material for probiotic cell production owing to its stability and favourable microenvironment for cell growth.
    Matched MeSH terms: Alginates/chemistry*
  18. Karunanithi P, Murali MR, Samuel S, Raghavendran HRB, Abbas AA, Kamarul T
    Carbohydr Polym, 2016 08 20;147:294-303.
    PMID: 27178935 DOI: 10.1016/j.carbpol.2016.03.102
    Presence of sulfated polysaccharides like heparan sulphate has often been implicated in the regulation of chondrogenesis. However, recently there has been a plethora of interest in the use of non-animal extracted analogs of heparan sulphate. Here we remodeled alginate (1.5%) by incorporating fucoidan (0.5%), a natural sulphated polysaccharide extracted from seaweeds to form a composite hydrogel (Al-Fu), capable of enhancing chondrogenesis of human mesenchymal stromal cells (hMSCs). We confirmed the efficiency of fucoidan incorporation by FTIR and EDX analysis. Further, its ability to support hMSC attachment and chondrogenic differentiation was confirmed by SEM, biochemical glycosaminoglycan quantification, real-time quantitative PCR and immunocytochemical analyses of chondrogenic markers Sox-9, Collagen II, Aggrecan and COMP. Effect of Al-Fu hydrogel on hMSC hypertrophy was also confirmed by the downregulation of hypertrophic genes Collagen X and Runx2. This composite scaffold can hence be used as a cartilage biomimetic biomaterial to drive hMSC chondrogenesis and for other cartilage repair based therapies.
    Matched MeSH terms: Alginates/chemistry*
  19. Lee PM, Lee KH, Siaw YS
    PMID: 8260581
    Aminoacylase I (E.C.3.5.1.14) was immobilized by entrapment in calcium alginate beads coated with polyethyleneimine for the production of L-phenylalanine by the hydrolysis of a racemic mixture of N-acetyl-DL-phenylalanine. The operational stability in terms of batch operation and continuous reaction in packed-bed bioreactor were studied. Kinetic constants, Km and Vmax values of free and immobilized enzymes were studied. Polyethyleneimine treatment was found to enhance the operational stability of the enzyme though its activity was substantially reduced. When polyethyleneimine-coated calcium alginate beads were packed into packed bed bioreactor, it was stable for at least 25 days under continuous operation without appreciable loss of activity.
    Matched MeSH terms: Alginates/chemistry*
  20. Fareez IM, Lim SM, Zulkefli NAA, Mishra RK, Ramasamy K
    Probiotics Antimicrob Proteins, 2018 09;10(3):543-557.
    PMID: 28493103 DOI: 10.1007/s12602-017-9284-8
    The susceptibility of probiotics to low pH and high temperature has limited their use as nutraceuticals. In this study, enhanced protection of probiotics via microencapsulation was achieved. Lactobacillus plantarum LAB12 were immobilised within polymeric matrix comprised of alginate (Alg) with supplementation of cellulose derivatives (methylcellulose (MC), sodium carboxymethyl cellulose (NaCMC) or hydroxypropyl methylcellulose (HPMC)). L. plantarum LAB12 encapsulated in Alg-HPMC(1.0) and Alg-MC(1.0) elicited improved survivability (91%) in simulated gastric conditions and facilitated maximal release (∼100%) in simulated intestinal condition. Alg-HPMC(1.0) and Alg-MC(1.0) significantly reduced (P 7 log CFU g-1. Alg-MC and Alg-HPMC improved the survival of LAB12 against simulated gastric condition (9.24 and 9.55 log CFU g-1, respectively), temperature up to 90 °C (9.54 and 9.86 log CFU g-1, respectively) and 4-week of storage at 4 °C (8.61 and 9.23 log CFU g-1, respectively) with sustained release of probiotic in intestinal condition (>9 log CFU g-1). These findings strongly suggest the potential of cellulose derivatives supplemented Alg bead as protective micro-transport for probiotic strains. They can be safely incorporated into new functional food or nutraceutical products.
    Matched MeSH terms: Alginates/chemistry*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links