Displaying publications 41 - 60 of 282 in total

Abstract:
Sort:
  1. Nagaki K, Furuta T, Yamaji N, Kuniyoshi D, Ishihara M, Kishima Y, et al.
    Chromosome Res, 2021 12;29(3-4):361-371.
    PMID: 34648121 DOI: 10.1007/s10577-021-09676-z
    Observing chromosomes is a time-consuming and labor-intensive process, and chromosomes have been analyzed manually for many years. In the last decade, automated acquisition systems for microscopic images have advanced dramatically due to advances in their controlling computer systems, and nowadays, it is possible to automatically acquire sets of tiling-images consisting of large number, more than 1000, of images from large areas of specimens. However, there has been no simple and inexpensive system to efficiently select images containing mitotic cells among these images. In this paper, a classification system of chromosomal images by deep learning artificial intelligence (AI) that can be easily handled by non-data scientists was applied. With this system, models suitable for our own samples could be easily built on a Macintosh computer with Create ML. As examples, models constructed by learning using chromosome images derived from various plant species were able to classify images containing mitotic cells among samples from plant species not used for learning in addition to samples from the species used. The system also worked for cells in tissue sections and tetrads. Since this system is inexpensive and can be easily trained via deep learning using scientists' own samples, it can be used not only for chromosomal image analysis but also for analysis of other biology-related images.
    Matched MeSH terms: Artificial Intelligence
  2. Md Saleh NI, Ab Ghani H, Jilani Z
    Artif Intell Med, 2022 Oct;132:102394.
    PMID: 36207072 DOI: 10.1016/j.artmed.2022.102394
    Outbreaks of the COVID-19 pandemic caused by the SARS-CoV-2 infection that started in Wuhan, China, have quickly spread worldwide. The current situation has contributed to a dynamic rate of hospital admissions. Global efforts by Artificial Intelligence (AI) and Machine Learning (ML) communities to develop solutions to assist COVID-19-related research have escalated ever since. However, despite overwhelming efforts from the AI and ML community, many machine learning-based AI systems have been designed as black boxes. This paper proposes a model that utilizes Formal Concept Analysis (FCA) to explain a machine learning technique called Long-short Term Memory (LSTM) on a dataset of hospital admissions due to COVID-19 in the United Kingdom. This paper intends to increase the transparency of decision-making in the era of ML by using the proposed LSTM-FCA explainable model. Both LSTM and FCA are able to evaluate the data and explain the model to make the results more understandable and interpretable. The results and discussions are helpful and may lead to new research to optimize the use of ML in various real-world applications and to contain the disease.
    Matched MeSH terms: Artificial Intelligence
  3. Hamyoon H, Yee Chan W, Mohammadi A, Yusuf Kuzan T, Mirza-Aghazadeh-Attari M, Leong WL, et al.
    Eur J Radiol, 2022 Dec;157:110591.
    PMID: 36356463 DOI: 10.1016/j.ejrad.2022.110591
    PURPOSE: To develop and validate a machine learning (ML) model for the classification of breast lesions on ultrasound images.

    METHOD: In the present study, three separate data cohorts containing 1288 breast lesions from three countries (Malaysia, Iran, and Turkey) were utilized for MLmodel development and external validation. The model was trained on ultrasound images of 725 breast lesions, and validation was done separately on the remaining data. An expert radiologist and a radiology resident classified the lesions based on the BI-RADS lexicon. Thirteen morphometric features were selected from a contour of the lesion and underwent a three-step feature selection process. Five features were chosen to be fed into the model separately and combined with the imaging signs mentioned in the BI-RADS reference guide. A support vector classifier was trained and optimized.

    RESULTS: The diagnostic profile of the model with various input data was compared to the expert radiologist and radiology resident. The agreement of each approach with histopathologic specimens was also determined. Based on BI-RADS and morphometric features, the model achieved an area under the receiver operating characteristic (ROC) curve (AUC) of 0.885, which is higher than the expert radiologist and radiology resident performances with AUC of 0.814 and 0.632, respectively in all cohorts. DeLong's test also showed that the AUC of the ML protocol was significantly different from that of the expert radiologist (ΔAUCs = 0.071, 95%CI: (0.056, 0.086), P = 0.005).

    CONCLUSIONS: These results support the possible role of morphometric features in enhancing the already well-excepted classification schemes.

    Matched MeSH terms: Artificial Intelligence
  4. Huqh MZU, Abdullah JY, Wong LS, Jamayet NB, Alam MK, Rashid QF, et al.
    Int J Environ Res Public Health, 2022 Aug 31;19(17).
    PMID: 36078576 DOI: 10.3390/ijerph191710860
    OBJECTIVE: The objective of this systematic review was (a) to explore the current clinical applications of AI/ML (Artificial intelligence and Machine learning) techniques in diagnosis and treatment prediction in children with CLP (Cleft lip and palate), (b) to create a qualitative summary of results of the studies retrieved.

    MATERIALS AND METHODS: An electronic search was carried out using databases such as PubMed, Scopus, and the Web of Science Core Collection. Two reviewers searched the databases separately and concurrently. The initial search was conducted on 6 July 2021. The publishing period was unrestricted; however, the search was limited to articles involving human participants and published in English. Combinations of Medical Subject Headings (MeSH) phrases and free text terms were used as search keywords in each database. The following data was taken from the methods and results sections of the selected papers: The amount of AI training datasets utilized to train the intelligent system, as well as their conditional properties; Unilateral CLP, Bilateral CLP, Unilateral Cleft lip and alveolus, Unilateral cleft lip, Hypernasality, Dental characteristics, and sagittal jaw relationship in children with CLP are among the problems studied.

    RESULTS: Based on the predefined search strings with accompanying database keywords, a total of 44 articles were found in Scopus, PubMed, and Web of Science search results. After reading the full articles, 12 papers were included for systematic analysis.

    CONCLUSIONS: Artificial intelligence provides an advanced technology that can be employed in AI-enabled computerized programming software for accurate landmark detection, rapid digital cephalometric analysis, clinical decision-making, and treatment prediction. In children with corrected unilateral cleft lip and palate, ML can help detect cephalometric predictors of future need for orthognathic surgery.

    Matched MeSH terms: Artificial Intelligence
  5. Sikandar T, Rabbi MF, Ghazali KH, Altwijri O, Almijalli M, Ahamed NU
    Phys Eng Sci Med, 2022 Dec;45(4):1289-1300.
    PMID: 36352317 DOI: 10.1007/s13246-022-01195-3
    Unusual walk patterns may increase individuals' risks of falling. Anthropometric features of the human body, such as the body mass index (BMI), influences the walk patterns of individuals. In addition to the BMI, uneven walking surfaces may cause variations in the usual walk patterns of an individual that will potentially increase the individual's risk of falling. The objective of this study was to statistically evaluate the variations in the walk patterns of individuals belonging to two BMI groups across a wide range of walking surfaces and to investigate whether a deep learning method could classify the BMI-specific walk patterns with similar variations. Data collected by wearable inertial measurement unit (IMU) sensors attached to individuals with two different BMI were collected while walking on real-world surfaces. In addition to traditional statistical analysis tools, an advanced deep learning-based neural network was used to evaluate and classify the BMI-specific walk patterns. The walk patterns of overweight/obese individuals showed a greater correlation with the corresponding walking surfaces than the normal-weight population. The results were supported by the deep learning method, which was able to classify the walk patterns of overweight/obese (94.8 ± 4.5%) individuals more accurately than those of normal-weight (59.4 ± 23.7%) individuals. The results suggest that application of the deep learning method is more suitable for recognizing the walk patterns of overweight/obese population than those of normal-weight individuals. The findings from the study will potentially inform healthcare applications, including artificial intelligence-based fall assessment systems for minimizing the risk of fall-related incidents among overweight and obese individuals.
    Matched MeSH terms: Artificial Intelligence
  6. Martín DG, Florez SL, González-Briones A, Corchado JM
    Sensors (Basel), 2023 Jan 14;23(2).
    PMID: 36679779 DOI: 10.3390/s23020982
    The revolution generated by the Internet of Things (IoT) has radically changed the world; countless objects with remote sensing, actuation, analysis and sharing capabilities are interconnected over heterogeneous communication networks. Consequently, all of today's devices can connect to the internet and can provide valuable information for decision making. However, the data collected by different devices are in different formats, which makes it necessary to develop a solution that integrates comprehensive semantic tools to represent, integrate and acquire knowledge, which is a major challenge for IoT environments. The proposed solution addresses this challenge by using IoT semantic data to reason about actionable knowledge, combining next-generation semantic technologies and artificial intelligence through a set of cognitive components that enables easy interoperability and integration for both legacy systems and emerging technologies, such as IoT, to generate business value in terms of faster analytics and improved decision making. Thus, combining IoT environments with cognitive artificial intelligence services, COSIBAS builds an abstraction layer between existing platforms for IoT and AI technologies to enable cognitive solutions and increase interoperability across multiple domains. The resulting low-cost cross platform supports scalability and the evolution of large-scale heterogeneous systems and allows the modernization of legacy infrastructures with cognitive tools and communication mechanisms while reusing assets.
    Matched MeSH terms: Artificial Intelligence
  7. Chau RCW, Li GH, Tew IM, Thu KM, McGrath C, Lo WL, et al.
    Int Dent J, 2023 Oct;73(5):724-730.
    PMID: 37117096 DOI: 10.1016/j.identj.2023.03.007
    OBJECTIVES: Gingivitis is one of the most prevalent plaque-initiated dental diseases globally. It is challenging to maintain satisfactory plaque control without continuous professional advice. Artificial intelligence may be used to provide automated visual plaque control advice based on intraoral photographs.

    METHODS: Frontal view intraoral photographs fulfilling selection criteria were collected. Along the gingival margin, the gingival conditions of individual sites were labelled as healthy, diseased, or questionable. Photographs were randomly assigned as training or validation datasets. Training datasets were input into a novel artificial intelligence system and its accuracy in detection of gingivitis including sensitivity, specificity, and mean intersection-over-union were analysed using validation dataset. The accuracy was reported according to STARD-2015 statement.

    RESULTS: A total of 567 intraoral photographs were collected and labelled, of which 80% were used for training and 20% for validation. Regarding training datasets, there were total 113,745,208 pixels with 9,270,413; 5,711,027; and 4,596,612 pixels were labelled as healthy, diseased, and questionable respectively. Regarding validation datasets, there were 28,319,607 pixels with 1,732,031; 1,866,104; and 1,116,493 pixels were labelled as healthy, diseased, and questionable, respectively. AI correctly predicted 1,114,623 healthy and 1,183,718 diseased pixels with sensitivity of 0.92 and specificity of 0.94. The mean intersection-over-union of the system was 0.60 and above the commonly accepted threshold of 0.50.

    CONCLUSIONS: Artificial intelligence could identify specific sites with and without gingival inflammation, with high sensitivity and high specificity that are on par with visual examination by human dentist. This system may be used for monitoring of the effectiveness of patients' plaque control.

    Matched MeSH terms: Artificial Intelligence
  8. Futane A, Jadhav P, Mustafa AH, Srinivasan A, Narayanamurthy V
    Biotechnol Lett, 2024 Feb;46(1):1-17.
    PMID: 38155321 DOI: 10.1007/s10529-023-03454-z
    Metal-Organic Frameworks (MOFs) have exceptional inherent properties that make them highly suitable for diverse applications, such as catalysis, storage, optics, chemo sensing, and biomedical science and technology. Over the past decades, researchers have utilized various techniques, including solvothermal, hydrothermal, mechanochemical, electrochemical, and ultrasonic, to synthesize MOFs with tailored properties. Post-synthetic modification of linkers, nodal components, and crystallite domain size and morphology can functionalize MOFs to improve their aptamer applications. Advancements in AI and machine learning led to the development of nonporous MOFs and nanoscale MOFs for medical purposes. MOFs have exhibited promise in cancer therapy, with the successful accumulation of a photosensitizer in cancer cells representing a significant breakthrough. This perspective is focused on MOFs' use as advanced materials and systems for cancer therapy, exploring the challenging aspects and promising features of MOF-based cancer diagnosis and treatment. The paper concludes by emphasizing the potential of MOFs as a transformative technology for cancer treatment and diagnosis.
    Matched MeSH terms: Artificial Intelligence
  9. Tsoi K, Yiu K, Lee H, Cheng HM, Wang TD, Tay JC, et al.
    J Clin Hypertens (Greenwich), 2021 03;23(3):568-574.
    PMID: 33533536 DOI: 10.1111/jch.14180
    The prevalence of hypertension is increasing along with an aging population, causing millions of premature deaths annually worldwide. Low awareness of blood pressure (BP) elevation and suboptimal hypertension diagnosis serve as the major hurdles in effective hypertension management. The advent of artificial intelligence (AI), however, sheds the light of new strategies for hypertension management, such as remote supports from telemedicine and big data-derived prediction. There is considerable evidence demonstrating the feasibility of AI applications in hypertension management. A foreseeable trend was observed in integrating BP measurements with various wearable sensors and smartphones, so as to permit continuous and convenient monitoring. In the meantime, further investigations are advised to validate the novel prediction and prognostic tools. These revolutionary developments have made a stride toward the future model for digital management of chronic diseases.
    Matched MeSH terms: Artificial Intelligence
  10. Bhagat SK, Tiyasha T, Awadh SM, Tung TM, Jawad AH, Yaseen ZM
    Environ Pollut, 2021 Jan 01;268(Pt B):115663.
    PMID: 33120144 DOI: 10.1016/j.envpol.2020.115663
    Hybrid artificial intelligence (AI) models are developed for sediment lead (Pb) prediction in two Bays (i.e., Bramble (BB) and Deception (DB)) stations, Australia. A feature selection (FS) algorithm called extreme gradient boosting (XGBoost) is proposed to abstract the correlated input parameters for the Pb prediction and validated against principal component of analysis (PCA), recursive feature elimination (RFE), and the genetic algorithm (GA). XGBoost model is applied using a grid search strategy (Grid-XGBoost) for predicting Pb and validated against the commonly used AI models, artificial neural network (ANN) and support vector machine (SVM). The input parameter selection approaches redimensioned the 21 parameters into 9-5 parameters without losing their learned information over the models' training phase. At the BB station, the mean absolute percentage error (MAPE) values (0.06, 0.32, 0.34, and 0.33) were achieved for the XGBoost-SVM, XGBoost-ANN, XGBoost-Grid-XGBoost, and Grid-XGBoost models, respectively. At the DB station, the lowest MAPE values, 0.25 and 0.24, were attained for the XGBoost-Grid-XGBoost and Grid-XGBoost models, respectively. Overall, the proposed hybrid AI models provided a reliable and robust computer aid technology for sediment Pb prediction that contribute to the best knowledge of environmental pollution monitoring and assessment.
    Matched MeSH terms: Artificial Intelligence*
  11. Hammond ER, Foong AKM, Rosli N, Morbeck DE
    Hum Reprod, 2020 05 01;35(5):1045-1053.
    PMID: 32358601 DOI: 10.1093/humrep/deaa060
    STUDY QUESTION: What is the inter-observer agreement among embryologists for decision to freeze blastocysts of borderline morphology and can it be improved with a modified grading system?

    SUMMARY ANSWER: The inter-observer agreement among embryologists deciding whether to freeze blastocysts of marginal morphology was low and was not improved by a modified grading system.

    WHAT IS KNOWN ALREADY: While previous research on inter-observer variability on the decision of which embryo to transfer from a cohort of blastocysts is good, the impact of grading variability regarding decision to freeze borderline blastocysts has not been investigated. Agreement for inner cell mass (ICM) and trophectoderm (TE) grade is only fair, factors which contribute to the grade that influences decision to freeze.

    STUDY DESIGN, SIZE, DURATION: This was a prospective study involving 18 embryologists working at four different IVF clinics within a single organisation between January 2019 and July 2019.

    PARTICIPANTS/MATERIALS, SETTING, METHODS: All embryologists currently practicing blastocyst grading at a multi-site organisation were invited to participate. The survey was comprised of blastocyst images in three planes and asked (i) the likelihood of freezing and (ii) whether the blastocyst would be frozen based on visual assessment. Blastocysts varied by quality and were categorised as either top (n = 20), borderline (n = 60) or non-viable/degenerate quality (n = 20). A total of 1800 freeze decisions were assessed. To assess the impact of grading criteria on inter-observer agreement for decision to freeze, the survey was taken once when the embryologists used the Gardner criteria and again 6 months after transitioning to a modified Gardner criterion with four grades for ICM and TE. The fourth grade was introduced with the aim to promote higher levels of agreement for the clinical usability decision when the blastocyst was of marginal quality.

    MAIN RESULTS AND THE ROLE OF CHANCE: The inter-observer agreement for decision to freeze was near perfect (kappa 1.0) for top and non-viable/degenerate quality blastocysts, and this was not affected by the blastocysts grading criteria used (top quality; P = 0.330 and non-viable/degenerate quality; P = 0.18). In contrast, the cohort of borderline blastocysts received a mixed freeze rate (average 52.7%) during the first survey, indicative of blastocysts that showed uncertain viability and promoting significant disagreement for decision to freeze among the embryologists (kappa 0.304). After transitioning to a modified Gardner criteria with an additional grading tier, the average freeze rate increased (64.8%; P 

    Matched MeSH terms: Artificial Intelligence*
  12. Tiyasha T, Tung TM, Bhagat SK, Tan ML, Jawad AH, Mohtar WHMW, et al.
    Mar Pollut Bull, 2021 Sep;170:112639.
    PMID: 34273614 DOI: 10.1016/j.marpolbul.2021.112639
    Dissolved oxygen (DO) is an important indicator of river health for environmental engineers and ecological scientists to understand the state of river health. This study aims to evaluate the reliability of four feature selector algorithms i.e., Boruta, genetic algorithm (GA), multivariate adaptive regression splines (MARS), and extreme gradient boosting (XGBoost) to select the best suited predictor of the applied water quality (WQ) parameters; and compare four tree-based predictive models, namely, random forest (RF), conditional random forests (cForest), RANdom forest GEneRator (Ranger), and XGBoost to predict the changes of dissolved oxygen (DO) in the Klang River, Malaysia. The total features including 15 WQ parameters from monitoring site data and 7 hydrological components from remote sensing data. All predictive models performed well as per the features selected by the algorithms XGBoost and MARS in terms applied statistical evaluators. Besides, the best performance noted in case of XGBoost predictive model among all applied predictive models when the feature selected by MARS and XGBoost algorithms, with the coefficient of determination (R2) values of 0.84 and 0.85, respectively, nonetheless the marginal performance came up by Boruta-XGBoost model on in this scenario.
    Matched MeSH terms: Artificial Intelligence*
  13. Bhagat SK, Pyrgaki K, Salih SQ, Tiyasha T, Beyaztas U, Shahid S, et al.
    Chemosphere, 2021 Aug;276:130162.
    PMID: 34088083 DOI: 10.1016/j.chemosphere.2021.130162
    Copper (Cu) ion in wastewater is considered as one of the crucial hazardous elements to be quantified. This research is established to predict copper ions adsorption (Ad) by Attapulgite clay from aqueous solutions using computer-aided models. Three artificial intelligent (AI) models are developed for this purpose including Grid optimization-based random forest (Grid-RF), artificial neural network (ANN) and support vector machine (SVM). Principal component analysis (PCA) is used to select model inputs from different variables including the initial concentration of Cu (IC), the dosage of Attapulgite clay (Dose), contact time (CT), pH, and addition of NaNO3 (SN). The ANN model is found to predict Ad with minimum root mean square error (RMSE = 0.9283) and maximum coefficient of determination (R2 = 0.9974) when all the variables (i.e., IC, Dose, CT, pH, SN) were considered as input. The prediction accuracy of Grid-RF model is found similar to ANN model when a few numbers of predictors are used. According to prediction accuracy, the models can be arranged as ANN-M5> Grid-RF-M5> Grid-RF-M4> ANN-M4> SVM-M4> SVM-M5. Overall, the applied statistical analysis of the results indicates that ANN and Grid-RF models can be employed as a computer-aided model for monitoring and simulating the adsorption from aqueous solutions by Attapulgite clay.
    Matched MeSH terms: Artificial Intelligence*
  14. Nordin N, Zainol Z, Mohd Noor MH, Chan LF
    Artif Intell Med, 2022 10;132:102395.
    PMID: 36207078 DOI: 10.1016/j.artmed.2022.102395
    BACKGROUND: Early detection and prediction of suicidal behaviour are key factors in suicide control. In conjunction with recent advances in the field of artificial intelligence, there is increasing research into how machine learning can assist in the detection, prediction and treatment of suicidal behaviour. Therefore, this study aims to provide a comprehensive review of the literature exploring machine learning techniques in the study of suicidal behaviour prediction.

    METHODS: A search of four databases was conducted: Web of Science, PubMed, Dimensions, and Scopus for research papers dated between January 2016 and September 2021. The search keywords are 'data mining', 'machine learning' in combination with 'suicidal behaviour', 'suicide', 'suicide attempt', 'suicidal ideation', 'suicide plan' and 'self-harm'. The studies that used machine learning techniques were synthesized according to the countries of the articles, sample description, sample size, classification tasks, number of features used to develop the models, types of machine learning techniques, and evaluation of performance metrics.

    RESULTS: Thirty-five empirical articles met the criteria to be included in the current review. We provide a general overview of machine learning techniques, examine the feature categories, describe methodological challenges, and suggest areas for improvement and research directions. Ensemble prediction models have been shown to be more accurate and useful than single prediction models.

    CONCLUSIONS: Machine learning has great potential for improving estimates of future suicidal behaviour and monitoring changes in risk over time. Further research can address important challenges and potential opportunities that may contribute to significant advances in suicide prediction.

    Matched MeSH terms: Artificial Intelligence*
  15. Santos JC, Wong JHD, Pallath V, Ng KH
    Phys Eng Sci Med, 2021 Sep;44(3):833-841.
    PMID: 34283393 DOI: 10.1007/s13246-021-01036-9
    Artificial intelligence (AI) is an innovative tool with the potential to impact medical physicists' clinical practices, research, and the profession. The relevance of AI and its impact on the clinical practice and routine of professionals in medical physics were evaluated by medical physicists and researchers in this field. An online survey questionnaire was designed for distribution to professionals and students in medical physics around the world. In addition to demographics questions, we surveyed opinions on the role of AI in medical physicists' practices, the possibility of AI threatening/disrupting the medical physicists' practices and career, the need for medical physicists to acquire knowledge on AI, and the need for teaching AI in postgraduate medical physics programmes. The level of knowledge of medical physicists on AI was also consulted. A total of 1019 respondents from 94 countries participated. More than 85% of the respondents agreed that AI would play an essential role in medical physicists' practices. AI should be taught in the postgraduate medical physics programmes, and that more applications such as quality control (QC), treatment planning would be performed by AI. Half of the respondents thought AI would not threaten/disrupt the medical physicists' practices. AI knowledge was mainly acquired through self-taught and work-related activities. Nonetheless, many (40%) reported that they have no skill in AI. The general perception of medical physicists was that AI is here to stay, influencing our practices. Medical physicists should be prepared with education and training for this new reality.
    Matched MeSH terms: Artificial Intelligence*
  16. Dhanapal ACTA, Wuni R, Ventura EF, Chiet TK, Cheah ESG, Loganathan A, et al.
    Nutrients, 2022 Dec 01;14(23).
    PMID: 36501140 DOI: 10.3390/nu14235108
    Nutritional epidemiological studies show a triple burden of malnutrition with disparate prevalence across the coexisting ethnicities in Malaysia. To tackle malnutrition and related conditions in Malaysia, research in the new and evolving field of nutrigenetics and nutrigenomics is essential. As part of the Gene-Nutrient Interactions (GeNuIne) Collaboration, the Nutrigenetics and Nutrigenomics Research and Training Unit (N2RTU) aims to solve the malnutrition paradox. This review discusses and presents a conceptual framework that shows the pathway to implementing and strengthening precision nutrition strategies in Malaysia. The framework is divided into: (1) Research and (2) Training and Resource Development. The first arm collects data from genetics, genomics, transcriptomics, metabolomics, gut microbiome, and phenotypic and lifestyle factors to conduct nutrigenetic, nutrigenomic, and nutri-epigenetic studies. The second arm is focused on training and resource development to improve the capacity of the stakeholders (academia, healthcare professionals, policymakers, and the food industry) to utilise the findings generated by research in their respective fields. Finally, the N2RTU framework foresees its applications in artificial intelligence and the implementation of precision nutrition through the action of stakeholders.
    Matched MeSH terms: Artificial Intelligence*
  17. Singh NK, Yadav M, Singh V, Padhiyar H, Kumar V, Bhatia SK, et al.
    Bioresour Technol, 2023 Feb;369:128486.
    PMID: 36528177 DOI: 10.1016/j.biortech.2022.128486
    Artificial intelligence (AI) and machine learning (ML) are currently used in several areas. The applications of AI and ML based models are also reported for monitoring and design of biological wastewater treatment systems (WWTS). The available information is reviewed and presented in terms of bibliometric analysis, model's description, specific applications, and major findings for investigated WWTS. Among the applied models, artificial neural network (ANN), fuzzy logic (FL) algorithms, random forest (RF), and long short-term memory (LSTM) were predominantly used in the biological wastewater treatment. These models are tested by predictive control of effluent parameters such as biological oxygen demand (BOD), chemical oxygen demand (COD), nutrient parameters, solids, and metallic substances. Following model performance indicators were mainly used for the accuracy analysis in most of the studies: root mean squared error (RMSE), mean square error (MSE), and determination coefficient (DC). Besides, outcomes of various models are also summarized in this study.
    Matched MeSH terms: Artificial Intelligence*
  18. Akhtar N, Khan N, Qayyum S, Qureshi MI, Hishan SS
    Front Public Health, 2022;10:869793.
    PMID: 36187628 DOI: 10.3389/fpubh.2022.869793
    The use of technology in the healthcare sector and its medical practices, from patient record maintenance to diagnostics, has significantly improved the health care emergency management system. At that backdrop, it is crucial to explore the role and challenges of these technologies in the healthcare sector. Therefore, this study provides a systematic review of the literature on technological developments in the healthcare sector and deduces its pros and cons. We curate the published studies from the Web of Science and Scopus databases by using PRISMA 2015 guidelines. After mining the data, we selected only 55 studies for the systematic literature review and bibliometric analysis. The study explores four significant classifications of technological development in healthcare: (a) digital technologies, (b) artificial intelligence, (c) blockchain, and (d) the Internet of Things. The novel contribution of current study indicate that digital technologies have significantly influenced the healthcare services such as the beginning of electronic health record, a new era of digital healthcare, while robotic surgeries and machine learning algorithms may replace practitioners as future technologies. However, a considerable number of studies have criticized these technologies in the health sector based on trust, security, privacy, and accuracy. The study suggests that future studies, on technological development in healthcare services, may take into account these issues for sustainable development of the healthcare sector.
    Matched MeSH terms: Artificial Intelligence*
  19. Matin SS, Pradhan B
    Sensors (Basel), 2021 Jun 30;21(13).
    PMID: 34209169 DOI: 10.3390/s21134489
    Building-damage mapping using remote sensing images plays a critical role in providing quick and accurate information for the first responders after major earthquakes. In recent years, there has been an increasing interest in generating post-earthquake building-damage maps automatically using different artificial intelligence (AI)-based frameworks. These frameworks in this domain are promising, yet not reliable for several reasons, including but not limited to the site-specific design of the methods, the lack of transparency in the AI-model, the lack of quality in the labelled image, and the use of irrelevant descriptor features in building the AI-model. Using explainable AI (XAI) can lead us to gain insight into identifying these limitations and therefore, to modify the training dataset and the model accordingly. This paper proposes the use of SHAP (Shapley additive explanation) to interpret the outputs of a multilayer perceptron (MLP)-a machine learning model-and analyse the impact of each feature descriptor included in the model for building-damage assessment to examine the reliability of the model. In this study, a post-event satellite image from the 2018 Palu earthquake was used. The results show that MLP can classify the collapsed and non-collapsed buildings with an overall accuracy of 84% after removing the redundant features. Further, spectral features are found to be more important than texture features in distinguishing the collapsed and non-collapsed buildings. Finally, we argue that constructing an explainable model would help to understand the model's decision to classify the buildings as collapsed and non-collapsed and open avenues to build a transferable AI model.
    Matched MeSH terms: Artificial Intelligence*
  20. Federspiel F, Mitchell R, Asokan A, Umana C, McCoy D
    BMJ Glob Health, 2023 May;8(5).
    PMID: 37160371 DOI: 10.1136/bmjgh-2022-010435
    While artificial intelligence (AI) offers promising solutions in healthcare, it also poses a number of threats to human health and well-being via social, political, economic and security-related determinants of health. We describe three such main ways misused narrow AI serves as a threat to human health: through increasing opportunities for control and manipulation of people; enhancing and dehumanising lethal weapon capacity and by rendering human labour increasingly obsolescent. We then examine self-improving 'artificial general intelligence' (AGI) and how this could pose an existential threat to humanity itself. Finally, we discuss the critical need for effective regulation, including the prohibition of certain types and applications of AI, and echo calls for a moratorium on the development of self-improving AGI. We ask the medical and public health community to engage in evidence-based advocacy for safe AI, rooted in the precautionary principle.
    Matched MeSH terms: Artificial Intelligence*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links