The therapeutic potential of Cassia surattensis in reducing free radical-induced oxidative stress and inflammation particularly in hepatic diseases was evaluated in this study. The polyphenol rich C. surattensis seed extract showed good in vitro antioxidant. C. surattensis seed extract contained total phenolic content of 100.99 mg GAE/g dry weight and there was a positive correlation (r > 0.9) between total phenolic content and the antioxidant activities of the seed extract. C. surattensis seed extract significantly (p < 0.05) reduced the elevated levels of serum liver enzymes (ALT, AST, and ALP) and relative liver weight in paracetamol-induced liver hepatotoxicity in mice. Moreover, the extract significantly (p < 0.05) enhanced the antioxidant enzymes and glutathione (GSH) contents in the liver tissues, which led to decrease of malondialdehyde (MDA) level. The histopathological examination showed the liver protective effect of C. surattensis seed extract against paracetamol-induced histoarchitectural alterations by maximum recovery in the histoarchitecture of the liver tissue. Furthermore, histopathological observations correspondingly supported the biochemical assay outcome, that is, the significant reduction in elevated levels of serum liver enzymes. In conclusion, C. surattensis seed extract enhanced the in vivo antioxidant status and showed antihepatotoxic activities, which is probably due to the presence of phenolic compounds.
A study was conducted to compare secondary metabolites and antioxidant activity of Labisia pumila Benth (Kacip Fatimah) in response to two sources of fertilizer [i.e., organic (chicken dung; 10% N:10% P₂O₅:10% K₂O) and inorganic fertilizer (NPK green; 15% N, 15% P₂O₅, 15% K₂O)] under different N rates of 0, 90, 180 and 270 kg N/ha. The experiment was arranged in a randomized complete block design replicated three times. At the end of 15 weeks, it was observed that the application of organic fertilizer enhanced the production of total phenolics, flavonoids, ascorbic acid, saponin and gluthathione content in L. pumila, compared to the use of inorganic fertilizer. The nitrate content was also reduced under organic fertilization. The application of nitrogen at 90 kg N/ha improved the production of secondary metabolites in Labisia pumila. Higher rates in excess of 90 kg N/ha reduced the level of secondary metabolites and antioxidant activity of this herb. The DPPH and FRAP activity was also highest at 90 kg N/ha. The results indicated that the use of chicken dung can enhance the production of secondary metabolites and improve antioxidant activity of this herb.
This study involves adaptation of bulk or sequential technique to load multiple flavonoids in a single phytosome, which can be termed as "flavonosome". Three widely established and therapeutically valuable flavonoids, such as quercetin (Q), kaempferol (K), and apigenin (A), were quantified in the ethyl acetate fraction of Moringa oleifera leaves extract and were commercially obtained and incorporated in a single flavonosome (QKA-phosphatidylcholine) through four different methods of synthesis - bulk (M1) and serialized (M2) co-sonication and bulk (M3) and sequential (M4) co-loading. The study also established an optimal formulation method based on screening the synthesized flavonosomes with respect to their size, charge, polydispersity index, morphology, drug-carrier interaction, antioxidant potential through in vitro 1,1-diphenyl-2-picrylhydrazyl kinetics, and cytotoxicity evaluation against human hepatoma cell line (HepaRG). Furthermore, entrapment and loading efficiency of flavonoids in the optimal flavonosome have been identified. Among the four synthesis methods, sequential loading technique has been optimized as the best method for the synthesis of QKA-phosphatidylcholine flavonosome, which revealed an average diameter of 375.93±33.61 nm, with a zeta potential of -39.07±3.55 mV, and the entrapment efficiency was >98% for all the flavonoids, whereas the drug-loading capacity of Q, K, and A was 31.63%±0.17%, 34.51%±2.07%, and 31.79%±0.01%, respectively. The in vitro 1,1-diphenyl-2-picrylhydrazyl kinetics of the flavonoids indirectly depicts the release kinetic behavior of the flavonoids from the carrier. The QKA-loaded flavonosome had no indication of toxicity toward human hepatoma cell line as shown by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide result, wherein even at the higher concentration of 200 µg/mL, the flavonosomes exert >85% of cell viability. These results suggest that sequential loading technique may be a promising nanodrug delivery system for loading multiflavonoids in a single entity with sustained activity as an antioxidant, hepatoprotective, and hepatosupplement candidate.
The present study was aimed to investigate the antioxidant and cytotoxicity activity against HCT-15 of fucoidan from Sargassum cinereum. Purification of fucoidan was done by DEAE cellulose and dialysis. Physicochemical characterization of fucoidan was analysed by calorimetric assay, FT-IR, HPLC and NMR. The extracted fucoidan contains 65.753% of fucose and 3.7±1.54% of sulphate respectively. HPLC results showed that the fucoidan contains the monosaccharide composition such as fucose, galactose, mannose and xylose. Antioxidant effect of fucoidan in Sargassum Cinereum was determined by DPPH. The maximum DPPH activity was found at the concentration of 100μg, where as the crude extract showed the scavenging activity was 63.58±0.56%. Cytotoxicity effect was done by MTT assay. Fucoidan extract caused about 50% of cell death after 24h of incubation with 75±0.9037μg/ml against HCT-15.
Ajuga bracteosa Wall. ex Benth. is an endangered medicinal herb traditionally used against different ailments. The present study aimed to create new insight into the fundamental mechanisms of genetic transformation and the biological activities of this plant. We transformed the A. bracteosa plant with rol genes of Agrobacterium rhizogenes and raised the regenerants from the hairy roots. These transgenic regenerants were screened for in vitro antioxidant activities, a range of in vivo assays, elemental analysis, polyphenol content, and different phytochemicals found through HPLC. Among 18 polyphenolic standards, kaempferol was most abundant in all transgenic lines. Furthermore, transgenic line 3 (ABRL3) showed maximum phenolics and flavonoids content among all tested plant extracts. ABRL3 also demonstrated the highest total antioxidant capacity (8.16 ± 1 μg AAE/mg), total reducing power, (6.60 ± 1.17 μg AAE/mg), DPPH activity (IC50 = 59.5 ± 0.8 μg/mL), hydroxyl ion scavenging (IC50 = 122.5 ± 0.90 μg/mL), and iron-chelating power (IC50 = 154.8 ± 2 μg/mL). Moreover, transformed plant extracts produced significant analgesic, anti-inflammatory, anticoagulant, and antidepressant activities in BALB/c mice models. In conclusion, transgenic regenerants of A. bracteosa pose better antioxidant and pharmacological properties under the effect of rol genes as compared to wild-type plants.
Garcinia parvifolia belongs to the same family as mangosteen (Garcinia mangostana), which is known locally in Sabah as "asam kandis" or cherry mangosteen. The present study was conducted to determine the phytochemicals content (total phenolic, flavonoid, anthocyanin, and carotenoid content) and antioxidant and acetylcholinesterase inhibition activity of the flesh and peel of G. parvifolia. All samples were freeze-dried and extracted using 80% methanol and distilled water. For the 80% methanol extract, the flesh of G. parvifolia displayed higher phenolic and flavonoid contents than the peel, with values of 7.2 ± 0.3 mg gallic acid equivalent (GAE)/g and 5.9 ± 0.1 mg rutin equivalent (RU)/g, respectively. Anthocyanins were detected in the peel part of G. parvifolia but absent in the flesh. The peel of G. parvifolia displayed higher total carotenoid content as compared to the flesh part with the values of 17.0 ± 0.3 and 3.0 ± 0.0 mg β-carotene equivalents (BC)/100 g, respectively. The free-radical scavenging, ferric reducing, and acetylcholinesterase inhibition effect of the flesh were higher as compared to the peel in both extracts. These findings suggested that the edible part of G. parvifolia fruit has a potential as a natural source of antioxidant and anti-Alzheimer's agents.
In traditional medicine, the leaves, flowers, barks and roots of Muntingia calabura L. (Muntingiaceae) have been employed as a treatment for various ailments including dyspepsia and to relieve pain caused by gastritis and peptic ulcer disease. The methanolic extract of Muntingia calabura leaves (MEMC) has been proven in the previous study to possess significant antiulcer activity. In this study, we attempted to determine the prophylactic effect of the fractions obtained from MEMC against ethanol-induced gastric lesion in rats and the involvement of antioxidants and anti-inflammatory mediators.
The bark of Litsea costalis affords two new compounds named 4,4'-diallyl-5,5'-dimethoxy-[1,1'-biphennyl]-2,2'-diol, biseugenol A (1) and 2,2'-oxybis (4-allyl-1-methoxybenzene), biseugenol B (2) along with two known compounds (3-4), namely 5-methoxy-2-Hydroxy Benzaldehyde (3), and (E)-4-styrylphenol (4). The structures of 1 and 2 were determined using 1D and 2D NMR data. Also, the IR and NMR data were combined with quantum chemical calculations in the DFT approach using the hybrid B3LYP exchange-correlation function to confirm the structures of the compounds. Compounds showed fairly potent anticancer activity against cell lines and antioxidant (DPPH).
A new resveratrol dimer, acuminatol (1), was isolated along with five known compounds from the acetone extract of the stem bark of Shorea acuminata. Their structures and stereochemistry were determined by spectroscopic methods, which included the extensive use of 2D NMR techniques. All isolated compounds were evaluated for their antioxidant activity using the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity (RSA) and the β-carotene-linoleic acid (BCLA) assays, and compared with those of the standards of ascorbic acid (AscA) and butylated hydroxytoluene (BHT). All compounds tested exhibited good to moderate antioxidant activity in the DPPH assay (IC₅₀s 0.84 to 10.06 mM) and displayed strong inhibition of β-carotene oxidation (IC₅₀s 0.10 to 0.22 mM). The isolated compounds were evaluated on the Vero cell line and were found to be non-cytotoxic with LC₅₀ values between 161 to 830 µM.
A sequential solvent extraction scheme was employed for the extraction of antioxidant compounds from kenaf (Hibiscus cannabinus L.) seeds. Yield of extracts varied widely among the solvents and was the highest for hexane extract (16.6% based on dry weight basis), while water extract exhibited the highest total phenolic content (18.78 mg GAE/g extract), total flavonoid content (2.49 mg RE/g extract), and antioxidant activities (p < 0.05). DPPH and hydroxyl radical scavenging, β-carotene bleaching, metal chelating activity, ferric thiocyanate and thiobarbituric acid reactive substances assays were employed to comprehensively assess the antioxidant potential of different solvent extracts prepared sequentially. Besides water, methanolic extract also exhibited high retardation towards the formation of hydroperoxides and thiobarbituric acid reactive substances in the total antioxidant activity tests (p < 0.05). As conclusion, water and methanol extracts of kenaf seed may potentially serve as new sources of antioxidants for food and nutraceutical applications.
The aim of the study was to investigate the in vitro antioxidant properties Moringa oleifera Lam. (MO) extracts and its curative role in acetaminophen (APAP)-induced toxic liver injury in rats caused by oxidative damage. The total phenolic content and antioxidant properties of hydroethanolic extracts of different MO edible parts were investigated by employing an established in vitro biological assay. In the antihepatotoxic study, either flowers or leaves extract (200 mg/kg or 400 mg/kg, i.p) were administered an hour after APAP administration, respectively. N-Acetylcysteine was used as the positive control against APAP-induced hepatotoxicity. The levels of liver markers such as alanine aminotransferase (ALT) and the levels of oxidative damage markers including malondialdehyde (MDA), 4-hydroxynonenal (4-HNE) protein adduct, reduced glutathione (GSH), superoxide dismutase (SOD) and catalase (CAT) were analysed and compared between experimental groups. Among MO edible parts the flower extracts contain the highest total phenolic content and antioxidant capacity, followed by leaves extract. The oxidative marker MDA, as well as 4-HNE protein adduct levels were elevated and GSH, SOD and CAT were significantly decreased in groups treated with hepatotoxin. The biochemical liver tissue oxidative markers measured in the rats treated with MO flowers and leaves hydroethanolic extracts showed a significant (p < 0.05) reduction in the severity of the liver damage. The results of this study strongly indicate the therapeutic properties of MO hydroethanolic extracts against acute liver injury and thereby scientifically support its traditional use.
The antioxidant activity of two synthesized coumarins namely, N-(4,7-dioxo-2- phenyl-1,3-oxazepin-3(2H,4H,7H)-yl)-2-(2-oxo-2H-chromen-4-yloxy)acetamide 5 and N-(4-oxo-2-phenylthiazolidin-3-yl)-2-(2-oxo-2H-chromen-4-yloxy)acetamide 6 were studied with the DPPH, hydrogen peroxide and nitric oxide radical methods and compared with the known antioxidant ascorbic acid. Compounds 5 and 6 were synthesized in a good yield from the addition reaction of maleic anhydride or mercaptoacetic acid to compound 4, namely N'-benzylidene-2-(2-oxo-2H-chromen-4-yloxy)acetohydrazide. Compound 4 was synthesized by the condensation of compound 3, namely 2-(2-oxo-2H-chromen-4-yloxy) acetohydrazide, with benzaldehyde. Compound 3, however, was synthesized from the addition of hydrazine to compound 2, namely ethyl 2-(2-oxo-2H-chromen-4-yloxy)acetate, which was synthesized from the reaction of ethyl bromoacetate with 4-hydroxycoumarin 1. Structures for the synthesized coumarins 2-6 are proposed on the basis of spectroscopic evidence.
Peperomia pellucida leaf extract was characterized for its anticancer, antimicrobial, antioxidant activities, and chemical compositions. Anticancer activity of P. pellucida leaf extract was determined through Colorimetric MTT (tetrazolium) assay against human breast adenocarcinoma (MCF-7) cell line and the antimicrobial property of the plant extract was revealed by using two-fold broth micro-dilution method against 10 bacterial isolates. Antioxidant activity of the plant extract was then characterized using α, α-diphenyl-β-picrylhydrazyl (DPPH) radical scavenging method and the chemical compositions were screened and identified using gas chromatography-mass spectrometry (GC-MS). The results of present study indicated that P. pellucida leaf extract possessed anticancer activities with half maximal inhibitory concentration (IC(50)) of 10.4 ± 0.06 µg/ml. The minimum inhibitory concentration (MIC) values were ranged from 31.25 to 125 mg/l in which the plant extract was found to inhibit the growth of Edwardsiella tarda, Escherichia coli, Flavobacterium sp., Pseudomonas aeruginosa and Vibrio cholerae at 31.25 mg/l; Klebsiella sp., Aeromonas hydrophila and Vibrio alginolyticus at 62.5 mg/l; and it was able to control the growth of Salmonella sp. and Vibrio parahaemolyticus at 125 mg/l. At the concentration of 0.625 ppt, the plant extract was found to inhibit 30% of DPPH, free radical. Phytol (37.88%) was the major compound in the plant extract followed by 2-Naphthalenol, decahydro- (26.20%), Hexadecanoic acid, methyl ester (18.31%) and 9,12-Octadecadienoic acid (Z,Z)-, methyl ester (17.61%). Findings from this study indicated that methanol extract of P. pellucida leaf possessed vast potential as medicinal drug especially in breast cancer treatment.
Elaeocarpus floribundus is higher plant that has been used as traditional medicine for treating several diseases. There is no previous report on phytochemicals and bioactivity studies of this species. In this investigation, triterpenoids friedelin, epifriedelanol and β-sitosterol were isolated from its leaves and stem bark. Determination of total phenolic content of methanolic extract of leaves and stem bark was carried out using Folin-Ciocalteu reagent. All extracts and isolated compounds were subjected to screening of antioxidant activity using DPPH free radical scavenging method and cytotoxic activities by MTT assay towards human T4 lymphoblastoid (CEM-SS) and human cervical (HeLa) cancer cells. In the total phenolic content determination, methanolic extract of leaves gave higher value of 503.08±16.71 mg GAE/g DW than stem bark with value of 161.5±24.81 mg GAE/g DW. Polar extracts of leaves and stem bark possessed promising antioxidant activity with methanol extract of stem bark exhibited strongest activity with IC50 value of 7.36±0.01 μg/ml. In the cytotoxic activity assay, only chloroform extract of leaves showed significant activity with IC50 value of 25.6±0.06 μg/ml against CEM-SS cancer cell, while friedelin and epifriedelanol were found to be active against the two cancer cells with IC50 values ranging from 3.54 to 11.45 μg/ml.
Phytochemicals investigation on rhizomes of Alpinia mutica has afforded five compounds namely 5,6-dehydrokawain (1), flavokawin B (2), pinostrobin (3) and pinocembrin (4) together with β-sitosterol (5). All crude extracts of the plant demonstrated strong cytotoxicity against CEMss (human T4 lymphoblastoid) cancer cells with IC50 values less than 19 μg/mL, while flavokawin B (2) was the most cytotoxic isolate with IC50 value 1.86±0.37 μg/mL. Most of the crude extracts and isolated compounds showed weak activity in antimicrobial and diphenylpicrylhydrazyl (DPPH) radical scavenging activity tests.
This study was designed to investigate the antioxidant and antimicrobial activities of the essential oils from Piper officinarum C. DC. GC and GC/MS analysis of the leaf and stem oils showed forty one components, representing 85.6% and 93.0% of the oil, respectively. The most abundant components in the leaf oil were beta-caryophyllene (11.2%), alpha-pinene (9.3%), sabinene (7.6%), beta-selinene (5.3%) and limonene (4.6%), while beta-caryophyllene (10.9%), alpha-phellandrene (9.3%), linalool (6.9%), limonene (6.7%) and alpha-pinene (5.0%) were the main components of the stem oil. The antioxidant activities were determined by using complementary tests: namely beta-carotene-linoleic acid, DPPH radical scavenging and total phenolic assays. The stems oil showed weak activity (IC50 = 777.4 microg/mL) in the DPPH system, but showed moderate lipid peroxidation inhibition in the beta-carotene-linoleic acid system (88.9 +/- 0.35%) compared with BHT (95.5 +/- 0.30%). Both oils showed weak activity against P. aeruginosa and E. coli with M IC values of 250 microg/mL.
Context Dodonaea viscosa (L.) Jacq (Sapindaceae) has been used in traditional medicine as antimalarial, antidiabetic and antibacterial agent, but further investigations are needed. Objective This study determines the antioxidant and anticholinesterase activities of six compounds (1-6) and two crystals (1A and 3A) isolated from D. viscosa, and discusses their structure-activity relationships. Materials and methods Antioxidant activity was evaluated using six complementary tests, i.e., β-carotene-linoleic acid; DPPH(•), ABTS(•+), superoxide scavenging, CUPRAC and metal chelating assays. Anticholinesterase activity was performed using the Elman method. Results Clerodane diterpenoids (1 and 2) and phenolics (3-6) - together with three crystals (1A, 3A and 7A) - were isolated from the aerial parts of D. viscosa. Compound 3A exhibited good antioxidant activity in DPPH (IC50: 27.44 ± 1.06 μM), superoxide (28.18 ± 1.35% inhibition at 100 μM) and CUPRAC (A0.5: 35.89 ± 0.09 μM) assays. Compound 5 (IC50: 11.02 ± 0.02 μM) indicated best activity in ABTS assay, and 6 (IC50: 14.30 ± 0.18 μM) in β-carotene-linoleic acid assay. Compounds 1 and 3 were also obtained in the crystal (1A and 3A) form. Both crystals showed antioxidant activity. Furthermore, crystal 3A was more active than 3 in all activity tests. Phenol 6 possessed moderate anticholinesterase activity against acetylcholinesterase and butyrylcholinesterase enzymes (IC50 values: 158.14 ± 1.65 and 111.60 ± 1.28 μM, respectively). Discussion and conclusion This is the first report on antioxidant and anticholinesterase activities of compounds 1, 2, 5, 6, 1A and 3A, and characterisation of 7A using XRD. Furthermore, the structure-activity relationships are also discussed in detail for the first time.
Inhibition of intestinal α-amylase and α-glucosidase is an important strategy to regulate diabetes mellitus (DM). Antioxidants from plants are widely regarded in the prevention of diabetes. Fruits of Elettaria cardamomum (L.) Maton (Zingiberaceae) and Piper cubeba L. f. (Piperaceae) and flowers of Plumeria rubra L. (Apocynaceae) are traditionally used to cure DM in different countries. However, the role of these plants has been grossly under reported and is yet to receive proper scientific evaluation with respect to understand their traditional role in the management of diabetes especially as digestive enzymes inhibitors. Hence, methanol and aqueous extracts of the aforementioned plants were evaluated for their in vitro α-glucosidase and α-amylase inhibition at 1 mg/mL and quantification of their antioxidant properties (DPPH, FRAP tests, total phenolic and total flavonoids contents). In vitro optimization studies for the extracts were also performed to enhance in vitro biological activities. The % inhibition of α-glucosidase by the aqueous extracts of the fruits of E. cardamomum, P. cubeba and flowers of P. rubra were 10.41 (0.03), 95.19 (0.01), and -2.92 (0.03), while the methanol extracts exhibited % inhibition 13.73 (0.02), 92.77 (0.01), and -0.98 (0.01), respectively. The % inhibition of α-amylase by the aqueous extracts were 82.99 (0.01), 64.35 (0.01), and 20.28 (0.02), while the methanol extracts displayed % inhibition 39.93 (0.01), 31.06 (0.02), and 39.40 (0.01), respectively. Aqueous extracts displayed good in vitro antidiabetic and antioxidant activities. Moreover, in vitro optimization experiments helped to increase the α-glucosidase inhibitory activity of E. cardamomum. Our findings further justify the traditional claims of these plants as folk medicines to manage diabetes, however, through digestive enzymes inhibition effect.
In this study, a new series of sulfonamides derivatives was synthesized and their inhibitory effects on DPPH and jack bean urease were evaluated. The in silico studies were also applied to ascertain the interactions of these molecules with active site of the enzyme. Synthesis was initiated by the nucleophilic substitution reaction of 2-(4-methoxyphenyl)-1-ethanamine (1: ) with 4-(acetylamino)benzenesulfonyl chloride (2): in aqueous sodium carbonate at pH 9. Precipitates collected were washed and dried to obtain the parent molecule, N-(4-{[(4-methoxyphenethyl)amino]sulfonyl}phenyl)acetamide (3): . Then, this parent was reacted with different alkyl/aralkyl halides, (4A-M: ), using dimethylformamide (DMF) as solvent and LiH as an activator to produce a series of new N-(4-{[(4-methoxyphenethyl)-(substituted)amino]sulfonyl}phenyl)acetamides (5A-M: ). All the synthesized compounds were characterized by IR, EI-MS, 1H-NMR, 13C-NMR and CHN analysis data. All of the synthesized compounds showed higher urease inhibitory activity than the standard thiourea. The compound 5 F: exhibited very excellent enzyme inhibitory activity with IC50 value of 0.0171±0.0070 µM relative to standard thiourea having IC50 value of 4.7455±0.0546 µM. Molecular docking studies suggested that ligands have good binding energy values and bind within the active region of taget protein. Chemo-informatics properties were evaluated by computational approaches and it was found that synthesized compounds mostly obeyed the Lipinski' rule.
A high-performance thin-layer chromatography (HPTLC) method combined with effect-directed-analysis (EDA) was developed to screen the antioxidant, neuroprotective and antidiabetic effects in essential oils derived from lavender flower, lemon myrtle, oregano, peppermint, sage, and rosemary leaves (Lamiaceae family). HPTLC hyphenated with microchemical (DPPH•, p-anisaldehyde, and ferric chloride) derivatizations, was used to evaluate antioxidant activity, presence of phytosterols and terpenoids, and polyphenolic content, while the combination with biochemical (α-amylase and acetylcholine esterase (AChE) enzymatic) derivatizations was used to asses α-amylase and AChE inhibitory activities. The superior antioxidant activity of oregano leaf extract is attributed to the presence of high levels of aromatic compounds, like polyphenolic acids. The strongest α-amylase inhibition was observed in lemon myrtle and rosemary plus extracts due to the presence of monoterpenes. Rosemary and sage extracts exhibit the highest AChE inhibition activity, with 1 μL essential oils being more potent than the recommended daily dose of donepezil. This superior neuroprotection was attributed to the presences of di- and triterpenes that displayed strong AChE inhibition and antioxidant potential in DPPH• free radical assay. Antioxidant activity was related to phenolic content (R = 0.49), while α-amylase inhibitory activity was positively related to antioxidant activity (R = 0.20) and terpenoid/sterol content (R = 0.31). AChE inhibitory activity was correlated (R = 0.80) to the combined effect of phenolics and terpenoids. Thus, the superior AChE inhibitory and neuroprotection potential of rosemary and sage essential oils could be attributed to joint effects of main phenolic and terpene constituents. The hyphenated HPTLC method provided rapid bioanalytical profiling of highly complex essential oil samples.