Displaying publications 41 - 60 of 284 in total

Abstract:
Sort:
  1. Rudhziah S, Muda N, Ibrahim S, Rahman A, Mohamed N
    Sains Malaysiana, 2011;40:1179-1186.
    In the present work, polymer electrolytes of poly(vinylidene fluoride co-hexafluoroproplyne) (PVDF-HFP) and PVDF-HFP/poly(ethyl methacrylate) (PVDF-HFP/PEMA) blend complexed with different concentrations of ammonium triflate (NH4CF3SO3) were prepared and characterized. The structural and thermal properties of the electrolytes were studied by XRD and DSC while the electrical properties were investigated by impedance spectroscopy. Ionic transference number measurements were done by D.C polarization technique. The results of these study showed that the PVDF-HFP/PEMA based electrolytes exhibit higher ionic conductivity as compared to PVDF-HFP based electrolytes. This could be attributed to the higher degree of amorphicity in the PVDF-HFP/PEMA based electrolytes. The results of ionic transference number measurements showed that the charge transport in these electrolytes was mainly due to ions and only negligible contribution comes from electrons.
    Matched MeSH terms: Electrons
  2. Nor Hayati Muhammad, Ibrahim Abdullah, Dahlan Mohd
    Sains Malaysiana, 2011;40:1179-1186.
    The effects of HVA-2 on radiation-induced cross-linkings in 60/40 natural rubber/ linear low density polyethylene (NR/LLDPE) blends was studied. NR/LLDPE was irradiated by using a 3.0 MeV electron beam machine with doses ranging from 0 to 250 kGy. Results showed that under the irradiation employed, the blends NR/LLDPE were cross-linked by the electron beam irradiation. The presence of HVA-2 in the blends caused the optimum dose to decrease and the blends to exhibit higher tensile properties. Further, within the dose range studied, the degradation caused by electron beam irradiation was found to be minimal. The optimized processing conditions were 120oC, 50 rpm rotor speed and 13 min processing time. The gel content, tensile strength, elongation at break, hardness and impact test studies were used to follow the irradiation-induced cross-linkings in the blend. For blends of 60/40 NR/LLDPE with 2.0 phr HVA-2, the optimum tensile strength and dose, were 19 MPa and 100 kGy, respectively. Blends of 60/40 NR/LLDPE without HVA-2, the optimum tensile strength and dose were 17.2 MPa and 200 kGy, respectively.
    Matched MeSH terms: Electrons
  3. Wan Ismail WZ, Sim KS, Tso CP, Ting HY
    Scanning, 2011 Jul-Aug;33(4):233-51.
    PMID: 21611953 DOI: 10.1002/sca.20237
    To reduce undesirable charging effects in scanning electron microscope images, Rayleigh contrast stretching is developed and employed. First, re-scaling is performed on the input image histograms with Rayleigh algorithm. Then, contrast stretching or contrast adjustment is implemented to improve the images while reducing the contrast charging artifacts. This technique has been compared to some existing histogram equalization (HE) extension techniques: recursive sub-image HE, contrast stretching dynamic HE, multipeak HE and recursive mean separate HE. Other post processing methods, such as wavelet approach, spatial filtering, and exponential contrast stretching, are compared as well. Overall, the proposed method produces better image compensation in reducing charging artifacts.
    Matched MeSH terms: Electrons
  4. Lai CW, Sreekantan S
    J Nanosci Nanotechnol, 2012 Apr;12(4):3170-4.
    PMID: 22849082
    Well aligned TiO2 nanotubes were successfully synthesized by anodization of Ti foil at 60 V in a fluorinated bath comprised of ethylene glycol with 5 wt% of NH4F and 5 wt% of H2O2. In order to enhance the visible light absorption and photoelectrochemical response of pure TiO2 nanotube arrays, a mixed oxide system (W-TiO2) was investigated. W-TiO2 nanotube arrays were prepared using radio-frequency (RF) sputtering to incorporate the W into the lattice of TiO2 nanotube arrays. The W atoms occupy the substitutional position within the vacancies of TiO2 nanotube arrays. The as-anodized TiO2 is amorphous in nature while the annealed TiO2 is anatase phase. The mixed oxide (W-TiO2) system in suitable TiO2 phase plays important roles in efficient electron transfers due to the reduction in electron-hole recombination. In this article, the effect of the sputtered W into the as-anodized/annealed TiO2 nanotube arrays on the photoelectrochemical response was presented.
    Matched MeSH terms: Electrons
  5. Lai CW, Sreekantan S, Lockman Z
    J Nanosci Nanotechnol, 2012 May;12(5):4057-66.
    PMID: 22852347
    Uniformly sized TiO2 nanotubes with high aspect ratios were synthesised on a large substrate (100 mm x 100 mm) via the bubbling system through anodisation of Ti in ethylene glycol containing 5 wt% NH4F and 5 wt% H2O2. The benefits of bubbling system in producing uniformly sized TiO2 nanotubes throughout the Ti foil are illustrated. Moreover, the effects of applied voltage and fluoride content on the resulting nanotubes were also considered. Such uniform sized TiO2 nanotubes are a key to produce hydrogen efficiently using PEC cell. The results show higher photocurrent responses for the high aspect ratio, uniform TiO2 nanotubes because of excellent interfacial electron transfer.
    Matched MeSH terms: Electrons
  6. Ahmad R, Salina M, Mamat MH, Teh AA, Kara M, Rusop M, et al.
    J Nanosci Nanotechnol, 2012 Oct;12(10):8153-7.
    PMID: 23421193
    This paper addresses the growth of nano-structured MgZnO thin films by sol-gel spin coating method which will be used as a template layer to grow carbon nanotubes. The nano-structured MgZnO films were deposited on platinized (100) silicon substrates. In this work, we focused on the effect of aging and Mg content on the film structure and resistivity. Sols with Mg content of 10, 30 and 50 at.% were subjected to aging times of between 3 to 240 hours. Results from scanning (SEM) and field emission scanning electron (FESEM) microscopes and surface profiler (SP) showed that the sol aging increased the thickness, grain size and surface roughness for aging up to 240 hours. The energy dispersive analysis by X-ray (EDAX) confirmed the element of Mg in the ZnO films. The electrical resistivity also increased with aging time as confirmed by four point probe method. The results suggest that appropriate aging of the sol is important for improving physical quality and electrical performance of MgZnO thin films derived from sol-gel technique.
    Matched MeSH terms: Electrons
  7. Abu Bakar, M.A., Ahmad, S., Kuntjoro, W.
    MyJurnal
    Kenaf fibre that is known as Hibiscus cannabinus, L. family Malvaceae is an herbaceous plant that can be grown under a wide range of weather conditions. The uses of kenaf fibres as a reinforcement material in the polymeric matrix have been widely investigated. It is known that epoxy has a disadvantage of brittleness and exhibits low toughness. In this research, liquid epoxidized natural rubber (LENR) was introduced to the epoxy to increase its toughness. Kenaf fibres, with five different fibre loadings of 5%, 10%, 15%, 20% and 25% by weight, were used to reinforce the epoxy resins (with and without addition of epoxidized natural rubber) as the matrices. The flexural strength, flexural modulus and fracture toughness of the rubber toughened epoxy reinforced kenaf fibre composites were investigated. The results showed that the addition of liquid epoxidized natural rubber (LENR) had improved the flexural modulus, flexural strength and fracture toughness by 48%, 30%, and 1.15% respectively at 20% fibre loading. The fractured surfaces of these composites were investigated by using scanning electron microscopic (SEM) technique to determine the interfacial bonding between the matrix and the fibre reinforcement.
    Matched MeSH terms: Electrons
  8. Ahmad, M.B., Hashim, K.B., Mohd Yazid, N., Zainuddin, N.
    MyJurnal
    In this work, hydrogels were prepared from carboxymethyl cellulose (CMC) and 1-vinyl-2-pyrrolidone(VP) by Electron Beam irradiation in the presence of N,N'-methylenebisacrylamide (BIS) as a crosslinkingagent. The parameters studied include stirring time and percentage of crosslinking agent. Hydrogels werecharacterized using Fourier Transform Infrared (FTIR) spectroscopy and Scanning Electron Microscopy(SEM). VP and BIS were found be effective as reinforcement materials to improve the properties ofCMC. Meanwhile, the optimum conditions were 5% BIS and 3 hours of stirring time. The gel fractionincreased when irradiation dose was increased. FTIR confirmed the crosslinking reaction between CMCand VP after the irradiation process by using BIS as the crosslinking agent. TGA thermograms showedchanges in the thermal properties of CMC-VP hydrogels in the presence of different amounts of BIS.
    Matched MeSH terms: Electrons
  9. Nasri A. Hamid, Yusof Abdullah, Mohd Sharul Nizam Asbullah
    MyJurnal
    Among the challenges for superconducting devices to be applied in industry are the need for high transport critical current density (Jr) and sustainability of the device in different environment. For superconducting material to maintain high 4, effective flux pinning centers are needed. The addition of small size MgO particles in bulk Bi2Sr2CaCu2O8 (Bi-2212) superconductor has been proven to enhance the effective flux pinning centers in the superconducting material. Nevertheless, the flux pinning properties of the superconducting materials may change if they are exposed to radioactive environment. Electron irradiation is one of the common techniques that can be used to study the impact of irradiation on superconducting materials. In this work, a small amount of nanosize MgO particles were used as the flux pinning centers for Bi-2212 superconducting material. The Bi-2212/MgO composite was heat treated and followed by partial melting and slow cooling. Some of the samples were subjected to electron irradiation using the facility at the Malaysian Nuclear Agency. Characterizations of non-irradiated and irradiated samples were performed via X-ray Diffraction Patterns (XRD), Scanning Electron Microscopy (SEM) and measurements of J, dependence on temperature in self-field. Higher J, indicates better flux pinning properties in irradiated superconductor composite. This is achieved if defects with larger radius with dimension comparable to the coherence length of the superconducting material were created. On the other hand, decreased in Je indicates ineffective flux pinning and this is attributed to the overlapping of defects that break the superconducting region. Our study showed that electron irradiation deteriorated the flux pinning properties of the Bi-2212/MgO superconductor composite.
    Matched MeSH terms: Electrons
  10. Khalil Ebrahim Jasim
    Sains Malaysiana, 2012;41:1011-1016.
    During the last quarter of the twentieth century there have been intensive research activities looking for green sources of energy. The main aim of the green generators or converters of energy is to replace the conventional (fossil) energy sources, hence reducing further accumulation of the green house gasses GHGs. Conventional silicon and III-V semiconductor solar cell based on crystalline bulk, quantum well and quantum dots structure or amorphous and thin film structures provided a feasible solution. However, natural dye sensitized solar cells NDSSC are a promising class of photovoltaic cells with the capability of generating green energy at low production cost since no vacuum systems or expensive equipment are required in their fabrication. Also, natural dyes are abundant, easily extracted and safe materials. In NDSSC, once dye molecules exposed to light they become oxidized and transfer electrons to a nanostructured layer of wide bandgap semiconductors such as TiO2. The generated electrons are drawn outside the cell through ohmic contact to a load. In this paper we review the structure and operation principles of the dye sensitized solar cell DSSC. We discuss preparation procedures, optical and electrical characterization of the NDSSC using local dyes extracted from Henna (lawsonia inermis L.), pomegranate, cherries and Bahraini raspberries (rubus spp.). These natural organic dyes are potential candidates to replace some of the man-made dyes used as sensitizer in many commercialized photoelectrochemical cells. Factors limiting the operation of the DSSC are discussed. NDSSCs are expected to be a favored choice in the building-integrated
    photovoltaics (BIPV) due to their robustness, therefore, requiring no special shielding from natural events such as tree strikes or hails.
    Matched MeSH terms: Electrons
  11. Ibrahim N, Yusrianto E, Ibarahim Z
    Sains Malaysiana, 2012;41:1029-1035.
    In this study TiO2 films have been prepared using two different techniques i.e. sol-gel and electron gun evaporation (e-gun) techniques. The films were annealed at 300, 350 and 400oC in air. The microstructure study using field emission scanning electron microscope and x-ray diffractometer showed nanometer grains size and only the film prepared by sol-gel and annealed at 400oC has anatase phase while others are amorphous. To study the effect of the films (as buffer layer) onto the dielectric bolometer Ba0.6Sr 0.4TiO3 as distance sensor, sensors with the configuration of Al/BST/TiO2/RuO2/SiO2/Si were built. Two different measurements i.e. with and without infrared source were carried out to measure the sensitivity and repeatability of the sensors. The sensors which contained sol-gel TiO2 films gave reading for both type of measurements, indicating that the sensor can act as active and passive sensors. However, the sensors which contained e-gun TiO2 films only gave responses when the IR source was used, indicating that they can only act as passive sensors. The most sensitive sensor was TiO2 film prepared by sol gel and annealed at 350oC. In general sensors which contained TiO2 films prepared by sol gel showed good repeatability.
    Matched MeSH terms: Electrons
  12. Ewe L, Ramli R, Lim K, Abd-Shukor R
    Sains Malaysiana, 2012;41:761-768.
    The effects of strontium doping on the electrical and magneto-transport properties of magneto resistive La0.7Ca0.28Sr0.02MnO3 at different sintering temperatures have been studied. The samples were prepared by the co-precipitation technique (COP) and sintered at 1120, 1220 and 1320 oC. XRD patterns revealed that the samples have an orthorhombic structure and the diffraction patterns can be indexed with the Pbnm space group. The insulator metal transition, TIM increased linearly from 261 K to 272 K with the increase in sintering temperature. The magnetoresistance (MR) measurements were made in magnetic fields from 0.1 to 1 T at room temperature. The percentage of MR increased with increasing of magnetic field and sintering temperature for all samples. The electrical resistivity data were fitted with several equations in the metallic (ferromagnetic) and insulator (paramagnetic) regime. The density of states at the Fermi level N(EF) and the activation energy (Ea) of electron hopping were estimated by using variable range hopping and small polaron hopping model.
    Matched MeSH terms: Electrons
  13. Mohd Zohdi R, Abu Bakar Zakaria Z, Yusof N, Mohamed Mustapha N, Abdullah MN
    PMID: 21941590 DOI: 10.1155/2012/843025
    A novel cross-linked honey hydrogel dressing was developed by incorporating Malaysian honey into hydrogel dressing formulation, cross-linked and sterilized using electron beam irradiation (25 kGy). In this study, the physical properties of the prepared honey hydrogel and its wound healing efficacy on deep partial thickness burn wounds in rats were assessed. Skin samples were taken at 7, 14, 21, and 28 days after burn for histopathological and molecular evaluations. Application of honey hydrogel dressings significantly enhanced (P < 0.05) wound closure and accelerated the rate of re-epithelialization as compared to control hydrogel and OpSite film dressing. A significant decrease in inflammatory response was observed in honey hydrogel treated wounds as early as 7 days after burn (P < 0.05). Semiquantitative analysis using RT-PCR revealed that treatment with honey hydrogel significantly (P < 0.05) suppressed the expression of proinflammatory cytokines (IL-1α, IL-1β, and IL-6). The present study substantiates the potential efficacy of honey hydrogel dressings in accelerating burn wound healing.
    Matched MeSH terms: Electrons
  14. Thent ZC, Seong Lin T, Das S, Zakaria Z
    PMID: 23304208 DOI: 10.1155/2012/628750
    Although Piper sarmentosum (PS) is known to possess the antidiabetic properties, its efficacy towards diabetic cardiovascular tissues is still obscured. The present study aimed to observe the electron microscopic changes on the cardiac tissue and proximal aorta of experimental rats treated with PS extract. Thirty-two male Sprague-Dawley rats were divided into four groups: untreated control group (C), PS-treated control group (CTx), untreated diabetic group (D), and PS-treated diabetic group (DTx). Intramuscular injection of streptozotocin (STZ, 50 mg/kg body weight) was given to induce diabetes. Following 28 days of diabetes induction, PS extract (0.125 g/kg body weight) was administered orally for 28 days. Body weight, fasting blood glucose, and urine glucose levels were measured at 4-week interval. At the end of the study, cardiac tissues and the aorta were viewed under transmission electron microscope (TEM). DTx group showed increase in body weight and decrease in fasting blood glucose and urine glucose level compared to the D group. Under TEM study, DTx group showed lesser ultrastructural degenerative changes in the cardiac tissues and the proximal aorta compared to the D group. The results indicate that PS restores ultrastructural integrity in the diabetic cardiovascular tissues.
    Matched MeSH terms: Electrons
  15. Mosapour Kotena Z, Behjatmanesh-Ardakani R, Hashim R, Manickam Achari V
    J Mol Model, 2013 Feb;19(2):589-99.
    PMID: 22972691 DOI: 10.1007/s00894-012-1576-z
    Density functional theory calculations on two glycosides, namely, n-octyl-β-D-glucopyranoside (C(8)O-β-Glc) and n-octyl-β-D-galactopyranoside (C(8)O-β-Gal) were performed for geometry optimization at the B3LYP/6-31G level. Both molecules are stereoisomers (epimers) differing only in the orientation of the hydroxyl group at the C4 position. Thus it is interesting to investigate electronically the effect of the direction (axial/equatorial) of the hydroxyl group at the C4 position. The structure parameters of X-H∙∙∙Y intramolecular hydrogen bonds were analyzed, while the nature of these bonds and the intramolecular interactions were considered using the atoms in molecules (AIM) approach. Natural bond orbital analysis (NBO) was used to determine bond orders, charge and lone pair electrons on each atom and effective non-bonding interactions. We have also reported electronic energy and dipole moment in gas and solution phases. Further, the electronic properties such as the highest occupied molecular orbital, lowest unoccupied molecular orbital, ionization energy, electron affinity, electronic chemical potential, chemical hardness, softness and electrophilicity index, are also presented here for both C(8)O-β-Glc and C(8)O-β-Gal. These results show that, while C(8)O-β-Glc possess- only one hydrogen bond, C(8)O-β-Gal has two intramolecular hydrogen bonds, which further confirms the anomalous stability of the latter in self-assembly phenomena.
    Matched MeSH terms: Electrons
  16. Junaedi S, Al-Amiery AA, Kadihum A, Kadhum AA, Mohamad AB
    Int J Mol Sci, 2013 Jun 04;14(6):11915-28.
    PMID: 23736696 DOI: 10.3390/ijms140611915
    1,5-Dimethyl-4-((2-methylbenzylidene)amino)-2-phenyl-1H-pyrazol-3(2H)-one (DMPO) was synthesized to be evaluated as a corrosion inhibitor. The corrosion inhibitory effects of DMPO on mild steel in 1.0 M HCl were investigated using electrochemical impedance spectroscopy (EIS), potentiodynamic polarization, open circuit potential (OCP) and electrochemical frequency modulation (EFM). The results showed that DMPO inhibited mild steel corrosion in acid solution and indicated that the inhibition efficiency increased with increasing inhibitor concentration. Changes in the impedance parameters suggested an adsorption of DMPO onto the mild steel surface, leading to the formation of protective films. The novel synthesized corrosion inhibitor was characterized using UV-Vis, FT-IR and NMR spectral analyses. Electronic properties such as highest occupied molecular orbital energy, lowest unoccupied molecular orbital energy (EHOMO and ELUMO, respectively) and dipole moment (μ) were calculated and discussed. The results showed that the corrosion inhibition efficiency increased with an increase in the EHOMO values but with a decrease in the ELUMO value.
    Matched MeSH terms: Electrons
  17. Alajerami YS, Hashim S, Ramli AT, Saleh MA, Saripan MI, Alzimami K, et al.
    Appl Radiat Isot, 2013 Aug;78:21-5.
    PMID: 23644162 DOI: 10.1016/j.apradiso.2013.03.095
    New glasses Li2CO3-K2CO3-H3BO3 (LKB) co-doped with CuO and MgO, or with TiO2 and MgO, were synthesized by the chemical quenching technique. The thermoluminescence (TL) responses of LKB:Cu,Mg and LKB:Ti,Mg irradiated with 6 MV photons or 6 MeV electrons were compared in the dose range 0.5-4.0 Gy. The standard commercial dosimeter LiF:Mg,Ti (TLD-100) was used to calibrate the TL reader and as a reference in comparison of the TL properties of the new materials. The dependence of the responses of the new materials on (60)Co dose is linear in the range of 1-1000 Gy. The TL yields of both of the co-doped glasses and TLD-100 are greater for electron irradiation than for photon irradiation. The TL sensitivity of LKB:Ti,Mg is 1.3 times higher than the sensitivity of LKB:Cu,Mg and 12 times less than the sensitivity of TLD-100. The new TL dosimetric materials have low effective atomic numbers, good linearity of the dose responses, excellent signal reproducibility, and a simple glow curve structure. This combination of properties makes them suitable for radiation dosimetry.
    Matched MeSH terms: Electrons
  18. Anouar el H, Weber JF
    PMID: 23880409 DOI: 10.1016/j.saa.2013.06.114
    Natural styrylpyrones isolated from fungi are known for various biological activities including antioxidant activity by scavenging free radicals. UV/vis spectra play an important role in elucidating chemical structures of these compounds via identification of chromophore units. With the aim of predicting the UV/vis spectra of a series of natural styrylpyrones, we tested TD-DFT, CIS and ZINDO methods in gas and in PCM solvent. The results showed that the individual or combined B3P86 and B3LYP hybrid functionals are suitable to predict the maximum wavelength absorption bands (λmax) for styrylpyrones. The structure property relationship (SPR) study emphasized the role of (i) structural parameters (e.g., hydrogen bond and the length of conjugated double bonds) and (ii) electronic descriptors (e.g., ionization potential, electronic affinity, hardness and electrophilicity) in bathochromic and hypsochromic shifts of maximum wavelength absorption bands (λmax) of styrylpyrone derivatives.
    Matched MeSH terms: Electrons
  19. Tan CW, Ng MH, Ohnmar H, Lokanathan Y, Nur-Hidayah H, Roohi SA, et al.
    Indian J Orthop, 2013 Nov;47(6):547-52.
    PMID: 24379458 DOI: 10.4103/0019-5413.121572
    BACKGROUND AND AIM: Synthetic nerve conduits have been sought for repair of nerve defects as the autologous nerve grafts causes donor site morbidity and possess other drawbacks. Many strategies have been investigated to improve nerve regeneration through synthetic nerve guided conduits. Olfactory ensheathing cells (OECs) that share both Schwann cell and astrocytic characteristics have been shown to promote axonal regeneration after transplantation. The present study was driven by the hypothesis that tissue-engineered poly(lactic-co-glycolic acid) (PLGA) seeded with OECs would improve peripheral nerve regeneration in a long sciatic nerve defect.

    MATERIALS AND METHODS: Sciatic nerve gap of 15 mm was created in six adult female Sprague-Dawley rats and implanted with PLGA seeded with OECs. The nerve regeneration was assessed electrophysiologically at 2, 4 and 6 weeks following implantation. Histopathological examination, scanning electron microscopic (SEM) examination and immunohistochemical analysis were performed at the end of the study.

    RESULTS: Nerve conduction studies revealed a significant improvement of nerve conduction velocities whereby the mean nerve conduction velocity increases from 4.2 ΁ 0.4 m/s at week 2 to 27.3 ΁ 5.7 m/s at week 6 post-implantation (P < 0.0001). Histological analysis revealed presence of spindle-shaped cells. Immunohistochemical analysis further demonstrated the expression of S100 protein in both cell nucleus and the cytoplasm in these cells, hence confirming their Schwann-cell-like property. Under SEM, these cells were found to be actively secreting extracellular matrix.

    CONCLUSION: Tissue-engineered PLGA conduit seeded with OECs provided a permissive environment to facilitate nerve regeneration in a small animal model.

    Matched MeSH terms: Electrons
  20. Abidin MSZ, Matsumura R, Anisuzzaman M, Park JH, Muta S, Mahmood MR, et al.
    Materials (Basel), 2013 Nov 06;6(11):5047-5057.
    PMID: 28788375 DOI: 10.3390/ma6115047
    We report the crystallization of electrodeposited germanium (Ge) thin films on n-silicon (Si) (100) by rapid melting process. The electrodeposition was carried out in germanium (IV) chloride: propylene glycol (GeCl₄:C₃H₈O₂) electrolyte with constant current of 50 mA for 30 min. The measured Raman spectra and electron backscattering diffraction (EBSD) images show that the as-deposited Ge thin film was amorphous. The crystallization of deposited Ge was achieved by rapid thermal annealing (RTA) at 980 °C for 1 s. The EBSD images confirm that the orientations of the annealed Ge are similar to that of the Si substrate. The highly intense peak of Raman spectra at 300 cm(-1) corresponding to Ge-Ge vibration mode was observed, indicating good crystal quality of Ge. An additional sub peak near to 390 cm(-1) corresponding to the Si-Ge vibration mode was also observed, indicating the Ge-Si mixing at Ge/Si interface. Auger electron spectroscopy (AES) reveals that the intermixing depth was around 60 nm. The calculated Si fraction from Raman spectra was found to be in good agreement with the value estimated from Ge-Si equilibrium phase diagram. The proposed technique is expected to be an effective way to crystallize Ge films for various device applications as well as to create strain at the Ge-Si interface for enhancement of mobility.
    Matched MeSH terms: Electrons
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links