MATERIALS AND METHODS: We studied a kindred of familial focal epilepsy with variable foci using whole-exome sequencing. We subsequently studied a cohort of 293 patients with focal epilepsy and sequenced all exons of DEPDC5 using targeted resequencing.
RESULTS: We reported a Taiwanese family with a novel splice site mutation which affected mRNA splicing and activated the downstream mammalian target of rapamycin (mTOR) pathway. Among patients with focal epilepsies, the majority (220/293) of these patients had sporadic focal epilepsy without malformation of cortical development. Two (0.9%) of these patients had probably pathogenic mutations in the DEPDC5 gene.
DISCUSSION AND CONCLUSIONS: Our finding suggests that DEPDC5 is not only the most common gene for familial focal epilepsy but also could be a significant gene for sporadic focal epilepsy. Since focal epilepsies account for more than 60% of all epilepsies, the effect of mTORC1 inhibitor on patients with focal epilepsy due to DEPDC5 mutations will be an important future direction of research.
METHODS: To understand the genetic factor in a family with GGE, we performed whole exome sequencing (WES) on a trio of a juvenile myoclonic epilepsy/febrile seizure (JME/FS) proband with JME/FS mother and healthy father. Sanger sequencing was carried out for validation of WES results and variant detection in other family members.
RESULTS: Predictably damaging variant found in affected proband and mother but absent in healthy father in SCN1A gene was found to be associated with generalized epilepsy and febrile seizure. The novel non-synonymous substitution (c.5753C>T, p.S1918F) in SCN1A was found in all family members with GGE, of which 4/8 were JME subtypes, and/or febrile seizure, while 3 healthy family member controls did not have the mutation. This mutation was also absent in 41 GGE patients and 414 healthy Malaysian Chinese controls.
CONCLUSION: The mutation is likely to affect interaction between the sodium channel and calmodulin and subsequently interrupt calmodulin-dependent modulation of the channel.