Displaying publications 41 - 60 of 64 in total

Abstract:
Sort:
  1. Jahan MS, Nozulaidi M, Khairi M, Mat N
    J Plant Physiol, 2016 May 20;195:1-8.
    PMID: 26970687 DOI: 10.1016/j.jplph.2016.03.002
    Light-harvesting complexes (LHCs) in photosystem II (PSII) regulate glutathione (GSH) functions in plants. To investigate whether LHCs control GSH biosynthesis that modifies guard cell abscisic acid (ABA) sensitivity, we evaluated GSH content, stomatal aperture, reactive oxygen species (ROS), weight loss and plant growth using a ch1-1 mutant that was defective of LHCs and compared this with wild-type (WT) Arabidopsis thaliana plants. Glutathione monoethyl ester (GSHmee) increased but 1-chloro-2,4 dinitrobenzene (CDNB) decreased the GSH content in the guard cells. The guard cells of the ch1-1 mutants accumulated significantly less GSH than the WT plants. The guard cells of the ch1-1 mutants also showed higher sensitivity to ABA than the WT plants. The CDNB treatment increased but the GSHmee treatment decreased the ABA sensitivity of the guard cells without affecting ABA-induced ROS production. Dark and light treatments altered the GSH content and stomatal aperture of the guard cells of ch1-1 and WT plants, irrespective of CDNB and GSHmee. The ch1-1 mutant contained fewer guard cells and displayed poor growth, late flowering and stumpy weight loss compared with the WT plants. This study suggests that defective LHCs reduced the GSH content in the guard cells and increased sensitivity to ABA, resulting in stomatal closure.
    Matched MeSH terms: Plant Growth Regulators/pharmacology*
  2. Ibrahim AM, Kayat FB, Hussin ZE, Susanto D, Ariffulah M
    ScientificWorldJournal, 2014;2014:284342.
    PMID: 24757416 DOI: 10.1155/2014/284342
    Kenaf (Hibiscus cannabinus L.) is one of the important species of Hibiscus cultivated for fiber. Availability of homozygous parent lines is prerequisite to the use of the heterosis effect reproducible in hybrid breeding. The production of haploid plants by anther culture followed by chromosome doubling can be achieved in short period compared with inbred lines by conventional method that requires self pollination of parent material. In this research, the effects of the microspore developmental stage, time of flower collection, various pretreatments, different combinations of hormones, and culture condition on anther culture of KB6 variety of Kenaf were studied. Young flower buds with immature anthers at the appropriate stage of microspore development were sterilized and the anthers were carefully dissected from the flower buds and subjected to various pretreatments and different combinations of hormones like NAA, 2,4-D, Kinetin, BAP, and TDZ to induce callus. The best microspore development stage of the flower buds was about 6-8 mm long collected 1-2 weeks after flower initiation. At that stage, the microspores were at the uninucleate stage which was suitable for culture. The best callus induction frequency was 90% in the optimized semisolid MS medium fortified with 3.0 mg/L BAP + 3.0 mg/L NAA.
    Matched MeSH terms: Plant Growth Regulators/pharmacology*
  3. Hussain A, Khan MI, Albaqami M, Mahpara S, Noorka IR, Ahmed MAA, et al.
    Int J Mol Sci, 2021 Nov 08;22(21).
    PMID: 34769521 DOI: 10.3390/ijms222112091
    The WRKY transcription factors (TFs) network is composed of WRKY TFs' subset, which performs a critical role in immunity regulation of plants. However, functions of WRKY TFs' network remain unclear, particularly in non-model plants such as pepper (Capsicum annuum L.). This study functionally characterized CaWRKY30-a member of group III Pepper WRKY protein-for immunity of pepper against Ralstonia solanacearum infection. The CaWRKY30 was detected in nucleus, and its transcriptional expression levels were significantly upregulated by R. solanacearum inoculation (RSI), and foliar application ethylene (ET), abscisic acid (ABA), and salicylic acid (SA). Virus induced gene silencing (VIGS) of CaWRKY30 amplified pepper's vulnerability to RSI. Additionally, the silencing of CaWRKY30 by VIGS compromised HR-like cell death triggered by RSI and downregulated defense-associated marker genes, like CaPR1, CaNPR1, CaDEF1, CaABR1, CaHIR1, and CaWRKY40. Conversely, transient over-expression of CaWRKY30 in pepper leaves instigated HR-like cell death and upregulated defense-related maker genes. Furthermore, transient over-expression of CaWRKY30 upregulated transcriptional levels of CaWRKY6, CaWRKY22, CaWRKY27, and CaWRKY40. On the other hand, transient over-expression of CaWRKY6, CaWRKY22, CaWRKY27, and CaWRKY40 upregulated transcriptional expression levels of CaWRKY30. The results recommend that newly characterized CaWRKY30 positively regulates pepper's immunity against Ralstonia attack, which is governed by synergistically mediated signaling by phytohormones like ET, ABA, and SA, and transcriptionally assimilating into WRKY TFs networks, consisting of CaWRKY6, CaWRKY22, CaWRKY27, and CaWRKY40. Collectively, our data will facilitate to explicate the underlying mechanism of crosstalk between pepper's immunity and response to RSI.
    Matched MeSH terms: Plant Growth Regulators/pharmacokinetics*
  4. Hossain AS, Alenazi MMA, Ahmed ASA, Alrudayni HA, Haouala F, Al-Hashimi A, et al.
    Cell Mol Biol (Noisy-le-grand), 2023 Dec 10;69(13):53-58.
    PMID: 38158689 DOI: 10.14715/cmb/2023.69.13.8
    Vegetables are rich in vitamins, minerals and dietary fiber that keep a significant role in the functioning of the human body to refrain human health benefits. The experiment was carried out to investigate the effect of different concentrations of IAA on the seedless pod, chlorophyll, vitamin and mineral content of okra as human health benefits. The innovative seed soaking method of application using 0, 25, 50, 100 & 200 mg/l of IAA concentrations was used in okra before germination and cultured in vitro and in vivo. The lower concentrations (25 and 50 mg/l) of IAA significantly increased the pod setting compared to the higher concentration (100 and 200 mg/l). The higher concentration (100 and 200 mg/l) had lower fruit settings than the lower concentration (25 &50) had higher fruit settings. The higher pod size was obtained in the concentration of 100 & 200 mg/l of IAA (34.18 cm²) as compared to the control and other concentrations. In addition, the highest soluble solid content was obtained by 100 and 200 mg/l of IAA concentration as compared to the other concentrations. The maximum vitamin C was found in the concentration of 100 mg/l of IAA as compared to the control and other concentrations. Moreover, higher mineral contents like K, Ca, Mg, Na and Fe were found in 100 & 200 mg/l of IAA. The higher concentrations (100 and 200 mg/l) of IAA greatly increased the seedless okra percentage as compared to the lower concentration. It seemed that 100 and 200 mg/l concentration IAA was a better concentration for mineral content and seedless okra production as compared to the other concentrations.
    Matched MeSH terms: Plant Growth Regulators*
  5. Hasbullah NA, Taha RM, Awal A
    Pak J Biol Sci, 2008 Jun 01;11(11):1449-54.
    PMID: 18817245
    Regeneration potentials in Gerbera jamesonii Bolus ex. Hook f. from tissues culture system was studied using leaf, petiole and root explants. In vitro regeneration, callus induction and root formation were optimized by manipulation of growth regulators during organogenesis. Various kinds of plant growth regulators such as 6-Benzylaminopurine (BAP), alpha-Naphthalene acetic acid (NAA), 2, 4-Dichlorophenoxyacetic acid (2,4-D), Indole-3-acetic acid (IAA), Indole-3-Butyric acid (IBA), N6-[2-Isopentenyl]adenine (2iP), Kinetin and Zeatin were used to initiate cultures. These plant growth regulators were added to Murashige and Skoog medium in different combinations and concentrations. Adventitious shoots were obtained from petiole explants cultured on Murashige and Skoog (MS) medium supplemented with 2.0 mg L(-1) BAP and 0.5 mg L(-1) NAA. Effectiveness of shoot regeneration medium, type of growth regulator used and duration of induction period were investigated. Leaf explants cultured on MS medium supplemented with 1.0 mg L(-1) BAP and 2.0 mg L(-1) 2, 4-D showed the best results for callus induction. Root explants were found to be non-regenerative in all experiments conducted. Petiole segment was identified as the best explant for regeneration of this species. Regenerated plants were rooted on Murashige and Skoog basal medium. Plantlets were then transferred to field with 75% survival rate.
    Matched MeSH terms: Plant Growth Regulators/pharmacology
  6. Hamad AM, Taha RM
    Pak J Biol Sci, 2008 Feb 01;11(3):386-91.
    PMID: 18817160
    Seven different hormone treatments, namely 6-benzylaminopurine (BAP) at 2, 3 mg L(-1) was applied singly and in combination with Indole Acetic Acid (IAA) at 0.18, 0.8 and 1.8 mg L(-l), BAP at 3.3 mg L(-l) in combination with IAA at 1.8 and 3.3 mg L(-l) and triple combination of BAP at 2.3, IAA at 1.8 and Gibberellic acid (GA3) at 1.0 mg L(-1) were tested, over four different incubation periods of 30, 45, 60 and 75 days, for their effect in the proliferation and growth of Smooth cayenne pineapple shoot-tip culture. Combined application of BAP at 3.3 and IAA at 1.8 mg L(-1) induced the highest proliferation of 19 shoots/explant and the highest total of 121 and 125 shoots over 4 cycles of multiplication. Raising the IAA to 3.3 mg L(-1) resulted in the lowest proliferation and stunted shoots. Incorporation of GA3 improved the shoot length but caused drastic reduction in proliferation. The other treatments showed an intermediate effect.
    Matched MeSH terms: Plant Growth Regulators/pharmacology*
  7. Gonbad RA, Rani Sinniah U, Aziz MA, Mohamad R
    ScientificWorldJournal, 2014;2014:943054.
    PMID: 24605069 DOI: 10.1155/2014/943054
    The use of in vitro culture has been accepted as an efficient technique for clonal propagation of many woody plants. In the present research, we report the results of a number of experiments aimed at optimizing micropropagation protocol for tea (Camellia sinensis (L.) O. Kuntze) (clone Iran 100) using nodal segments as the explant. The effect of different combinations and concentrations of plant growth regulators (PGR) (BAP, TDZ, GA₃) on shoot multiplication and elongation was assessed. The influence of exposure to IBA in liquid form prior to transfer to solid media on rooting of tea microshoots was investigated. The results of this study showed that the best treatment for nodal segment multiplication in terms of the number of shoot per explant and shoot elongation was obtained using 3 mg/L BAP in combination with 0.5 mg/L GA₃. TDZ was found to be inappropriate for multiplication of tea clone Iran 100 as it resulted in hyperhydricity especially at concentrations higher than 0.05 mg/L. Healthy shoots treated with 300 mg/L IBA for 30 min followed by transfer to 1/2 strength MS medium devoid of PGR resulted in 72.3% of shoots producing roots and upon transferring them to acclimatization chamber 65% survival was obtained prior to field transfer.
    Matched MeSH terms: Plant Growth Regulators/pharmacology*
  8. Gantait S, Sinniah UR, Ali MN, Sahu NC
    Curr Protein Pept Sci, 2015;16(5):406-12.
    PMID: 25824386
    Plants tend to acclimatize to unfavourable environs by integrating growth and development to environmentally activated signals. Phytohormones strongly regulate convergent developmental and stress adaptive procedures and synchronize cellular reaction to the exogenous and endogenous conditions within the adaptive signaling networks. Gibberellins (GA), a group of tetracyclic diterpenoids, being vital regulators of plant growth, are accountable for regulating several aspects of growth and development of higher plants. If the element of reproduction is considered as an absolute requisite then for a majority of the higher plants GA signaling is simply indispensable. Latest reports have revealed unique conflicting roles of GA and other phytohormones in amalgamating growth and development in plants through environmental signaling. Numerous physiological researches have detailed substantial crosstalk between GA and other hormones like abscisic acid, auxin, cytokinin, and jasmonic acid. In this review, a number of explanations and clarifications for this discrepancy are explored based on the crosstalk among GA and other phytohormones.
    Matched MeSH terms: Plant Growth Regulators/metabolism*
  9. Farzinebrahimi R, Mat Taha R, Rashid K, Syafawati Yaacob J
    ScientificWorldJournal, 2014;2014:407284.
    PMID: 24967432 DOI: 10.1155/2014/407284
    The leaf of Gardenia jasminoides Ellis was used as explants and was cultured on MS and WPM media supplemented with various concentrations of NAA, IAA, 2,4-D, IBA, TDZ, and Kn (0 to 5 mg L(-1) with 0.5 increment). After six months, the higher percentage of callus (100%) and the best dry and fresh weight of callus were formed on WPM medium supplemented with 2,4-D and NAA (2.0-3.0 mg L(-1)) and this amount was decreased from (84%) to (69%) when this media supplemented with Kinetin and TDZ (1 mg L(-1)) respectively were used. Leaf segments cultured on WPM media added with Kn (1 mg L(-1)) and TDZ (2 mg L(-1)) yielded the least amount of callus. It was found that WPM media added with IAA (4.5-5.0 mg L(-1)) were optimum for root induction from G. jasminoides plantlets. Antibacterial screening of leaf extracts (in vivo) showed no inhibitory effect against E. coli, P. aeruginosa, S. aureus, and B. cereus, in contrast to callus extracts from leaf cultures supplemented with NAA, which showed inhibition activity against E. coli and B. cereus. The callus extracts from leaf cultures grown on both MS and WPM media showed higher antioxidant and superoxide dismutase activities than leaf extracts.
    Matched MeSH terms: Plant Growth Regulators/pharmacology*
  10. Farshad Ashraf M, Abd Aziz M, Abdul Kadir M, Stanslas J, Farokhian E
    Plant Cell Physiol, 2013 Aug;54(8):1356-64.
    PMID: 23749812 DOI: 10.1093/pcp/pct083
    This study focuses on the establishment of in vitro tuberization of Chlorophytum borivilianum using solid and liquid culture systems. A high in vitro tuberization rate on solid and stationary liquid Murashige and Skoog media was observed in the presence of 60 g l⁻¹ sucrose with 950, 1,265 and 1,580 µM 2-chloroethyl-trimethylammonium chloride (CCC). Application of a higher sucrose concentration of 90 g l⁻¹ showed a negative interaction with CCC on in vitro tuber number and days to in vitro tuber induction. For economic feasibility, 950 µM CCC with 60 g l⁻¹ sucrose was chosen as the best combination for in vitro tuberization in both solid and stationary liquid media. For optimization of in vitro tuber production,a comparison between solid, stationary liquid and shake liquid culture was carried out. Liquid culture with shaking at 80 r.p.m. resulted in a >2.5-fold increase in in vitro tuber production compared with solid culture.
    Matched MeSH terms: Plant Growth Regulators/pharmacology*
  11. Ee SF, Oh JM, Mohd Noor N, Kwon TR, Mohamed-Hussein ZA, Ismail I, et al.
    Mol Biol Rep, 2013 Mar;40(3):2231-41.
    PMID: 23187733 DOI: 10.1007/s11033-012-2286-4
    The importance of plant secondary metabolites for both mankind and the plant itself has long been established. However, despite extensive research on plant secondary metabolites, plant secondary metabolism and its regulation still remained poorly characterized. In this present study, cDNA-amplified fragment length polymorphism (cDNA-AFLP) transcript profiling was applied to generate the expression profiles of Polygonum minus in response to salicylic acid (SA) and methyl jasmonate (MeJA) elicitations. This study reveals two different sets of genes induced by SA and MeJA, respectively where stress-related genes were proved to lead to the expression of genes involved in plant secondary metabolite biosynthetic pathways. A total of 98 transcript-derived fragments (TDFs) were up-regulated, including 46 from SA-treated and 52 from MeJA-treated samples. The cDNA-AFLP transcripts generated using 64 different Mse1/Taq1 primer combinations showed that treatments with SA and MeJA induced genes mostly involved in scavenging reactive oxygen species, including zeaxanthin epoxidase, cytosolic ascorbate peroxidase 1 and peroxidase. Of these stress-related genes, 15 % of other annotated TDFs are involved mainly in secondary metabolic processes where among these, two genes encoding (+)-delta cadinene synthase and cinnamoyl-CoA reductase were highlighted.
    Matched MeSH terms: Plant Growth Regulators/pharmacology*
  12. De Silva AE, Kadir MA, Aziz MA, Kadzimin S
    ScientificWorldJournal, 2006 Feb 17;6:169-75.
    PMID: 16493521
    Differential effect of plant growth regulators and additives in proliferation of 18-month-old calli of Ananas comosus L. cv. Moris were assessed in vitro. The proliferation of callus relied on the growth regulators and additives. Of the different auxins supplemented in the Murashige and Skoog (MS) media, 32.22 microM alpha-naphthaleneacetic acid (NAA) gave the highest mean fresh weight of callus (46.817 g). Medium supplemented with 2,4-dichlorophenoxyacetic acid (2,4-D) was inferior to NAA, while b-naphthoxy acetic acid (BNOA) and p-chlorophenoxy acetic acid (4-CPA) were not effective in proliferating 18-months old callus. Addition of casein hydrolysate and coconut water to NAA supplemented medium showed better proliferation and production of callus. However, in terms of callus production, NAA at 32.22 microM was economically better.
    Matched MeSH terms: Plant Growth Regulators/pharmacokinetics*
  13. Daud N, Taha RM, Hasbullah NA
    Pak J Biol Sci, 2008 May 01;11(9):1240-5.
    PMID: 18819532
    Efficient plant regeneration of Saintpaulia ionantha (African violet) has been obtained in the present study. MS medium supplemented with 1.0 mg L(-1) IAA and 2.0 mg L(-1) Zeatin resulted in 100% shoot regeneration and induced the highest number of shoots (average 15.0 +/- 0.8 shoots per explant) after being cultured for 8 weeks. The above hormone combination was optimum for shoot regeneration. Most of Saintpaulia ionantha plantlets derived from tissue culture system could be hardened and transferred to the greenhouse conditions with 84.0 +/- 1.6% success rate. However, regenerated plantlets of Saintpaulia ionantha (even after 12-months-old) failed to flower. Morphological characters of regenerated plantlets of Saintpaulia ionantha were observed and compared with in vivo (intact) plants. Regenerated plantlets showed some differences in morphological characters, such as height and leaf size, texture and colour, but the plantlets showed no variation in leaf arrangement and leaf margin. However, the morphological characters of the regenerated plantlets were found to be unstable.
    Matched MeSH terms: Plant Growth Regulators/metabolism
  14. Daud N, Taha RM
    Pak J Biol Sci, 2008 Apr 01;11(7):1055-8.
    PMID: 18810979
    Intact immature flower buds of African violet (Saintpaulia ionantha H. Wendl.) were used as explant sources for in vitro studies. The effect of exogenous hormones, NAA and BAP on the indirect organogenesis of this species was observed. Callus was formed on the cut end (base) of pedicels of floral buds where they were in contact with the medium. When maintained on the same medium, callus was differentiated into adventitious shoots after 10 weeks in culture. MS media supplemented with 2.0 mg L(-1) NAA and 1.0 mg L(-1) BAP gave the highest number of sterile or vegetative floral buds from the surface of callus of the explants, but these buds failed to develop further. The floral buds were expanded as abnormal flowers. The floral structures were smaller in size compared to intact flowers. Petals (corolla) were white to purple in colour but did not form any reproductive organs, i.e., stamens or pistils. All sterile or vegetative floral buds and abnormal flowers survived for 3 months in culture but failed to reach anthesis.
    Matched MeSH terms: Plant Growth Regulators/pharmacology
  15. Cherian S, Figueroa CR, Nair H
    J Exp Bot, 2014 Sep;65(17):4705-22.
    PMID: 24994760 DOI: 10.1093/jxb/eru280
    Fruit ripening is a complex and highly coordinated developmental process involving the expression of many ripening-related genes under the control of a network of signalling pathways. The hormonal control of climacteric fruit ripening, especially ethylene perception and signalling transduction in tomato has been well characterized. Additionally, great strides have been made in understanding some of the major regulatory switches (transcription factors such as RIPENING-INHIBITOR and other transcriptional regulators such as COLOURLESS NON-RIPENING, TOMATO AGAMOUS-LIKE1 and ETHYLENE RESPONSE FACTORs), that are involved in tomato fruit ripening. In contrast, the regulatory network related to non-climacteric fruit ripening remains poorly understood. However, some of the most recent breakthrough research data have provided several lines of evidences for abscisic acid- and sucrose-mediated ripening of strawberry, a non-climacteric fruit model. In this review, we discuss the most recent research findings concerning the hormonal regulation of fleshy fruit ripening and their cross-talk and the future challenges taking tomato as a climacteric fruit model and strawberry as a non-climacteric fruit model. We also highlight the possible contribution of epigenetic changes including the role of plant microRNAs, which is opening new avenues and great possibilities in the fields of fruit-ripening research and postharvest biology.
    Matched MeSH terms: Plant Growth Regulators/metabolism*
  16. Chen JH, Wei D, Lim PE
    Bioresour Technol, 2020 Jan;295:122242.
    PMID: 31629282 DOI: 10.1016/j.biortech.2019.122242
    Phytohormones comprise a variety of trace bioactive compounds that can stimulate cell growth and promote metabolic shifts. In the present work, a two-stage screening strategy was innovatively established to identify positive phytohormones for enhancement of astaxanthin and lipid coproduction in microplate-based cultures of mixotrophic Chromochloris zofingiensis. The results showed that auxins were the most efficient stimulators for astaxanthin accumulation. The maximum content of 13.1 mg/g and yield of 89.9 mg/L were obtained using indole propionic acid (10 mg/L) and indoleacetic acid (7.8 mg/L), representing the highest levels of astaxanthin in this microalga reported to date. Total lipids with the highest content (64.5% DW) and productivity (445.7 mg/L/d) were coproduced with astaxanthin using indoleacetic acid. Statistical analysis revealed close relations between phytohormones and astaxanthin and lipid biosynthesis. This study provides a novel original strategy for improving astaxanthin and lipid coproduction in C. zofingiensis using the selected phytohormones as positive stimulators.
    Matched MeSH terms: Plant Growth Regulators
  17. Brennan M, Paterson L, Baharudin AAA, Stanisz-Migal M, Hoebe PN
    J Plant Physiol, 2019 Dec;243:153054.
    PMID: 31648109 DOI: 10.1016/j.jplph.2019.153054
    Adhesion of the barley husk to the underlying caryopsis requires the development of a cuticular cementing layer on the caryopsis surface. Differences in adhesion quality among genotypes have previously been correlated with cementing layer composition, which is thought to influence caryopsis cuticle permeability, the hypothesised mechanism of adhesion mediation. It is not yet known whether differences in adhesion quality among genotypes are determined by changes in caryopsis cuticle permeability. We examined changes in candidate cementing layer biosynthetic and regulatory genes to investigate the genetic mechanisms behind husk adhesion quality. We used both commercially relevant UK malting cultivars and older European lines to ensure phenotypic diversity in adhesion quality. An ethylene responsive transcription factor (NUD) is required for the development of the cementing layer. To examine correlations between gene expression, cementing layer permeability and husk adhesion quality we also treated cultivars with ethephon (2-chloroethylphosphonic acid) which breaks down to ethylene, and silver thiosulphate which inhibits ethylene reception, and measured caryopsis cuticle permeability. Differential adhesion qualities among genotypes are not determined by NUD expression during development of the cementing material alone, but could result from differences in biosynthetic gene expression during cementing layer development in response to longer-term NUD expression patterns. Altered caryopsis cuticle permeability does result in altered adhesion quality, but the correlation is not consistently positive or negative. Cuticle permeability is therefore not the mechanism that determines husk adhesion quality, but is likely a consequence of the required cuticular compositional changes that determine adhesion.
    Matched MeSH terms: Plant Growth Regulators/pharmacology*
  18. Babaei N, Abdullah NA, Saleh G, Abdullah TL
    ScientificWorldJournal, 2014;2014:275028.
    PMID: 24723799 DOI: 10.1155/2014/275028
    A procedure was developed for in vitro propagation of Curculigo latifolia through shoot tip culture. Direct regeneration and indirect scalp induction of Curculigo latifolia were obtained from shoot tip grown on MS medium supplemented with different concentrations and combinations of thidiazuron and indole-3-butyric acid. Maximum response for direct regeneration in terms of percentage of explants producing shoot, shoot number, and shoot length was obtained on MS medium supplemented with combination of thidiazuron (0.5 mg L(-1)) and indole-3-butyric acid (0.25 mg L(-1)) after both 10 and 14 weeks of cultures. Indole-3-butyric acid in combination with thidiazuron exhibited a synergistic effect on shoot regeneration. The shoot tips were able to induce maximum scalp from basal end of explants on the medium with 2 mg L(-1) thidiazuron. Cultures showed that shoot number, shoot length, and scalp size increased significantly after 14 weeks of culture. Transferring of the shoots onto the MS medium devoid of growth regulators resulted in the highest percentage of root induction and longer roots, while medium supplemented with 0.25 mg L(-1) IBA produced more numbers of roots.
    Matched MeSH terms: Plant Growth Regulators/pharmacology*
  19. Baba ZA, Hamid B, Sheikh TA, Alotaibi SH, El Enshasy HA, Ansari MJ, et al.
    Molecules, 2021 Sep 23;26(19).
    PMID: 34641302 DOI: 10.3390/molecules26195758
    Soil potassium (K) supplement depends intensively on the application of chemical fertilizers, which have substantial harmful environmental effects. However, some bacteria can act as inoculants by converting unavailable and insoluble K forms into plant-accessible forms. Such bacteria are an eco-friendly approach for enhancing plant K absorption and consequently reducing utilization of chemical fertilization. Therefore, the present research was undertaken to isolate, screen, and characterize the K solubilizing bacteria (KSB) from the rhizosphere soils of northern India. Overall, 110 strains were isolated, but only 13 isolates showed significant K solubilizing ability by forming a halo zone on solid media. They were further screened for K solubilizing activity at 0 °C, 1 °C, 3 °C, 5 °C, 7 °C, 15 °C, and 20 °C for 5, 10, and 20 days. All the bacterial isolates showed mineral K solubilization activity at these different temperatures. However, the content of K solubilization increased with the upsurge in temperature and period of incubation. The isolate KSB (Grz) showed the highest K solubilization index of 462.28% after 48 h of incubation at 20 °C. The maximum of 23.38 µg K/mL broth was solubilized by the isolate KSB (Grz) at 20 °C after 20 days of incubation. Based on morphological, biochemical, and molecular characterization (through the 16S rDNA approach), the isolate KSB (Grz) was identified as Mesorhizobium sp. The majority of the strains produced HCN and ammonia. The maximum indole acetic acid (IAA) (31.54 µM/mL) and cellulase (390 µM/mL) were produced by the isolate KSB (Grz). In contrast, the highest protease (525.12 µM/mL) and chitinase (5.20 µM/mL) activities were shown by standard strain Bacillus mucilaginosus and KSB (Gmr) isolate, respectively.
    Matched MeSH terms: Plant Growth Regulators/metabolism*
  20. Azizi P, Rafii MY, Maziah M, Abdullah SN, Hanafi MM, Latif MA, et al.
    Mech. Dev., 2015 Feb;135:1-15.
    PMID: 25447356 DOI: 10.1016/j.mod.2014.11.001
    Auxin and cytokinin regulate different critical processes involved in plant growth and environmental feedbacks. These plant hormones act either synergistically or antagonistically to control the organisation, formation and maintenance of meristem. Meristem cells can be divided to generate new tissues and organs at the locations of plant postembryonic development. The aboveground plant organs are created by the shoot apical meristem (SAM). It has been proposed that the phytohormone, cytokinin, plays a positive role in the shoot meristem function, promotes cell expansion and promotes an increasing size of the meristem in Arabidopsis, whereas it has the reverse effects in the root apical meristem (RAM). Over the last few decades, it has been believed that the apically derived auxin suppresses the shoot branching by inactivating the axillary buds. However, it has recently become clear that the mechanism of action of auxinis indirect and multifaceted. In higher plants, the regulatory mechanisms of the SAM formation and organ separation are mostly unknown. This study reviews the effects and functions of cytokinin and auxin at the shoot apical meristem. This study also highlights the merger of the transcription factor activity with the actions of cytokinin/auxin and their complex interactions with the shoot meristem in rice.
    Matched MeSH terms: Plant Growth Regulators/physiology*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links