Displaying publications 41 - 60 of 77 in total

Abstract:
Sort:
  1. Ullah S, Zainol I, Idrus RH
    Int J Biol Macromol, 2017 Nov;104(Pt A):1020-1029.
    PMID: 28668615 DOI: 10.1016/j.ijbiomac.2017.06.080
    The zinc oxide nanoparticles (particles size <50nm) incorporated into chitosan-collagen 3D porous scaffolds and investigated the effect of zinc oxide nanoparticles incorporation on microstructure, mechanical properties, biodegradation and cytocompatibility of 3D porous scaffolds. The 0.5%, 1.0%, 2.0% and 4.0% zinc oxide nanoparticles chitosan-collagen 3D porous scaffolds were fabricated via freeze-drying technique. The zinc oxide nanoparticles incorporation effects consisting in chitosan-collagen 3D porous scaffolds were investigated by mechanical and swelling tests, and effect on the morphology of scaffolds examined microscopically. The biodegradation and cytocompatibility tests were used to investigate the effects of zinc oxide nanoparticles incorporation on the ability of scaffolds to use for tissue engineering application. The mean pore size and swelling ratio of scaffolds were decreased upon incorporation of zinc oxide nanoparticles however, the porosity, tensile modulus and biodegradation rate were increased upon incorporation of zinc oxide nanoparticles. In vitro culture of human fibroblasts and keratinocytes showed that the zinc oxide nanoparticles facilitated cell adhesion, proliferation and infiltration of chitosan-collagen 3D porous scaffolds. It was found that the zinc oxide nanoparticles incorporation enhanced porosity, tensile modulus and cytocompatibility of chitosan-collagen 3D porous scaffolds.
    Matched MeSH terms: Tissue Scaffolds/chemistry*
  2. Hu Y, Ran J, Zheng Z, Jin Z, Chen X, Yin Z, et al.
    Acta Biomater, 2018 04 15;71:168-183.
    PMID: 29524675 DOI: 10.1016/j.actbio.2018.02.019
    Anterior cruciate ligament (ACL) is one of the most difficult tissues to heal once injured. Ligament regeneration and tendon-bone junction healing are two major goals of ACL reconstruction. This study aimed to investigate the synergistic therapeutic effects of Stromal cell-derived factor 1 (SDF-1)-releasing collagen-silk (CSF) scaffold combined with intra-articular injection of ligament-derived stem/progenitor cells (LSPCs) for ACL regeneration and the amelioration in the long-term complication of osteoarthritis (OA). The stem cell recruitment ability of CSF scaffold and the multipotency, particularly the tendon forming ability of LSPCs from rabbits were characterized in vitro, while the synergistic effect of the CSF scaffold and LSPCs for ACL regeneration and OA amelioration were investigated in vivo at 1, 3, and 6 months with a rabbit ACL reconstruction model. The CSF scaffold was used as a substitute for the ACL, and LSPCs were injected into the joint cavity after 7 days of the ACL reconstruction. CSF scaffold displayed a controlled release pattern for the encapsulated protein for up to 7 days with an increased stiffness in the mechanical property. LSPCs, which exhibited highly I Collagen and CXCR4 expression, were attracted by SDF-1 and successfully relocated into the CSF scaffold at 1 month in vivo. At 3 and 6 months post-treatment, the CSF scaffold combined with LSPCs (CSFL group) enhanced the regeneration of ACL tissue, and promoted bone tunnel healing. Furthermore, the OA progression was impeded efficiently. Our findings here provided a new strategy that using stem cell recruiting CSF scaffold with tissue-specific stem cells, could be a promising solution for ACL regeneration.

    STATEMENT OF SIGNIFICANCE: In this study, we developed a silk scaffold with increased stiffness and SDF-1 controlled release capacity for ligament repair. This advanced scaffold transplantation combined with intra-articular injection of LSPCs (which was isolated from rabbit ligament for the first time in this study) promoted the regeneration of both the tendinous and bone tunnel portion of ACL. This therapeutic strategy also ameliorated cartilage degeneration and reduced the severity of arthrofibrosis. Hence, combining LSPCs injection with SDF-1-releasing silk scaffold is demonstrated as a therapeutic strategy for ACL regeneration and OA treatment in the clinic.

    Matched MeSH terms: Tissue Scaffolds/chemistry*
  3. Lim WL, Liau LL, Ng MH, Chowdhury SR, Law JX
    Tissue Eng Regen Med, 2019 Dec;16(6):549-571.
    PMID: 31824819 DOI: 10.1007/s13770-019-00196-w
    BACKGROUND: Tendon and ligament injuries accounted for 30% of all musculoskeletal consultations with 4 million new incidences worldwide each year and thus imposed a significant burden to the society and the economy. Damaged tendon and ligament can severely affect the normal body movement and might lead to many complications if not treated promptly and adequately. Current conventional treatment through surgical repair and tissue graft are ineffective with a high rate of recurrence.

    METHODS: In this review, we first discussed the anatomy, physiology and pathophysiology of tendon and ligament injuries and its current treatment. Secondly, we explored the current role of tendon and ligament tissue engineering, describing its recent advances. After that, we also described stem cell and cell secreted product approaches in tendon and ligament injuries. Lastly, we examined the role of the bioreactor and mechanical loading in in vitro maturation of engineered tendon and ligament.

    RESULTS: Tissue engineering offers various alternative ways of treatment from biological tissue constructs to stem cell therapy and cell secreted products. Bioreactor with mechanical stimulation is instrumental in preparing mature engineered tendon and ligament substitutes in vitro.

    CONCLUSIONS: Tissue engineering showed great promise in replacing the damaged tendon and ligament. However, more study is needed to develop ideal engineered tendon and ligament.

    Matched MeSH terms: Tissue Scaffolds/chemistry
  4. Nuge T, Liu Z, Liu X, Ang BC, Andriyana A, Metselaar HSC, et al.
    Molecules, 2021 Jan 29;26(3).
    PMID: 33572728 DOI: 10.3390/molecules26030699
    Volumetric Muscle Loss (VML) is associated with muscle loss function and often untreated and considered part of the natural sequelae of trauma. Various types of biomaterials with different physical and properties have been developed to treat VML. However, much work remains yet to be done before the scaffolds can pass from the bench to the bedside. The present review aims to provide a comprehensive summary of the latest developments in the construction and application of natural polymers-based tissue scaffolding for volumetric muscle injury. Here, the tissue engineering approaches for treating volumetric muscle loss injury are highlighted and recent advances in cell-based therapies using various sources of stem cells are elaborated in detail. An overview of different strategies of tissue scaffolding and their efficacy on skeletal muscle cells regeneration and migration are presented. Furthermore, the present paper discusses a wide range of natural polymers with a special focus on proteins and polysaccharides that are major components of the extracellular matrices. The natural polymers are biologically active and excellently promote cell adhesion and growth. These bio-characteristics justify natural polymers as one of the most attractive options for developing scaffolds for muscle cell regeneration.
    Matched MeSH terms: Tissue Scaffolds/chemistry*
  5. Ansari NF, Amirul AA
    Appl Biochem Biotechnol, 2013 Jun;170(3):690-709.
    PMID: 23604967 DOI: 10.1007/s12010-013-0216-0
    Polyhydroxyalkanoates (PHAs) are hydrophobic biodegradable thermoplastics that have received considerable attention in biomedical applications due to their biocompatibility, mechanical properties, and biodegradability. In this study, the degradation rate was regulated by optimizing the interaction of parameters that influence the enzymatic degradation of P(3HB) film using response surface methodology (RSM). The RSM model was experimentally validated yielding a maximum 21 % weight loss, which represents onefold increment in percentage weight loss in comparison with the conventional method. By using the optimized condition, the enzymatic degradation by an extracellular PHA depolymerase from Acidovorax sp. DP5 was studied at 37 °C and pH 9.0 on different types of PHA films with various monomer compositions. Surface modification of scaffold was employed using enzymatic technique to create highly porous scaffold with a large surface to volume ratio, which makes them attractive as potential tissue scaffold in biomedical field. Scanning electron microscopy revealed that the surface of salt-leached films was more porous compared with the solvent-cast films, and hence, increased the degradation rate of salt-leached films. Apparently, enzymatic degradation behaviors of PHA films were determined by several factors such as monomer composition, crystallinity, molecular weight, porosity, and roughness of the surface. The hydrophilicity and water uptake of degraded salt-leached film of P(3HB-co-70%4HB) were enhanced by incorporating chitosan or alginate. Salt-leached technique followed by partial enzymatic degradation would enhance the cell attachment and suitable for biomedical as a scaffold.
    Matched MeSH terms: Tissue Scaffolds/chemistry*
  6. Hoque ME, Chuan YL, Pashby I
    Biopolymers, 2012 Feb;97(2):83-93.
    PMID: 21830198 DOI: 10.1002/bip.21701
    Advances in scaffold design and fabrication technology have brought the tissue engineering field stepping into a new era. Conventional techniques used to develop scaffolds inherit limitations, such as lack of control over the pore morphology and architecture as well as reproducibility. Rapid prototyping (RP) technology, a layer-by-layer additive approach offers a unique opportunity to build complex 3D architectures overcoming those limitations that could ultimately be tailored to cater for patient-specific applications. Using RP methods, researchers have been able to customize scaffolds to mimic the biomechanical properties (in terms of structural integrity, strength, and microenvironment) of the organ or tissue to be repaired/replaced quite closely. This article provides intensive description on various extrusion based scaffold fabrication techniques and review their potential utility for TE applications. The extrusion-based technique extrudes the molten polymer as a thin filament through a nozzle onto a platform layer-by-layer and thus building 3D scaffold. The technique allows full control over pore architecture and dimension in the x- and y- planes. However, the pore height in z-direction is predetermined by the extruding nozzle diameter rather than the technique itself. This review attempts to assess the current state and future prospects of this technology.
    Matched MeSH terms: Tissue Scaffolds/chemistry*
  7. Krishnamurithy G, Shilpa PN, Ahmad RE, Sulaiman S, Ng CL, Kamarul T
    J Biomed Mater Res A, 2011 Dec 01;99(3):500-6.
    PMID: 21913317 DOI: 10.1002/jbm.a.33184
    Human amniotic membrane (HAM) is an established biomaterial used in many clinical applications. However, its use for tissue engineering purposes has not been fully realized. A study was therefore conducted to evaluate the feasibility of using HAM as a chondrocyte substrate/carrier. HAMs were obtained from fresh human placenta and were process to produced air dried HAM (AdHAM) and freeze dried HAM (FdHAM). Rabbit chondrocytes were isolated and expanded in vitro and seeded onto these preparations. Cell proliferation, GAG expression and GAG/cell expression were measured at days 3, 6, 9, 12, 15, 21, and 28. These were compared to chondrocytes seeded onto plastic surfaces. Histological analysis and scanning electron microscopy was performed to observe cell attachment. There was significantly higher cell proliferation rates observed between AdHAM (13-51%, P=0.001) or FdHAM (18-48%, p = 0.001) to chondrocytes in monolayer. Similarly, GAG and GAG/cell expressed in AdHAM (33-82%, p = 0.001; 22-60%, p = 0.001) or FdHAM (41-81%, p = 0.001: 28-60%, p = 0.001) were significantly higher than monolayer cultures. However, no significant differences were observed in the proliferation rates (p = 0.576), GAG expression (p = 0.476) and GAG/cell expression (p = 0.135) between AdHAM and FdHAM. The histology and scanning electron microscopy assessments demonstrates good chondrocyte attachments on both HAMs. In conclusion, both AdHAM and FdHAM provide superior chondrocyte proliferation, GAG expression, and attachment than monolayer cultures making it a potential substrate/carrier for cell based cartilage therapy and transplantation.
    Matched MeSH terms: Tissue Scaffolds/chemistry*
  8. Mansouri N, SamiraBagheri
    Mater Sci Eng C Mater Biol Appl, 2016 Apr 1;61:906-21.
    PMID: 26838922 DOI: 10.1016/j.msec.2015.12.094
    The actual in vivo tissue scaffold offers a three-dimensional (3D) structural support along with a nano-textured surfaces consist of a fibrous network in order to deliver cell adhesion and signaling. A scaffold is required, until the tissue is entirely regenerated or restored, to act as a temporary ingrowth template for cell proliferation and extracellular matrix (ECM) deposition. This review depicts some of the most significant three dimensional structure materials used as scaffolds in various tissue engineering application fields currently being employed to mimic in vivo features. Accordingly, some of the researchers' attempts have envisioned utilizing graphene for the fabrication of porous and flexible 3D scaffolds. The main focus of this paper is to evaluate the topographical and topological optimization of scaffolds for tissue engineering applications in order to improve scaffolds' mechanical performances.
    Matched MeSH terms: Tissue Scaffolds/chemistry*
  9. Selvakumar M, Srivastava P, Pawar HS, Francis NK, Das B, Sathishkumar G, et al.
    ACS Appl Mater Interfaces, 2016 Feb 17;8(6):4086-100.
    PMID: 26799576 DOI: 10.1021/acsami.5b11723
    Guided bone regeneration (GBR) scaffolds are futile in many clinical applications due to infection problems. In this work, we fabricated GBR with an anti-infective scaffold by ornamenting 2D single crystalline bismuth-doped nanohydroxyapatite (Bi-nHA) rods onto segmented polyurethane (SPU). Bi-nHA with high aspect ratio was prepared without any templates. Subsequently, it was introduced into an unprecedented synthesized SPU matrix based on dual soft segments (PCL-b-PDMS) of poly(ε-caprolactone) (PCL) and poly(dimethylsiloxane) (PDMS), by an in situ technique followed by electrospinning to fabricate scaffolds. For comparison, undoped pristine nHA rods were also ornamented into it. The enzymatic ring-opening polymerization technique was adapted to synthesize soft segments of PCL-b-PDMS copolymers of SPU. Structure elucidation of the synthesized polymers is done by nuclear magnetic resonance spectroscopy. Sparingly, Bi-nHA ornamented scaffolds exhibit tremendous improvement (155%) in the mechanical properties with excellent antimicrobial activity against various human pathogens. After confirmation of high osteoconductivity, improved biodegradation, and excellent biocompatibility against osteoblast cells (in vitro), the scaffolds were implanted in rabbits by subcutaneous and intraosseous (tibial) sites. Various histological sections reveal the signatures of early cartilage formation, endochondral ossification, and rapid bone healing at 4 weeks of the critical defects filled with ornamented scaffold compared to SPU scaffold. This implies osteogenic potential and ability to provide an adequate biomimetic microenvironment for mineralization for GBR of the scaffolds. Organ toxicity studies further confirm that no tissue architecture abnormalities were observed in hepatic, cardiac, and renal tissue sections. This finding manifests the feasibility of fabricating a mechanically adequate nanofibrous SPU scaffold by a biomimetic strategy and the advantages of Bi-nHA ornamentation in promoting osteoblast phenotype progression with microbial protection (on-demand) for GBR applications.
    Matched MeSH terms: Tissue Scaffolds/chemistry*
  10. Hazwani A, Sha'Ban M, Azhim A
    Organogenesis, 2019;15(4):120-136.
    PMID: 31495272 DOI: 10.1080/15476278.2019.1656997
    Extracellular matrix (ECM) based bioscaffolds prepared by decellularization has increasingly emerged in tissue engineering application because it has structural, biochemical, and biomechanical cues that have dramatic effects upon cell behaviors. Therefore, we developed a closed sonication decellularization system to prepare ideal bioscaffolds with minimal adverse effects on the ECM. The decellularization was achieved at 170 kHz of ultrasound frequency in 0.1% and 2% Sodium Dodecyl Sulphate (SDS) solution for 10 hours. The immersion treatment as control was performed to compare the decellularization efficiency with our system. Cell removal and ECM structure were determined by histological staining and biochemical assay. Biomechanical properties were investigated by the indentation testing to test the stiffness, a residual force and compression of bioscaffolds. Additionally, in vivo implantation was performed in rat to investigate host tissue response. Compared to native tissues, histological staining and biochemical assay confirm the absence of cellularity with preservation of ECM structure. Moreover, sonication treatment has not affected the stiffness [N/mm] and a residual force [N] of the aortic scaffolds except for compression [%] which 2% SDS significantly decreased compared to native tissues showing higher SDS has a detrimental effect on ECM structure. Finally, minimal inflammatory response was observed after 1 and 5 weeks of implantation. This study reported that the novelty of our developed closed sonication system to prepare ideal bioscaffolds for tissue engineering applications.
    Matched MeSH terms: Tissue Scaffolds/chemistry*
  11. Gorain B, Choudhury H, Pandey M, Kesharwani P, Abeer MM, Tekade RK, et al.
    Biomed Pharmacother, 2018 Aug;104:496-508.
    PMID: 29800914 DOI: 10.1016/j.biopha.2018.05.066
    Myocardial infarction (cardiac tissue death) is among the most prevalent causes of death among the cardiac patients due to the inability of self-repair in cardiac tissues. Myocardial tissue engineering is regarded as one of the most realistic strategies for repairing damaged cardiac tissue. However, hindrance in transduction of electric signals across the cardiomyocytes due to insulating properties of polymeric materials worsens the clinical viability of myocardial tissue engineering. Aligned and conductive scaffolds based on Carbon nanotubes (CNT) have gained remarkable recognition due to their exceptional attributes which provide synthetic but viable microenvironment for regeneration of engineered cardiomyocytes. This review presents an overview and critical analysis of pharmaceutical implications and therapeutic feasibility of CNT based scaffolds in improving the cardiac tissue regeneration and functionality. The expository analysis of the available evidence revealed that inclusion of single- or multi-walled CNT into fibrous, polymeric, and elastomeric scaffolds results in significant improvement in electrical stimulation and signal transduction through cardiomyocytes. Moreover, incorporation of CNT in engineering scaffolds showed a greater potential of augmenting cardiomyocyte proliferation, differentiation, and maturation and has improved synchronous beating of cardiomyocytes. Despite promising ability of CNT in promoting functionality of cardiomyocytes, their presence in scaffolds resulted in substantial improvement in mechanical properties and structural integrity. Conclusively, this review provides new insight into the remarkable potential of CNT aligned scaffolds in improving the functionality of engineered cardiac tissue and signifies their feasibility in cardiac tissue regenerative medicines and stem cell therapy.
    Matched MeSH terms: Tissue Scaffolds/chemistry*
  12. Gnaneshwar PV, Sudakaran SV, Abisegapriyan S, Sherine J, Ramakrishna S, Rahim MHA, et al.
    Mater Sci Eng C Mater Biol Appl, 2019 Mar;96:337-346.
    PMID: 30606541 DOI: 10.1016/j.msec.2018.11.033
    Far-flung evolution in tissue engineering enabled the development of bioactive and biodegradable materials to generate biocomposite nanofibrous scaffolds for bone repair and replacement therapies. Polymeric bioactive nanofibers are to biomimic the native extracellular matrix (ECM), delivering tremendous regenerative potentials for drug delivery and tissue engineering applications. It's been known from few decades that Zinc oxide (ZnO) nanoparticles are enhancing bone growth and providing proliferation of osteoblasts when incorporated with hydroxyapatite (HAp). We attempted to investigate the interaction between the human foetal osteoblasts (hFOB) with ZnO doped HAp incorporated biocomposite poly(L-lactic acid)-co-poly(ε-caprolactone) and silk fibroin (PLACL/SF) nanofibrous scaffolds for osteoblasts mineralization in bone tissue regeneration. The present study, we doped ZnO with HAp (ZnO(HAp) using the sol-gel ethanol condensation technique. The properties of PLACL/SF/ZnO(HAp) biocomposite nanofibrous scaffolds enhanced with doped and blended ZnO/HAp were characterized using Scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), Contact angle and Tensile studies to determine the morphology, functionality, wettability and stability. The in vitro study results showed that the addition of ZnO and HAp enhances the secretion of bone mineral matrix (98%) with smaller fiber diameter (139.4 ± 27 nm) due to the presence of silk fibroin showing potential tensile properties (322.4%), and increased the proliferation of osteoblasts for bone tissue regeneration.
    Matched MeSH terms: Tissue Scaffolds/chemistry*
  13. Fauzi MB, Lokanathan Y, Aminuddin BS, Ruszymah BHI, Chowdhury SR
    Mater Sci Eng C Mater Biol Appl, 2016 Nov 01;68:163-171.
    PMID: 27524008 DOI: 10.1016/j.msec.2016.05.109
    Collagen is the most abundant extracellular matrix (ECM) protein in the human body, thus widely used in tissue engineering and subsequent clinical applications. This study aimed to extract collagen from ovine (Ovis aries) Achilles tendon (OTC), and to evaluate its physicochemical properties and its potential to fabricate thin film with collagen fibrils in a random or aligned orientation. Acid-solubilized protein was extracted from ovine Achilles tendon using 0.35M acetic acid, and 80% of extracted protein was measured as collagen. SDS-PAGE and mass spectrometry analysis revealed the presence of alpha 1 and alpha 2 chain of collagen type I (col I). Further analysis with Fourier transform infrared spectrometry (FTIR), X-ray diffraction (XRD) and energy dispersive X-ray spectroscopy (EDS) confirms the presence of triple helix structure of col I, similar to commercially available rat tail col I. Drying the OTC solution at 37°C resulted in formation of a thin film with randomly orientated collagen fibrils (random collagen film; RCF). Introduction of unidirectional mechanical intervention using a platform rocker prior to drying facilitated the fabrication of a film with aligned orientation of collagen fibril (aligned collagen film; ACF). It was shown that both RCF and ACF significantly enhanced human dermal fibroblast (HDF) attachment and proliferation than that on plastic surface. Moreover, cells were distributed randomly on RCF, but aligned with the direction of mechanical intervention on ACF. In conclusion, ovine tendon could be an alternative source of col I to fabricate scaffold for tissue engineering applications.
    Matched MeSH terms: Tissue Scaffolds/chemistry*
  14. Choudhary R, Vecstaudza J, Krishnamurithy G, Raghavendran HRB, Murali MR, Kamarul T, et al.
    Mater Sci Eng C Mater Biol Appl, 2016 Nov 01;68:89-100.
    PMID: 27524000 DOI: 10.1016/j.msec.2016.04.110
    Diopside was synthesized from biowaste (Eggshell) by sol-gel combustion method at low calcination temperature and the influence of two different fuels (urea, l-alanine) on the phase formation temperature, physical and biological properties of the resultant diopside was studied. The synthesized materials were characterized by heating microscopy, FTIR, XRD, BET, SEM and EDAX techniques. BET analysis reveals particles were of submicron size with porosity in the nanometer range. Bone-like apatite deposition ability of diopside scaffolds was examined under static and circulation mode of SBF (Simulated Body Fluid). It was noticed that diopside has the capability to deposit HAP (hydroxyapatite) within the early stages of immersion. ICP-OES analysis indicates release of Ca, Mg, Si ions and removal of P ions from the SBF, but in different quantities from diopside scaffolds. Cytocompatability studies on human bone marrow stromal cells (hBMSCs) revealed good cellular attachment on the surface of diopside scaffolds and formation of extracellular matrix (ECM). This study suggests that the usage of eggshell biowaste as calcium source provides an effective substitute for synthetic starting materials to fabricate bioproducts for biomedical applications.
    Matched MeSH terms: Tissue Scaffolds/chemistry*
  15. Revati R, Abdul Majid MS, Ridzuan MJM, Normahira M, Mohd Nasir NF, Rahman Y MN, et al.
    Mater Sci Eng C Mater Biol Appl, 2017 Jun 01;75:752-759.
    PMID: 28415525 DOI: 10.1016/j.msec.2017.02.127
    The mechanical, thermal, and morphological properties of a 3D porous Pennisetum purpureum (PP)/polylactic acid (PLA) based scaffold were investigated. In this study, a scaffold containing P. purpureum and PLA was produced using the solvent casting and particulate leaching method. P. purpureum fibre, also locally known as Napier grass, is composed of 46% cellulose, 34% hemicellulose, and 20% lignin. PLA composites with various P. purpureum contents (10%, 20%, and 30%) were prepared and subsequently characterised. The morphologies, structures and thermal behaviours of the prepared composite scaffolds were characterised using field-emission scanning electron microscopy (FESEM), Fourier transform infrared spectroscopy (FTIR), and thermogravimetric analysis (TGA). The morphology was studied using FESEM; the scaffold possessed 70-200μm-sized pores with a high level of interconnectivity. The moisture content and mechanical properties of the developed porous scaffolds were further characterised. The P. purpureum/PLA scaffold had a greater porosity factor (99%) and compression modulus (5.25MPa) than those of the pure PLA scaffold (1.73MPa). From the results, it can be concluded that the properties of the highly porous P. purpureum/PLA scaffold developed in this study can be controlled and optimised. This can be used to facilitate the construction of implantable tissue-engineered cartilage.
    Matched MeSH terms: Tissue Scaffolds/chemistry*
  16. Rizwan M, Hamdi M, Basirun WJ
    J Biomed Mater Res A, 2017 Nov;105(11):3197-3223.
    PMID: 28686004 DOI: 10.1002/jbm.a.36156
    Bioglass® 45S5 (BG) has an outstanding ability to bond with bones and soft tissues, but its application as a load-bearing scaffold material is restricted due to its inherent brittleness. BG-based composites combine the amazing biological and bioactive characteristics of BG with structural and functional features of other materials. This article reviews the composites of Bioglass® in combination with metals, ceramics and polymers for a wide range of potential applications from bone scaffolds to nerve regeneration. Bioglass® also possesses angiogenic and antibacterial properties in addition to its very high bioactivity; hence, composite materials developed for these applications are also discussed. BG-based composites with polymer matrices have been developed for a wide variety of soft tissue engineering. This review focuses on the research that suggests the suitability of BG-based composites as a scaffold material for hard and soft tissues engineering. Composite production techniques have a direct influence on the bioactivity and mechanical behavior of scaffolds. A detailed discussion of the bioactivity, in vitro and in vivo biocompatibility and biodegradation is presented as a function of materials and its processing techniques. Finally, an outlook for future research is also proposed. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 3197-3223, 2017.
    Matched MeSH terms: Tissue Scaffolds/chemistry
  17. Sangkert S, Kamonmattayakul S, Chai WL, Meesane J
    J Biomed Mater Res A, 2017 Jun;105(6):1624-1636.
    PMID: 28000362 DOI: 10.1002/jbm.a.35983
    Maxillofacial bone defect is a critical problem for many patients. In severe cases, the patients need an operation using a biomaterial replacement. Therefore, to design performance biomaterials is a challenge for materials scientists and maxillofacial surgeons. In this research, porous silk fibroin scaffolds with mimicked microenvironment based on decellularized pulp and fibronectin were created as for bone regeneration. Silk fibroin scaffolds were fabricated by freeze-drying before modification with three different components: decellularized pulp, fibronectin, and decellularized pulp/fibronectin. The morphologies of the modified scaffolds were observed by scanning electron microscopy. Existence of the modifying components in the scaffolds was proved by the increase in weights and from the pore size measurements of the scaffolds. The modified scaffolds were seeded with MG-63 osteoblasts and cultured. Testing of the biofunctionalities included cell viability, cell proliferation, calcium content, alkaline phosphatase activity (ALP), mineralization and histological analysis. The results demonstrated that the modifying components organized themselves into aggregations of a globular structure. They were arranged themselves into clusters of aggregations with a fibril structure in the porous walls of the scaffolds. The results showed that modified scaffolds with a mimicked microenvironment of decellularized pulp/fibronectin were suitable for cell viability since the cells could attach and spread into most of the pores of the scaffold. Furthermore, the scaffolds could induce calcium synthesis, mineralization, and ALP activity. The results indicated that modified silk fibroin scaffolds with a mimicked microenvironment of decellularized pulp/fibronectin hold promise for use in tissue engineering in maxillofacial bone defects. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 1624-1636, 2017.
    Matched MeSH terms: Tissue Scaffolds/chemistry*
  18. Zulkifli FH, Hussain FSJ, Harun WSW, Yusoff MM
    Int J Biol Macromol, 2019 Feb 01;122:562-571.
    PMID: 30365990 DOI: 10.1016/j.ijbiomac.2018.10.156
    This study is focusing to develop a porous biocompatible scaffold using hydroxyethyl cellulose (HEC) and poly (vinyl alcohol) (PVA) with improved cellular adhesion profiles and stability. The combination of HEC and PVA were synthesized using freeze-drying technique and characterized using SEM, ATR-FTIR, TGA, DSC, and UTM. Pore size of HEC/PVA (2-40 μm) scaffolds showed diameter in a range of both pure HEC (2-20 μm) and PVA (14-70 μm). All scaffolds revealed high porosity above 85%. The water uptake of HEC was controlled by PVA cooperation in the polymer matrix. After 7 days, all blended scaffolds showed low degradation rate with the increased of PVA composition. The FTIR and TGA results explicit possible chemical interactions and mass loss of blended scaffolds, respectively. The Tg values of DSC curved in range of HEC and PVA represented the miscibility of HEC/PVA blend polymers. Higher Young's modulus was obtained with the increasing of HEC value. Cell-scaffolds interaction demonstrated that human fibroblast (hFB) cells adhered to polymer matrices with better cell proliferation observed after 7 days of cultivation. These results suggested that biocompatible of HEC/PVA scaffolds fabricated by freeze-drying method might be suitable for skin tissue engineering applications.
    Matched MeSH terms: Tissue Scaffolds/chemistry*
  19. Alias MA, Buenzli PR
    Int J Numer Method Biomed Eng, 2020 01;36(1):e3279.
    PMID: 31724309 DOI: 10.1002/cnm.3279
    Most biological tissues grow by the synthesis of new material close to the tissue's interface, where spatial interactions can exert strong geometric influences on the local rate of growth. These geometric influences may be mechanistic or cell behavioural in nature. The control of geometry on tissue growth has been evidenced in many in vivo and in vitro experiments, including bone remodelling, wound healing, and tissue engineering scaffolds. In this paper, we propose a generalisation of a mathematical model that captures the mechanistic influence of curvature on the joint evolution of cell density and tissue shape during tissue growth. This generalisation allows us to simulate abrupt topological changes such as tissue fragmentation and tissue fusion, as well as three dimensional cases, through a level-set-based method. The level-set method developed introduces another Eulerian field than the level-set function. This additional field represents the surface density of tissue-synthesising cells, anticipated at future locations of the interface. Numerical tests performed with this level-set-based method show that numerical conservation of cells is a good indicator of simulation accuracy, particularly when cusps develop in the tissue's interface. We apply this new model to several situations of curvature-controlled tissue evolutions that include fragmentation and fusion.
    Matched MeSH terms: Tissue Scaffolds/chemistry
  20. Mh Busra F, Rajab NF, Tabata Y, Saim AB, B H Idrus R, Chowdhury SR
    J Tissue Eng Regen Med, 2019 05;13(5):874-891.
    PMID: 30811090 DOI: 10.1002/term.2842
    The full-thickness skin wound is a common skin complication affecting millions of people worldwide. Delayed treatment of this condition causes the loss of skin function and integrity that could lead to the development of chronic wounds or even death. This study was aimed to develop a rapid wound treatment modality using ovine tendon collagen type I (OTC-I) bio-scaffold with or without noncultured skin cells. Genipin (GNP) and carbodiimide (EDC) were used to cross-link OTC-I scaffold to improve the mechanical strength of the bio-scaffold. The physicochemical, biomechanical, biodegradation, biocompatibility, and immunogenicity properties of OTC-I scaffolds were investigated. The efficacy of this treatment approach was evaluated in an in vivo skin wound model. The results demonstrated that GNP cross-linked OTC-I scaffold (OTC-I_GNP) had better physicochemical and mechanical properties compared with EDC cross-linked OTC-I scaffold (OTC-I_EDC) and noncross-link OTC-I scaffold (OTC-I_NC). OTC-I_GNP and OTC-I_NC demonstrated no toxic effect on cells as it promoted higher cell attachment and proliferation of both primary human epidermal keratinocytes and human dermal fibroblasts compared with OTC-I_EDC. Both OTC-I_GNP and OTC-I_NC exhibited spontaneous formation of bilayer structure in vitro. Immunogenic evaluation of OTC-I scaffolds, in vitro and in vivo, revealed no sign of immune response. Finally, implantation of OTC-I_NC and OTC-I_GNP scaffolds with noncultured skin cells demonstrated enhanced healing with superior skin maturity and microstructure features, resembling native skin in contrast to other treatment (without noncultured skin cells) and control group. The findings of this study, therefore, suggested that both OTC-I scaffolds with noncultured skin cells could be promising for the rapid treatment of full-thickness skin wound.
    Matched MeSH terms: Tissue Scaffolds/chemistry*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links