METHODS: From October 2004 to May 2015, respiratory specimens were received from patients with respiratory tract infection suspicion. Influenza detection was carried out by either cell culture isolation, immunofluorescence or PCR-based assays. A RT-PCR was performed to distinguish both lineages by agarose gel electrophoresis. Whole genome amplification was performed using the universal primer set by Zhou et al. in 2012, and subsequently sequenced using Roche 454 GS Junior platform. Bioinformatic analysis was performed to characterise the sequences with B/Malaysia/2506/2007 and B/Florida/4/2006 corresponding sequences as reference of (B/VIC) and (B/YAM), respectively.
RESULTS: A total of 118 FLUBV (75 FLUBV/VIC and 43 FLUBV/YAM), from 2004 to 2006, 2008-2011 and 2012-2015 seasons, were studied. The whole genome of 58 FLUBV/VIC and 42 FLUBV/YAM viruses was successfully amplified. Based on HA sequences, most FLUBV/VIC viruses (37; 64%) belonged to clade 1A (B/Brisbane/60/2008) except to 11 (19%), which fell within clade 1B (B/HongKong/514/2009) and 10 (17%) to B/Malaysia/2506/2004. Nine (20%) FLUBV/YAM viruses belonged to clade 2 (B/Massachusetts/02/2012), 18 (42%) to clade 3 (B/Phuket/3073/2013) and 15 (38%) fell within Florida/4/2006. Numerous intra-lineage reassortments in PB2, PB1, NA and NS were found in 2 2010-2011 viruses. An important inter-lineage reassortment event from 2008 to 2009 (11), 2010-2011 (26) and 2012-2013 (3) FLUBV/VIC (clade 1) strains to FLUBV/YAM (clade 3) was found, in addition to 1 reassortant NS in 2010-2011 B/VIC virus.
CONCLUSIONS: Intra- and inter-lineage reassortment episodes were revealed by WGS. While PB2-PB1-HA remained in complex, NP and NS reassortant viruses were found in both lineages. Despite reassorment events are not often, the characterisation only by HA and NA sequences might be underestimating their detection.
OBJECTIVES: To determine if the pathogens adenovirus (ADV), coronavirus (CoV), encephalomyocarditis virus (EMCV), enterovirus (EV), influenza A-D (IAV, IBV, ICV, and IDV), porcine circovirus 2 (PCV2), and porcine rotaviruses A and C (RVA and RVC), are aerosolized at the animal-interface, and if humans working in these environments are carrying these viruses in their nasal airways.
STUDY: This cross-sectional study took place in Sarawak, Malaysia among 11 pig farms, 2 abattoirs, and 3 animal markets in June and July of 2017. Pig feces, pig oral secretions, bioaerosols, and worker nasal wash samples were collected and analyzed via rPCR and rRT-PCR for respiratory and diarrheal viruses.
RESULTS: In all, 55 pig fecal, 49 pig oral or water, 45 bioaerosol, and 78 worker nasal wash samples were collected across 16 sites. PCV2 was detected in 21 pig fecal, 43 pig oral or water, 3 bioaerosol, and 4 worker nasal wash samples. In addition, one or more bioaerosol or pig samples were positive for EV, IAV, and RVC, and one or more worker samples were positive for ADV, CoV, IBV, and IDV.
CONCLUSIONS: This study demonstrates that nucleic acids from a number of targeted viruses were present in pig oral secretions and pig fecal samples, and that several viruses were detected in bioaerosol samples or in the nasal passages of humans with occupational exposure to pigs. These results demonstrate the need for future research in strengthening viral surveillance at the human-animal interface, specifically through expanded bioaerosol sampling efforts and a seroepidemiological study of individuals with exposure to pigs in this region for PCV2 infection.
AIM OF THIS REVIEW: This review is comprehensively discussed the information on the anti-infective properties of P. indica and its secondary metabolites, and highlight the potential of the plant as a new source of anti-infective agents.
MATERIALS AND METHODS: Scientific databases such as Scopus, Google Scholar, ScienceDirect, PubMed, Wiley Online Library, and ACS Publications were used to gather the relevant information on the ability of P. indica to fight infections, with the leaves and roots receiving most of the attention.
RESULTS: Anti-bacterial, anti-mycobacterial, anti-malarial, and anti-viral activities have been the most exploited. Most studies were carried out on the crude extracts of the plant and in most studies the bioactive extracts were not standardized or chemically characterized. Several studies have reported the anti-infective activity of several bioactive components of P. indica including caffeoylquinic acids, terpenoid glycosides, thiophenes, and kaempferol.
CONCLUSIONS: The strong anti-infective effect and underlying mechanisms of the compounds provide insights into the potential of P. indica as a source of new leads for the development of anti-infective agents for use in food and pharmaceutical industries.
OBJECTIVES AND METHODS: An epidemiological surveillance study was conducted from Oct 2015 to April 2016 to investigate the outbreak. EI virus strains were isolated in embryonated eggs from suspected equines swab samples and were subjected to genome sequencing using M13 tagged segment specific primers. Phylogenetic analyses of the nucleotide sequences were concluded using Geneious. Haemagglutinin (HA), Neuraminidase (NA), Matrix (M) and nucleoprotein (NP) genes nucleotide and amino acid sequences of the isolated viruses were aligned with those of OIE recommended, FC-1, FC-2, and contemporary isolates of influenza A viruses from other species.
RESULTS: HA and NA genes amino acid sequences were very similar to Tennessee/14 and Malaysia/15 of FC-1 and clustered with the contemporary isolates recently reported in the USA. Phylogenetic analysis showed that these viruses were mostly identical (with 99.6% and 97.4% nucleotide homology) to, and were reassortants containing chicken/Pakistan/14 (H7N3) and Canine/Beijing/10 (H3N2) like M and NP genes. Genetic analysis indicated that A/equine/Pakistan/16 viruses were most probably the result of several re-assortments between the co-circulating avian and equine viruses, and were genetically unlike the other equine viruses due to the presence of H7N3 or H3N2 like M and NP genes.
CONCLUSION: Epidemiological data analysis indicated the potential chance of mixed, and management such as mixed farming system by keeping equine, canine and backyard poultry together in confined premises as the greater risk factors responsible for the re-assortments. Other factors might have contributed to the spread of the epidemic, including low awareness level, poor control of equine movements, and absence of border control disease strategies.