Displaying publications 581 - 600 of 8276 in total

Abstract:
Sort:
  1. Chandran C, Tham HY, Abdul Rahim R, Lim SHE, Yusoff K, Song AA
    PeerJ, 2022;10:e12648.
    PMID: 35251775 DOI: 10.7717/peerj.12648
    BACKGROUND: Staphylococcus aureus is an opportunistic Gram-positive bacterium that can form biofilm and become resistant to many types of antibiotics. The treatment of multi-drug resistant Staphylococcus aureus (MDRSA) infection is difficult since it possesses multiple antibiotic-resistant mechanisms. Endolysin and virion-associated peptidoglycan hydrolases (VAPGH) enzymes from bacteriophage have been identified as potential alternative antimicrobial agents. This study aimed to assess the ability of Lactococcus lactis NZ9000 secreting endolysin and VAPGH from S. aureus bacteriophage 88 to inhibit the growth of S. aureus PS 88, a MDRSA.

    METHOD: Endolysin and VAPGH genes were cloned and expressed in L. lactis NZ9000 after fusion with the SPK1 signal peptide for secretion. The recombinant proteins were expressed and purified, then analyzed for antimicrobial activity using plate assay and turbidity reduction assay. In addition, the spent media of the recombinant lactococcal culture was analyzed for its ability to inhibit the growth of the S. aureus PS 88.

    RESULTS: Extracellular recombinant endolysin (Endo88) and VAPGH (VAH88) was successfully expressed and secreted from L. lactis which was able to inhibit S. aureus PS 88, as shown by halozone formation on plate assays as well as inhibition of growth in the turbidity reduction assay. Moreover, it was observed that the spent media from L. lactis NZ9000 expressing Endo88 and VAH88 reduced the viability of PS 88 by up to 3.5-log reduction with Endo88 being more efficacious than VAH88. In addition, Endo88 was able to lyse all MRSA strains tested and Staphylococcus epidermidis but not the other bacteria while VAH88 could only lyse S. aureus PS 88.

    CONCLUSION: Recombinant L. lactisNZ9000 expressing phage 88 endolysin may be potentially developed into a new antimicrobial agent for the treatment of MDRSA infection.

    Matched MeSH terms: N-Acetylmuramoyl-L-alanine Amidase/genetics
  2. Yang J, Chen S, Duan F, Wang X, Zhang X, Lian B, et al.
    Cells, 2022 Nov 06;11(21).
    PMID: 36359908 DOI: 10.3390/cells11213511
    Mitochondrial cardiomyopathy (MCM) is characterized by abnormal heart-muscle structure and function, caused by mutations in the nuclear genome or mitochondrial DNA. The heterogeneity of gene mutations and various clinical presentations in patients with cardiomyopathy make its diagnosis, molecular mechanism, and therapeutics great challenges. This review describes the molecular epidemiology of MCM and its clinical features, reviews the promising diagnostic tests applied for mitochondrial diseases and cardiomyopathies, and details the animal and cellular models used for modeling cardiomyopathy and to investigate disease pathogenesis in a controlled in vitro environment. It also discusses the emerging therapeutics tested in pre-clinical and clinical studies of cardiac regeneration.
    Matched MeSH terms: DNA, Mitochondrial/genetics
  3. Ling L, Aldoghachi AF, Chong ZX, Ho WY, Yeap SK, Chin RJ, et al.
    Int J Mol Sci, 2022 Dec 06;23(23).
    PMID: 36499713 DOI: 10.3390/ijms232315382
    Detecting breast cancer (BC) at the initial stages of progression has always been regarded as a lifesaving intervention. With modern technology, extensive studies have unraveled the complexity of BC, but the current standard practice of early breast cancer screening and clinical management of cancer progression is still heavily dependent on tissue biopsies, which are invasive and limited in capturing definitive cancer signatures for more comprehensive applications to improve outcomes in BC care and treatments. In recent years, reviews and studies have shown that liquid biopsies in the form of blood, containing free circulating and exosomal microRNAs (miRNAs), have become increasingly evident as a potential minimally invasive alternative to tissue biopsy or as a complement to biomarkers in assessing and classifying BC. As such, in this review, the potential of miRNAs as the key BC signatures in liquid biopsy are addressed, including the role of artificial intelligence (AI) and machine learning platforms (ML), in capitalizing on the big data of miRNA for a more comprehensive assessment of the cancer, leading to practical clinical utility in BC management.
    Matched MeSH terms: Biomarkers, Tumor/genetics
  4. Khan FB, Uddin S, Elderdery AY, Goh KW, Ming LC, Ardianto C, et al.
    Cells, 2022 Nov 18;11(22).
    PMID: 36429092 DOI: 10.3390/cells11223664
    Cardiovascular diseases (CVDs) are one of the leading causes of death worldwide. Accumulating evidences have highlighted the importance of exosomes and non-coding RNAs (ncRNAs) in cardiac physiology and pathology. It is in general consensus that exosomes and ncRNAs play a crucial role in the maintenance of normal cellular function; and interestingly it is envisaged that their potential as prospective therapeutic candidates and biomarkers are increasing rapidly. Considering all these aspects, this review provides a comprehensive overview of the recent understanding of exosomes and ncRNAs in CVDs. We provide a great deal of discussion regarding their role in the cardiovascular system, together with providing a glimpse of ideas regarding strategies exploited to harness their potential as a therapeutic intervention and prospective biomarker against CVDs. Thus, it could be envisaged that a thorough understanding of the intricacies related to exosomes and ncRNA would seemingly allow their full exploration and may lead clinical settings to become a reality in near future.
    Matched MeSH terms: RNA, Untranslated/genetics
  5. Azlan UW, Lau YL, Hamid MHA, Jelip J, Ooi CH, Mudin RN, et al.
    Trop Biomed, 2022 Dec 01;39(4):504-510.
    PMID: 36602208 DOI: 10.47665/tb.39.4.006
    The Plasmodium knowlesi secreted protein with an altered thrombospondin repeat (PkSPATR) is an important protein that helps in the parasite's invasion into the host cell. This protein has been regarded as one of the potential vaccine candidates against P. knowlesi infection. This study investigates the genetic diversity and natural selection of PkSPATR gene of P. knowlesi clinical isolates from Malaysia. PCR amplification of the full length PkSPATR gene was performed on 60 blood samples of infected P. knowlesi patients from Peninsular Malaysia and Malaysian Borneo. The amplified PCR products were cloned and sequenced. Sequence analysis of PkSPATR from Malaysia showed higher nucleotide diversity (CDS p: 0.01462) than previously reported Plasmodium vivax PvSPATR (p = 0.0003). PkSPATR from Peninsular Malaysia was observed to have slightly higher diversity (CDS p: 0.01307) than those from Malaysian Borneo (CDS p: 0.01212). Natural selection analysis on PkSPATR indicated significant purifying selection. Multiple amino acid sequence alignment revealed 69 polymorphic sites. The phylogenetic tree and haplotype network did not show any distinct clustering of PkSPATR. The low genetic diversity level, natural selection and absence of clustering implied functional constrains of the PkSPATR protein.
    Matched MeSH terms: Thrombospondins/genetics
  6. Wong PF, Dharmani M, Ramasamy TS
    Drug Discov Today, 2023 Jan;28(1):103424.
    PMID: 36332835 DOI: 10.1016/j.drudis.2022.103424
    Mesenchymal stem cells (MSCs) are susceptible to replicative senescence and senescence-associated functional decline, which hampers their use in regenerative medicine. Senotherapeutics are drugs that target cellular senescence through senolytic and senomorphic functions to induce apoptosis and suppress chronic inflammation caused by the senescence-associated secreted phenotype (SASP), respectively. Therefore, senotherapeutics could delay aging-associated degeneration. They could also be used to eliminate senescent MSCs during in vitro expansion or bioprocessing for transplantation. In this review, we discuss the role of senotherapeutics in MSC senescence, rejuvenation, and transplantation, with examples of some tested compounds in vitro. The prospects, challenges, and the way forward in clinical applications of senotherapeutics in cell-based therapeutics are also discussed.
    Matched MeSH terms: Cell Aging/genetics
  7. Mutusamy P, Banga Singh KK, Su Yin L, Petersen B, Sicheritz-Ponten T, Clokie MRJ, et al.
    Int J Mol Sci, 2023 Feb 12;24(4).
    PMID: 36835084 DOI: 10.3390/ijms24043678
    Salmonella infections across the globe are becoming more challenging to control due to the emergence of multidrug-resistant (MDR) strains. Lytic phages may be suitable alternatives for treating these multidrug-resistant Salmonella infections. Most Salmonella phages to date were collected from human-impacted environments. To further explore the Salmonella phage space, and to potentially identify phages with novel characteristics, we characterized Salmonella-specific phages isolated from the Penang National Park, a conserved rainforest. Four phages with a broad lytic spectrum (kills >5 Salmonella serovars) were further characterized; they have isometric heads and cone-shaped tails, and genomes of ~39,900 bp, encoding 49 CDSs. As the genomes share a <95% sequence similarity to known genomes, the phages were classified as a new species within the genus Kayfunavirus. Interestingly, the phages displayed obvious differences in their lytic spectrum and pH stability, despite having a high sequence similarity (~99% ANI). Subsequent analysis revealed that the phages differed in the nucleotide sequence in the tail spike proteins, tail tubular proteins, and portal proteins, suggesting that the SNPs were responsible for their differing phenotypes. Our findings highlight the diversity of novel Salmonella bacteriophages from rainforest regions, which can be explored as an antimicrobial agent against MDR-Salmonella strains.
    Matched MeSH terms: Salmonella/genetics
  8. Haque MA, Rafii MY, Yusoff MM, Ali NS, Yusuff O, Arolu F, et al.
    Mol Biol Rep, 2023 Mar;50(3):2795-2812.
    PMID: 36592290 DOI: 10.1007/s11033-022-07853-9
    Natural and man-made ecosystems worldwide are subjected to flooding, which is a form of environmental stress. Genetic variability in the plant response to flooding involves variations in metabolism, architecture, and elongation development that are related with a low oxygen escape strategy and an opposing quiescence scheme that enables prolonged submergence endurance. Flooding is typically associated with a decrease in O2 in the cells, which is especially severe when photosynthesis is absent or limited, leading to significant annual yield losses globally. Over the past two decades, considerable advancements have been made in understanding of mechanisms of rice adaptation and tolerance to flooding/submergence. The mapping and identification of Sub1 QTL have led to the development of marker-assisted selection (MAS) breeding approach to improve flooding-tolerant rice varieties in submergence-prone ecosystems. The Sub1 incorporated in rice varieties showed tolerance during flash flood, but not during stagnant conditions. Hence, gene pyramiding techniques can be applied to combine/stack multiple resistant genes for developing flood-resilient rice varieties for different types of flooding stresses. This review contains an update on the latest advances in understanding the molecular mechanisms, metabolic adaptions, and genetic factors governing rice flooding tolerance. A better understanding of molecular genetics and adaptation mechanisms that enhance flood-tolerant varieties under different flooding regimes was also discussed.
    Matched MeSH terms: Adaptation, Physiological/genetics
  9. Lim L, Ab Majid AH
    Sci Rep, 2023 Jan 27;13(1):1506.
    PMID: 36707655 DOI: 10.1038/s41598-023-28774-y
    Tropical bed bugs, Cimex hemipterus, which commonly feeds on human blood, may be useful in forensic applications. However, unlike the common bed bug, Cimex lectularius, there is no information regarding tropical bed bug, C. hemipterus, being studied for its applications in forensics. Thus, in this study, lab-reared post-feeding tropical bed bugs were subjected to Short Tandem Repeat (STR) and Single Nucleotide Polymorphism (SNP) analyses to establish the usage of tropical bed bugs in forensics. Several post-feeding times (0, 5, 14, 30, and 45 days) were tested to determine when a complete human DNA profile could still be obtained after the bugs had taken the blood meal. The results showed that complete STR and SNP profiles could only be obtained from the D0 sample. The profile completeness decreased over time, and partial STR and SNP profiles could be obtained up to 45 days post-blood meal. The generated SNP profiles, complete or partial, were also viable for HIrisPlex-S phenotype prediction. In addition, field-collected bed bugs were also used to examine the viability of the tested STR markers, and the STR markers detected mixed profiles. The findings of this study established that the post-blood meal of tropical bed bugs is a suitable source of human DNA for forensic STR and SNP profiling. Human DNA recovered from bed bugs can be used to identify spatial and temporal relations of events.
    Matched MeSH terms: Microsatellite Repeats/genetics
  10. Tajuddin S, Khan AM, Chong LC, Wong CL, Tan JS, Ina-Salwany MY, et al.
    Appl Microbiol Biotechnol, 2023 Feb;107(2-3):749-768.
    PMID: 36520169 DOI: 10.1007/s00253-022-12312-3
    Vibrio alginolyticus is a Gram-negative bacterium commonly associated with mackerel poisoning. A bacteriophage that specifically targets and lyses this bacterium could be employed as a biocontrol agent for treating the bacterial infection or improving the shelf-life of mackerel products. However, only a few well-characterized V. alginolyticus phages have been reported in the literature. In this study, a novel lytic phage, named ΦImVa-1, specifically infecting V. alginolyticus strain ATCC 17749, was isolated from Indian mackerel. The phage has a short latent period of 15 min and a burst size of approximately 66 particles per infected bacterium. ΦImVa-1 remained stable for 2 h at a wide temperature (27-75 °C) and within a pH range of 5 to 10. Transmission electron microscopy revealed that ΦImVa-1 has an icosahedral head of approximately 60 nm in diameter with a short tail, resembling those in the Schitoviridae family. High throughput sequencing and bioinformatics analysis elucidated that ΦImVa-1 has a linear dsDNA genome of 77,479 base pairs (bp), with a G + C content of ~ 38.72% and 110 predicted gene coding regions (106 open reading frames and four tRNAs). The genome contains an extremely large virion-associated RNA polymerase gene and two smaller non-virion-associated RNA polymerase genes, which are hallmarks of schitoviruses. No antibiotic genes were found in the ΦImVa-1 genome. This is the first paper describing the biological properties, morphology, and the complete genome of a V. alginolyticus-infecting schitovirus. When raw mackerel fish flesh slices were treated with ΦImVa-1, the pathogen loads reduced significantly, demonstrating the potential of the phage as a biocontrol agent for V. alginolyticus strain ATCC 17749 in the food. KEY POINTS: • A novel schitovirus infecting Vibrio alginolyticus ATCC 17749 was isolated from Indian mackerel. • The complete genome of the phage was determined, analyzed, and compared with other phages. • The phage is heat stable making it a potential biocontrol agent in extreme environments.
    Matched MeSH terms: DNA-Directed RNA Polymerases/genetics
  11. Ten SK, Chin YM, Noor PJ, Hassan K
    Singapore Med J, 1990 Aug;31(4):355-9.
    PMID: 2255934
    Cytogenetic investigations were carried out on 117 women with primary amenorrhea who had been referred to our Genetics Laboratory by clinicians throughout Malaysia, after exclusion of other causes of the disorder. Thirty-six cases (31%) showed numerical or structural abnormalities of the sex chromosomes. These can be broadly classified into 4 main types, namely, presence of a Y chromosome (14%), X-chromosome aneuploidies (8%), structural anomalies of the X-chromosome (7%) and lastly, presence of a marker chromosome (2%). Mosaics constituted 17% of the abnormalities observed, always in association with a 45,X cell line. There was no observable correlation between the phenotype of the patients and their respective abnormal karyotypes. The aetiological role of sex chromosomal abnormalities in these amenorrheic women is discussed.
    Matched MeSH terms: Amenorrhea/genetics*
  12. Rayani M, Unyah NZ, Vafafar A, Hatam GR
    Environ Sci Pollut Res Int, 2020 Nov;27(32):40652-40663.
    PMID: 32671708 DOI: 10.1007/s11356-020-10062-1
    The main objective of this study was to characterize the Giardia duodenalis isolates from Iranian patients in Fars Province, south of Iran by biochemical and molecular methods. Fifteen mass cultivated of G. duodenalis isolates in modified TYI-S-33 medium were analyzed using isoenzyme electrophoresis and PCR genotyping. Polyacrylamide gel electrophoresis (PAGE) of five different enzyme systems was used to characterize isolates: (i) glucose-6-phosphate dehydrogenase, (ii) glucose phosphate isomerase, (iii) malate dehydrogenase, (iv) malic enzyme, and (v) phosphoglucomutase. As well, a fragment of the SSU-rDNA (292 bp) gene was amplified by PCR using the primers RH11 and RH4. The sequencing of the PCR products and phylogenetic tree were performed. The isoenzyme electrophoretic profiles divided fifteen G. duodenalis isolates into four zymodemes. G6PD, GPI, MDH, ME, and PGM enzyme systems showed 1, 2, 2, 3, and 3 enzyme pattern, respectively. G6PD isoenzyme pattern had the most homogeneity, while isoenzyme patterns of ME and PGM had the most heterogeneity in our study. Genotyping results indicated that the zymodemes 1-4 were categorized in assemblage A based on the SSU-rDNA gene. Phylogenetic analysis showed that all four zymodemes were distributed within the cluster of assemblage A. Our results indicated that both isoenzyme and DNA analyses were useful to characterize the isolates of Giardia and distinguishing various zymodemes and assemblages. It could be suggested that the genetic diversity among isoenzymes profiles of G. duodenalis may explain the variable clinical manifestations, pathogenicity, host response, drug susceptibility, and treatment efficacy of human giardiasis.
    Matched MeSH terms: Isoenzymes/genetics
  13. Liau XL, Salvamani S, Gunasekaran B, Chellappan DK, Rhodes A, Ulaganathan V, et al.
    Br J Biomed Sci, 2023;80:11103.
    PMID: 37025163 DOI: 10.3389/bjbs.2023.11103
    Colorectal cancer (CRC) is ranked as the third most common cancer and second deadliest cancer in both men and women in the world. Currently, the cure rate and 5-year survival rate of CRC patients remain relatively low. Therefore, discovering a novel molecular biomarker that can be used to improve CRC screening, diagnosis, prognosis, and treatment would be beneficial. Long non-coding RNA colon cancer-associated transcript 1 (CCAT 1) has been found overexpressed in CRC and is associated with CRC tumorigenesis and treatment outcome. CCAT 1 has a high degree of specificity and sensitivity, it is readily detected in CRC tissues and is significantly overexpressed in both premalignant and malignant CRC tissues. Besides, CCAT 1 is associated with clinical manifestation and advanced features of CRC, such as lymph node metastasis, high tumor node metastasis stage, differentiation, invasion, and distant metastasis. In addition, they can upregulate oncogenic c-MYC and negatively modulate microRNAs via different mechanisms of action. Furthermore, dysregulated CCAT 1 also enhances the chemoresistance in CRC cells while downregulation of them reverses the malignant phenotypes of cancer cells. In brief, CCAT 1 serves as a potential screening, diagnostic and prognostic biomarker in CRC, it also serves as a potential therapeutic marker to treat CRC patients.
    Matched MeSH terms: Biomarkers, Tumor/genetics
  14. Zhong Y, Tan GW, Bult J, Veltmaat N, Plattel W, Kluiver J, et al.
    BMC Cancer, 2024 Apr 02;24(1):407.
    PMID: 38566053 DOI: 10.1186/s12885-024-12191-z
    BACKGROUND: Primary central nervous system lymphoma (PCNSL) are rare mature B-cell lymphoproliferative diseases characterized by a high incidence of MYD88 L265P and CD79B Y196 hotspot mutations. Diagnosis of PCNSL can be challenging. The aim of the study was to analyze the detection rate of the MYD88 L265P and CD79B Y196 mutation in cell free DNA (cfDNA) in plasma of patients with PCNSL.

    METHODS: We analyzed by digital droplet PCR (ddPCR) to determine presence of the MYD88 L265P and CD79B Y196 hotspot mutations in cfDNA isolated from plasma of 24 PCNSL patients with active disease. Corresponding tumor samples were available for 14 cases. Based on the false positive rate observed in 8 healthy control samples, a stringent cut-off for the MYD88 L265P and CD79B Y196 mutation were set at 0.3% and 0.5%, respectively.

    RESULTS: MYD88 L265P and CD79B Y196 mutations were detected in 9/14 (64%) and 2/13 (15%) tumor biopsies, respectively. In cfDNA samples, the MYD88 L265P mutation was detected in 3/24 (12.5%), while the CD79B Y196 mutation was not detected in any of the 23 tested cfDNA samples. Overall, MYD88 L265P and/or CD79B Y196 were detected in cfDNA in 3/24 cases (12.5%). The detection rate of the combined analysis did not improve the single detection rate for either MYD88 L265P or CD79B Y196.

    CONCLUSION: The low detection rate of MYD88 L265P and CD79B Y196 mutations in cfDNA in the plasma of PCNSL patients argues against its use in routine diagnostics. However, detection of MYD88 L265P by ddPCR in cfDNA in the plasma could be considered in challenging cases.

    Matched MeSH terms: Myeloid Differentiation Factor 88/genetics
  15. Dong Y, Kang Z, Zhang Z, Zhang Y, Zhou H, Liu Y, et al.
    Sci Bull (Beijing), 2024 Apr 15;69(7):949-967.
    PMID: 38395651 DOI: 10.1016/j.scib.2024.02.003
    Myocardial ischemia-reperfusion injury (MIRI) is a major hindrance to the success of cardiac reperfusion therapy. Although increased neutrophil infiltration is a hallmark of MIRI, the subtypes and alterations of neutrophils in this process remain unclear. Here, we performed single-cell sequencing of cardiac CD45+ cells isolated from the murine myocardium subjected to MIRI at six-time points. We identified diverse types of infiltrating immune cells and their dynamic changes during MIRI. Cardiac neutrophils showed the most immediate response and largest changes and featured with functionally heterogeneous subpopulations, including Ccl3hi Neu and Ym-1hi Neu, which were increased at 6 h and 1 d after reperfusion, respectively. Ym-1hi Neu selectively expressed genes with protective effects and was, therefore, identified as a novel specific type of cardiac cell in the injured heart. Further analysis indicated that neutrophils and their subtypes orchestrated subsequent immune responses in the cardiac tissues, especially instructing the response of macrophages. The abundance of Ym-1hi Neu was closely correlated with the therapeutic efficacy of MIRI when neutrophils were specifically targeted by anti-Lymphocyte antigen 6 complex locus G6D (Ly6G) or anti-Intercellular cell adhesion molecule-1 (ICAM-1) neutralizing antibodies. In addition, a neutrophil subtype with the same phenotype as Ym-1hi Neu was detected in clinical samples and correlated with prognosis. Ym-1 inhibition exacerbated myocardial injury, whereas Ym-1 supplementation significantly ameliorated injury in MIRI mice, which was attributed to the tilt of Ym-1 on the polarization of macrophages toward the repair phenotype in myocardial tissue. Overall, our findings reveal the anti-inflammatory phenotype of Ym-1hi Neu and highlight its critical role in myocardial protection during the early stages of MIRI.
    Matched MeSH terms: Intercellular Adhesion Molecule-1/genetics
  16. Gani M, Mohd-Ridwan AR, Sitam FT, Kamarudin Z, Selamat SS, Awang NMZ, et al.
    World J Microbiol Biotechnol, 2024 Feb 28;40(4):111.
    PMID: 38416247 DOI: 10.1007/s11274-023-03868-x
    The gut microbiome refers to the microorganism community living within the digestive tract. The environment plays a crucial role in shaping the gut microbiome composition of animals. The gut microbiome influences the health and behavior of animals, including the critically endangered Malayan tiger (Panthera tigris jacksoni). However, the gut microbiome composition of Malayan tigers, especially those living in their natural habitats, remains poorly understood. To address this knowledge gap, we used next-generation sequencing DNA metabarcoding techniques to analyze the gut microbiome of wild Malayan tigers using fecal samples collected from their natural habitats and in captivity. Our aim was to determine the gut microbiota composition of the Malayan tiger, considering the different types of habitat environments. The results revealed a diverse microbial community within the gut microbiome of Malayan tigers. The prominent phyla that were observed included Firmicutes, Proteobacteria, Actinobacteriota, Fusobacteriota and Bacteroidota. Beta diversity analysis revealed significant differences in gut microbiome composition of Malayan tigers that inhabited oil palm plantations, in villages and protected areas. Diversity analysis also revealed significant difference in the gut microbiome between wild and captive Malayan tigers. However, the distinctions of gut microbiome between wild and captive alpha diversity did not yield significant differences. The differences in microbiome diversity resulted from the interplay of dietary intake and environmental factors. This information will facilitate the establishment of focused conservation approaches and enhance our understanding of the effect of microbiome composition on Malayan tiger health.
    Matched MeSH terms: RNA, Ribosomal, 16S/genetics
  17. Yan W, Ge HM, Wang G, Jiang N, Mei YN, Jiang R, et al.
    Proc Natl Acad Sci U S A, 2014 Dec 23;111(51):18138-43.
    PMID: 25425666 DOI: 10.1073/pnas.1417304111
    The Pictet-Spengler (PS) reaction constructs plant alkaloids such as morphine and camptothecin, but it has not yet been noticed in the fungal kingdom. Here, a silent fungal Pictet-Spenglerase (FPS) gene of Chaetomium globosum 1C51 residing in Epinephelus drummondhayi guts is described and ascertained to be activable by 1-methyl-L-tryptophan (1-MT). The activated FPS expression enables the PS reaction between 1-MT and flavipin (fungal aldehyde) to form "unnatural" natural products with unprecedented skeletons, of which chaetoglines B and F are potently antibacterial with the latter inhibiting acetylcholinesterase. A gene-implied enzyme inhibition (GIEI) strategy has been introduced to address the key steps for PS product diversifications. In aggregation, the work designs and validates an innovative approach that can activate the PS reaction-based fungal biosynthetic machinery to produce unpredictable compounds of unusual and novel structure valuable for new biology and biomedicine.
    Matched MeSH terms: Chaetomium/genetics
  18. Yebra G, Harling-Lee JD, Lycett S, Aarestrup FM, Larsen G, Cavaco LM, et al.
    Proc Natl Acad Sci U S A, 2022 Dec 13;119(50):e2211217119.
    PMID: 36469788 DOI: 10.1073/pnas.2211217119
    Most new pathogens of humans and animals arise via switching events from distinct host species. However, our understanding of the evolutionary and ecological drivers of successful host adaptation, expansion, and dissemination are limited. Staphylococcus aureus is a major bacterial pathogen of humans and a leading cause of mastitis in dairy cows worldwide. Here we trace the evolutionary history of bovine S. aureus using a global dataset of 10,254 S. aureus genomes including 1,896 bovine isolates from 32 countries in 6 continents. We identified 7 major contemporary endemic clones of S. aureus causing bovine mastitis around the world and traced them back to 4 independent host-jump events from humans that occurred up to 2,500 y ago. Individual clones emerged and underwent clonal expansion from the mid-19th to late 20th century coinciding with the commercialization and industrialization of dairy farming, and older lineages have become globally distributed via established cattle trade links. Importantly, we identified lineage-dependent differences in the frequency of host transmission events between humans and cows in both directions revealing high risk clones threatening veterinary and human health. Finally, pangenome network analysis revealed that some bovine S. aureus lineages contained distinct sets of bovine-associated genes, consistent with multiple trajectories to host adaptation via gene acquisition. Taken together, we have dissected the evolutionary history of a major endemic pathogen of livestock providing a comprehensive temporal, geographic, and gene-level perspective of its remarkable success.
    Matched MeSH terms: Livestock/genetics
  19. Guo L, Malara D, Battaglia P, Waiho K, Davis DA, Deng Y, et al.
    Genome Biol Evol, 2024 Mar 02;16(3).
    PMID: 38408866 DOI: 10.1093/gbe/evae037
    The suppression of recombination is considered a hallmark of sex chromosome evolution. However, previous research has identified undifferentiated sex chromosomes and sex determination by single SNP in the greater amberjack (Seriola dumerili). We observed the same phenomena in the golden pompano (Trachinotus ovatus) of the same family Carangidae and discovered a different sex-determining SNP within the same gene Hsd17b1. We propose an evolutionary model elucidating the turnover of sex-determining mutations by highlighting the contrasting dynamics between purifying selection, responsible for maintaining W-linked Hsd17b1, and neutral evolution, which drives Z-linked Hsd17b1. Additionally, sporadic loss-of-function mutations in W-linked Hsd17b1 contribute to the conversion of W chromosomes into Z chromosomes. This model was directly supported by simulations, closely related species, and indirectly by zebrafish mutants. These findings shed new light on the early stages of sex chromosome evolution.
    Matched MeSH terms: Sex Chromosomes/genetics
  20. Mohamad Zamberi NN, Abuhamad AY, Low TY, Mohtar MA, Syafruddin SE
    CRISPR J, 2024 Apr;7(2):73-87.
    PMID: 38635328 DOI: 10.1089/crispr.2023.0078
    Clustered regularly interspaced short palindromic repeats (CRISPR)-based genome editing is evolving into an essential tool in the field of biological and medical research. Notably, the development of catalytically deactivated Cas9 (dCas9) enzyme has substantially broadened its traditional boundaries in gene editing or perturbation. The conjugation of dCas9 with various molecular effectors allows precise control over transcriptional processes, epigenetic modifications, visualization of chromosomal dynamics, and several other applications. This expanded repertoire of CRISPR-Cas9 applications has emerged as an invaluable molecular tool kit that empowers researchers to comprehensively interrogate and gain insights into health and diseases. This review delves into the advancements in Cas9 protein engineering, specifically on the generation of various dCas9 tools that have significantly enhanced the CRISPR-based technology capability and versatility. We subsequently discuss the multifaceted applications of dCas9, especially in interrogating the regulation and function of genes that involve in supporting cancer pathogenesis. In addition, we also delineate the designing and utilization of dCas9-based tools as well as highlighting its current constraints and transformative potentials in cancer research.
    Matched MeSH terms: CRISPR-Cas Systems/genetics
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links