Displaying publications 621 - 640 of 10535 in total

Abstract:
Sort:
  1. Gorjian H, Khaligh NG
    Mol Divers, 2022 Dec;26(6):3047-3055.
    PMID: 34982359 DOI: 10.1007/s11030-021-10364-7
    A practical and facile synthesis of various coumarin derivatives was conducted using a liquid phase of 4,4'-trimethylenedipiperidine as a safe and greener dual-task reagent under catalyst-free and solvent-free conditions. This reagent is a commercially available solid and can be handled easily, having a liquid phase over a vast temperature range, high thermal stability, low toxicity, and good solubility in green solvents such as water and ethanol. It is worth mentioning that 4,4'-trimethylenedipiperidine could be completely recovered and regenerated after a simple process. The current method has other merits, including (a) minimizing the use of high-risk and toxic reagents and solvents; (b) the use of a secure and recoverable medium-organocatalyst instead of metal-based catalysts, (c) avoid tedious processes, harsh conditions, and a multi-step process for the preparation of catalysts, (d) transform phenol and salicyladehyde derivatives into the corresponding coumarin derivatives in good to high yields, (e) minimize hazardous waste generation. TMDP could be easily recovered and reused several times with no change in its activity. Furthermore, the current work demonstrated that the liquid phase of 4,4'-trimethylenedipiperidine can be a promising medium in organic reaction at higher temperatures due to its broad liquid range temperature, thermal stability, acceptor/donor hydrogen bond property, and other unique merits. New methodology for the synthesis of coumarines using liquid phase of TMDP under mild conditions.
    Matched MeSH terms: Solvents/chemistry
  2. Wong TW, Nurulaini H
    Drug Dev Ind Pharm, 2012 Dec;38(12):1417-27.
    PMID: 22309449 DOI: 10.3109/03639045.2011.653364
    Alginate-chitosan pellets prepared by extrusion-spheronization technique exhibited fast drug dissolution.
    Matched MeSH terms: Acetates/chemistry; Alginates/chemistry*; Biocompatible Materials/chemistry*; Drug Carriers/chemistry*; Drug Implants/chemistry; Calcium Compounds/chemistry; Chitosan/chemistry*
  3. Tamilvanan S, Kumar BA
    Drug Dev Ind Pharm, 2011 Sep;37(9):1003-15.
    PMID: 21417616 DOI: 10.3109/03639045.2011.555407
    Acetazolamide (ACZM)-loaded anionic, cationic, and neutral-charged oil-in-water nanosized emulsions were prepared and compared with their mean droplet diameter, surface charge, entrapment efficiency, freeze-thaw cycling stability, in vitro drug release, and transcorneal permeation.
    Matched MeSH terms: Acetazolamide/chemistry*; Anions/chemistry; Carbonic Anhydrase Inhibitors/chemistry*; Cations/chemistry; Emulsions/chemistry*; Phospholipids/chemistry*; Nanoparticles/chemistry*
  4. Yakubu R, Peh KK, Tan YT
    Drug Dev Ind Pharm, 2009 Dec;35(12):1430-8.
    PMID: 19929202 DOI: 10.3109/03639040902988566
    The purpose of this study was to design a 24-hour controlled porosity osmotic pump system that utilizes polyvinyl pyrrolidone (PVP) as an osmotic-suspending/release retarding agent of drugs.
    Matched MeSH terms: Chemistry, Pharmaceutical/methods*; Excipients/chemistry*; Ketoprofen/chemistry; Pharmaceutic Aids/chemistry*; Povidone/chemistry*; Pseudoephedrine/chemistry
  5. Yang J, Xu S, Wang W, Ran X, Ching YC, Sui X, et al.
    Carbohydr Polym, 2023 Jan 15;300:120253.
    PMID: 36372510 DOI: 10.1016/j.carbpol.2022.120253
    In this work, a systematic coupling study of silane coupling agent between starch and epoxidized soybean oils (ESO) was carried out. Starch was modified by 3-aminopropyl trimethoxy silane (APMS) with various contents of NaOH. The APMS-modified starch was incorporated with ESO to synthesize the bioplastics by solution casting. As demonstrated by the FTIR spectra, the hydrogen bond interactions among starch molecules were inhibited by the modification. This outcome provided higher interaction and compatibility of starch with ESO, as confirmed by FESEM. TGA showed that the thermal stability of starch decreased considerably after the silylation. In contrast, the produced bioplastics with silylated starch exhibited higher thermal stability than the control sample. Regarding the bioplastics, an obvious increase of tensile strength from 5.78 MPa to 9.29 MPa was obtained. This work suggested a simple and effective modification technique by APMS to improve compatibility of starch/ESO-based bioplastics with superior mechanical and thermal properties.
    Matched MeSH terms: Starch/chemistry
  6. Zaman R, Islam RA, Chowdhury EH
    J Control Release, 2022 11;351:779-804.
    PMID: 36202153 DOI: 10.1016/j.jconrel.2022.09.066
    The established cancer treatment strategy in clinical setting is based on chemo and radiation therapy, having limitations due to severe side-effects and drug-resistance. Small molecule chemo-drugs target any fast-dividing cells irrespective of healthy or defective origin. As a result, a substantial amount of healthy tissue is also destroyed. Moreover, failure to recognize the heterogeneity of tumour tissue results in drug-resistance over the course of time. On the other hand, peptides and proteins actively target somatic changes that are signature to any specific tumour tissue. Development and metastasis of cancer cells require unique disruption/alteration of protein activity. Identification of those wild and cancerous genotypes and phenotypes is the key to establishing easy 'targets' for protein based targeted therapeutics. The approach is cytostatic and tissue specific, which reduces drug toxicity. Biopharmaceutical products based on proteins and peptides are slowly re-directing oncology from cytotoxic small molecular treatment approach to target oriented cytostatic strategy. This review focuses on current and upcoming peptide and protein-based precision therapeutics. At the same time, the study also shades light on the technological advancement in the field of protein and peptide-based therapeutics.
    Matched MeSH terms: Peptides/chemistry
  7. Hoo DY, Low ZL, Low DYS, Tang SY, Manickam S, Tan KW, et al.
    Ultrason Sonochem, 2022 Nov;90:106176.
    PMID: 36174272 DOI: 10.1016/j.ultsonch.2022.106176
    With rising consumer demand for natural products, a greener and cleaner technology, i.e., ultrasound-assisted extraction, has received immense attention given its effective and rapid isolation for nanocellulose compared to conventional methods. Nevertheless, the application of ultrasound on a commercial scale is limited due to the challenges associated with process optimization, high energy requirement, difficulty in equipment design and process scale-up, safety and regulatory issues. This review aims to narrow the research gap by placing the current research activities into perspectives and highlighting the diversified applications, significant roles, and potentials of ultrasound to ease future developments. In recent years, enhancements have been reported with ultrasound assistance, including a reduction in extraction duration, minimization of the reliance on harmful chemicals, and, most importantly, improved yield and properties of nanocellulose. An extensive review of the strengths and weaknesses of ultrasound-assisted treatments has also been considered. Essentially, the cavitation phenomena enhance the extraction efficiency through an increased mass transfer rate between the substrate and solvent due to the implosion of microbubbles. Optimization of process parameters such as ultrasonic intensity, duration, and frequency have indicated their significance for improved efficiency.
    Matched MeSH terms: Solvents/chemistry
  8. Alhajj MN, Daud F, Al-Maweri SA, Johari Y, Ab-Ghani Z, Jaafar M, et al.
    J Esthet Restor Dent, 2022 Dec;34(8):1166-1178.
    PMID: 36239133 DOI: 10.1111/jerd.12974
    OBJECTIVE: To investigate the effect of calcium hydroxide intracanal medicament on the push-out bond strength of resin-based and calcium silicate-based endodontic sealers.

    METHODS: A comprehensive search of was conducted for all relevant in-vitro studies. All randomized controlled in-vitro studies that evaluated the effect of calcium hydroxide on the push-out bond strength of resin-based or calcium silicate-based endodontic sealers were assessed. The variables of interest were extracted, and the risk of the included studies was evaluated. The standardized mean difference was calculated and the significance level was set at p value <0.05.

    RESULTS: A total of 26 studies were eligible for analysis. There were 45 independent comparison groups and 1009 recruited teeth. The pooled data showed no significant difference in push-out bond strength between calcium hydroxide and control group in the resin-based group (SMD = 0.03; 95% CI = -0.55, 0.60; p = 0.93), and calcium silicate-based group (SMD = 0.02; 95% CI = -0.31, 0.35; p = 0.90). Most of the studies (21 out of 26) were at medium risk of bias and five studies showed a low risk of bias.

    CONCLUSION: The available evidence suggests that calcium hydroxide used as intracanal medication does not influence the push-out bond strength of the resin- and calcium silicate-based endodontic sealers.

    CLINICAL SIGNIFICANCE: The results of this meta-analysis suggest that calcium hydroxide used as intracanal medication does not influence the push-out bond strength of resin-based and calcium silicate-based endodontic sealers.

    Matched MeSH terms: Calcium Hydroxide/chemistry
  9. Ayoub AA, Mahmoud AH, Ribeiro JS, Daghrery A, Xu J, Fenno JC, et al.
    Int J Mol Sci, 2022 Nov 09;23(22).
    PMID: 36430238 DOI: 10.3390/ijms232213761
    This study was aimed at engineering photocrosslinkable azithromycin (AZ)-laden gelatin methacryloyl fibers via electrospinning to serve as a localized and biodegradable drug delivery system for endodontic infection control. AZ at three distinct amounts was mixed with solubilized gelatin methacryloyl and the photoinitiator to obtain the following fibers: GelMA+5%AZ, GelMA+10%AZ, and GelMA+15%AZ. Fiber morphology, diameter, AZ incorporation, mechanical properties, degradation profile, and antimicrobial action against Aggregatibacter actinomycetemcomitans and Actinomyces naeslundii were also studied. In vitro compatibility with human-derived dental pulp stem cells and inflammatory response in vivo using a subcutaneous rat model were also determined. A bead-free fibrous microstructure with interconnected pores was observed for all groups. GelMA and GelMA+10%AZ had the highest fiber diameter means. The tensile strength of the GelMA-based fibers was reduced upon AZ addition. A similar pattern was observed for the degradation profile in vitro. GelMA+15%AZ fibers led to the highest bacterial inhibition. The presence of AZ, regardless of the concentration, did not pose significant toxicity. In vivo findings indicated higher blood vessel formation, mild inflammation, and mature and thick well-oriented collagen fibers interweaving with the engineered fibers. Altogether, AZ-laden photocrosslinkable GelMA fibers had adequate mechanical and degradation properties, with 15%AZ displaying significant antimicrobial activity without compromising biocompatibility.
    Matched MeSH terms: Gelatin/chemistry
  10. Kian LK, Jawaid M, Nasef MM, Fouad H, Karim Z
    Int J Biol Macromol, 2021 Dec 01;192:654-664.
    PMID: 34655581 DOI: 10.1016/j.ijbiomac.2021.10.042
    In this study, poly(lactic acid) (PLA)/poly(butylene succinate) (PBS) dual-layer membranes filled with 0-3 wt% cellulose nanowhisker (CNWs) were fabricated with aim to remove metal ions from wastewater. An integrated method was employed in the membrane fabrication process by combining water vapor-induced and crystallization-induced phase inversions. The membrane thickness was measured in between 11 and 13 μm, which did not pose significant flux deviation during filtration process. The 3% CNW filled membrane showed prominent and well-laminated two layers structure. Meanwhile, the increase in CNWs from 0 to 3% loadings could improve the membrane porosity (43-74%) but reducing pore size (2.45-0.54 μm). The heat resistance of neat membrane enhanced by 1% CNW but decreased with loadings of 2-3% CNWs due to flaming behavior of sulphated nanocellulose. Membrane with 3% CNW displayed the tensile strength (23.5 MPa), elongation at break (7.1%), and Young's modulus (0.75 GPa) as compared to other samples. For wastewater filtration performance, the continuous operation test showed that 3% CNW filled membrane exhibited the highest removal efficiency for both cobalt and nickel metal ions reaching to 83% and 84%, respectively. We concluded that CNWs filled dual-layer membranes have potential for future development in the removal of heavy metal ions from wastewater streams.
    Matched MeSH terms: Butylene Glycols/chemistry*; Cellulose/chemistry*; Ions/chemistry*; Polyesters/chemistry*; Polymers/chemistry*; Metals, Heavy/chemistry*; Nanocomposites/chemistry*
  11. Saadi S, Ghazali HM, Saari N, Abdulkarim SM
    Biophys Chem, 2021 06;273:106565.
    PMID: 33780688 DOI: 10.1016/j.bpc.2021.106565
    Therapeutic peptides derived proteins with alpha-reconformation states like antibody shape have shown potential effects in combating terrible diseases linked with earlier signs of angiogensis, mutagenesis and transgenesis. Alpha reconformation in material design refers to the folding of the peptide chains and their transitions under reversible chemical bonds of disulfide chemical bridges and further non-covalence lesions. Thus, the rational design of signal peptides into alpha-helix is intended in increasing the defending effects of peptides into cores like adjuvant antibiotic and/or vaccines. Thereby, the signal peptides are able in displaying multiple eradicating regions by changing crystal-depositions and deviation angles. These types of molecular structures could have multiple advantages in tracing disease syndromes and impurities by increasing the host defense against the fates of pathogens and viruses, eventually leading to the loss in signaling by increasing peptide susceptibility levels to folding and unfolding and therefore, formation of transgenic peptide models. Alpha reconformation peptides is aimed in triggering as well as other regulatory functions such as remodulating metabolic chain disorders of lipolysis and glucolysis by increasing the insulin and leptin resistance for best lipid storages and lipoprotein density distributions.
    Matched MeSH terms: Peptides/chemistry*
  12. Low SY, Tan JY, Ban ZH, Siwayanan P
    J Oleo Sci, 2021 Aug 05;70(8):1027-1037.
    PMID: 34248098 DOI: 10.5650/jos.ess21078
    Liquid detergent has an increasing demand in North America, Western Europe, and Southeast Asia countries owing to its convenience to use and efficiency to clean. Alpha methyl ester sulfonates (α-MES), an anionic surfactant derived from palm oil based methyl ester, was reported to have lower manufacturing cost, good detergency with less dosage, excellent biodegradability, higher tolerance to hard water, and lower eco-toxicity as compared to linear alkylbenzene sulfonates (LABS). LABS was known as the workhorse of the detergent industry in the 20th century. Although palm-based α-MES was successfully used as the sole surfactant in powder detergent, there are still some unsettled technical issues related to phase stability and viscosity when using this anionic surfactant in heavy-duty laundry liquid detergent formulations. This paper will review not only the market overview of detergents, the application and performance of green surfactants in laundry detergents but also will highlight the technical issues related to the application of palm-based α-MES in laundry liquid detergent and some of the possible methods to overcome the formulation adversities.
    Matched MeSH terms: Alkanesulfonates/chemistry*; Detergents/chemistry*; Esters/chemistry; Glycolipids/chemistry; Sulfuric Acid Esters/chemistry; Surface-Active Agents/chemistry*; Green Chemistry Technology
  13. Abid O, Imran S, Taha M, Ismail NH, Jamil W, Kashif SM, et al.
    Mol Divers, 2021 May;25(2):995-1009.
    PMID: 32301032 DOI: 10.1007/s11030-020-10084-4
    The β-glucuronidase, a lysosomal enzyme, catalyzes the cleavage of glucuronosyl-O-bonds. Its inhibitors play a significant role in different medicinal therapies as they cause a decrease in carcinogen-induced colonic tumors by reducing the level of toxic substances present in the intestine. Among those inhibitors, bisindole derivatives had displayed promising β-glucuronidase inhibition activity. In the current study, hydrazone derivatives of bisindolymethane (1-30) were synthesized and evaluated for in vitro β-glucuronidase inhibitory activity. Twenty-eight analogs demonstrated better activity (IC50 = 0.50-46.5 µM) than standard D-saccharic acid 1,4-lactone (IC50 = 48.4 ± 1.25 µM). Compounds with hydroxyl group like 6 (0.60 ± 0.01 µM), 20 (1.50 ± 0.10 µM) and 25 (0.50 ± 0.01 µM) exhibited the most potent inhibitory activity, followed by analogs with fluorine 21 (3.50 ± 0.10 µM) and chlorine 23 (8.20 ± 0.20 µM) substituents. The presence of hydroxyl group at the aromatic side chain was observed as the main contributing factor in the inhibitory potential. From the docking studies, it was predicted that the active compounds can fit properly in the binding groove of the β-glucuronidase and displayed significant binding interactions with essential residues.
    Matched MeSH terms: Glucuronidase/chemistry
  14. Li D, Faiza M, Ali S, Wang W, Tan CP, Yang B, et al.
    Appl Biochem Biotechnol, 2018 Apr;184(4):1061-1072.
    PMID: 28948493 DOI: 10.1007/s12010-017-2594-1
    A highly efficient process for reducing the fatty acid (FA) content of high-acid rice bran oil (RBO) was developed by immobilized partial glycerides-selective lipase SMG1-F278N-catalyzed esterification/transesterification using methanol as a novel acyl acceptor. Molecular docking simulation indicated that methanol was much closer to the catalytic serine (Ser-171) compared with ethanol and glycerol, which might be one of the reasons for its high efficiency in the deacidification of high-acid RBO. Additionally, the reaction parameters were optimized to minimize the FA content of high-acid RBO. Under the optimal conditions (substrate molar ratio of methanol to FAs of 1.8:1, enzyme loading of 40 U/g, and at 30 °C), FA content decreased from 25.14 to 0.03% after 6 h of reaction. Immobilized SMG1-F278N exhibited excellent methanol tolerance and retained almost 100% of its initial activity after being used for ten batches. After purification by molecular distillation, the final product contained 97.86% triacylglycerol, 2.10% diacylglycerol, and 0.04% FA. The acid value of the final product was 0.09 mg KOH/g, which reached the grade one standard of edible oil. Overall, methanol was a superior acyl acceptor for the deacidification of high-acid RBO and the high reusability of immobilized SMG1-F278N indicates an economically attractive process.
    Matched MeSH terms: Methanol/chemistry*
  15. Nugroho AE, Hashimoto A, Wong CP, Yokoe H, Tsubuki M, Kaneda T, et al.
    J Nat Med, 2018 Jan;72(1):64-72.
    PMID: 28822030 DOI: 10.1007/s11418-017-1109-2
    Ceramicines are a series of limonoids which were isolated from the bark of Malaysian Chisocheton ceramicus (Meliaceae) and show various biological activities. Ceramicine B, in particular, has been reported to show a strong lipid droplet accumulation (LDA) inhibitory activity on a mouse pre-adipocyte cell line (MC3T3-G2/PA6). With the purpose of discovering compounds with stronger activity than ceramicine B, we further investigated the constituents of C. ceramicus. As a result, from the bark of C. ceramicus four new ceramicines (ceramicines M-P, 1-4) were isolated, and their structures were determined on the basis of NMR and mass spectroscopic analyses in combination with NMR chemical shift calculations. LDA inhibitory activity of 1-4 was evaluated. Compounds 1-3 showed LDA inhibitory activity, and 3 showed better selectivity than ceramicine B while showing activity at the same order of magnitude as ceramicine B. Since 3, which possess a carbonyl group at C-7, showed better selectivity than 5, which possess a 7α-OH group, while showing activity at the same order of magnitude as 5, we also investigated the effect of the substituent at C-7 by synthesizing several derivatives and evaluating their LDA inhibitory activity. Accordingly, we confirmed the importance of the presence of a 7α-OH group to the LDA inhibitory activity.
    Matched MeSH terms: Limonins/chemistry*
  16. Sutirman ZA, Sanagi MM, Abd Karim J, Abu Naim A, Wan Ibrahim WA
    Int J Biol Macromol, 2018 Feb;107(Pt A):891-897.
    PMID: 28935540 DOI: 10.1016/j.ijbiomac.2017.09.061
    Crosslinked chitosan beads were grafted with N-vinyl-2-pyrrolidone (NVP) using ammonium persulfate (APS) as free radical initiator. Important variables on graft copolymerization such as temperature, reaction time, concentration of initiator and concentration of monomer were optimized. The results revealed optimum conditions for maximum grafting of NVP on 1g crosslinked chitosan as follows: reaction temperature, 60°C; reaction time, 2h and concentrations of APS and NVP of 2.63×10-1M and 26.99×10-1M, respectively. The modified chitosan beads were characterized by FTIR spectroscopy, 13C NMR, SEM and BET to provide evidence of successful crosslinking and grafting reactions. The resulting material (cts(x)-g-PNVP) was evaluated as adsorbent for the removal of Cu(II) ions from aqueous solutions in a batch experiment. The Langmuir and Freundlich adsorption models were also applied to describe the equilibrium isotherms. The results showed that the adsorption of the copper ions onto the beads agreed well with Langmuir model with the maximum capacity (qmax) of 122mgg-1.
    Matched MeSH terms: Copper/chemistry*; Cross-Linking Reagents/chemistry; Ions/chemistry; Pyrrolidinones/chemistry; Water/chemistry; Water Pollutants, Chemical/chemistry*; Chitosan/chemistry*
  17. Tan PY, Tan TB, Chang HW, Tey BT, Chan ES, Lai OM, et al.
    J Agric Food Chem, 2017 Dec 06;65(48):10651-10657.
    PMID: 29124932 DOI: 10.1021/acs.jafc.7b03521
    Considering the health benefits of tocotrienols, continuous works have been done on the encapsulation and delivery of these compounds. In this study, we encapsulated tocotrienols in chitosan-alginate microcapsules and evaluated their release profile. Generally, these tocotrienols microcapsules (TM) displayed high thermal stability. When subjected to pH adjustments (pH 1-9), we observed that the release of tocotrienols was the highest (33.78 ± 0.18%) under basic conditions. The TM were also unstable against the effect of ionic strength, with a high release (70.73 ± 0.04%) of tocotrienols even at a low sodium chloride concentration (50 mM). As for the individual isomers, δ-tocotrienol was the most sensitive to pH and ionic strength. In contrast, β-/γ-tocotrienols were the most ionic-stable isomers but more responsive toward thermal treatment. Simulated gastrointestinal model showed that the chitosan-alginate-based TM could be used to retain tocotrienols in the gastric and subsequently release them in the intestines for possible absorption.
    Matched MeSH terms: Alginates/chemistry*; Capsules/chemistry*; Drug Carriers/chemistry*; Hexuronic Acids/chemistry; Glucuronic Acid/chemistry; Tocotrienols/chemistry*; Chitosan/chemistry*
  18. Abdul Manan FM, Attan N, Widodo N, Aboul-Enein HY, Wahab RA
    Prep Biochem Biotechnol, 2018 Jan 02;48(1):92-102.
    PMID: 29194017 DOI: 10.1080/10826068.2017.1405021
    An alternative environmentally benign support was prepared from chitosan-chitin nanowhiskers (CS/CNWs) for covalent immobilization of Rhizomucor miehei lipase (RML) to increase the operational stability and recyclability of RML in synthesizing eugenyl benzoate. The CS/CNWs support and RML-CS/CNWs were characterized using X-ray diffraction, fluorescent microscopy, and Fourier transform infrared spectroscopy. Efficiency of the RML-CS/CNWs was compared to the free RML to synthesize eugenyl benzoate for parameters: reaction temperature, stirring rate, reusability, and thermal stability. Under optimal experimental conditions (50°C, 250 rpm, catalyst loading 3 mg/mL), a twofold increase in yield of eugenyl benzoate was observed for RML-CS/CNWs as compared to free RML, with the former achieving maximum yield of the ester at 62.1% after 5 hr. Results demonstrated that the strategy adopted to prepare RML-CS/CNWs was useful, producing an improved and prospectively greener biocatalyst that supported a sustainable process to prepare eugenyl benzoate. Moreover, RML-CS/CNWs are biodegradable and perform esterification reactions under ambient conditions as compared to the less eco-friendly conventional acid catalyst. This research provides a facile and promising approach for improving activity of RML in which the resultant RML-CS/CNWs demonstrated good operational stability for up to eight successive esterification cycles to synthesize eugenyl benzoate.
    Matched MeSH terms: Benzoates/chemistry; Chitin/chemistry*; Enzymes, Immobilized/chemistry; Lipase/chemistry; Rhizomucor/chemistry; Chitosan/chemistry*; Nanostructures/chemistry
  19. Rasib SZM, Ahmad Z, Khan A, Akil HM, Othman MBH, Hamid ZAA, et al.
    Int J Biol Macromol, 2018 Mar;108:367-375.
    PMID: 29222015 DOI: 10.1016/j.ijbiomac.2017.12.021
    In this study, chitosan-poly(methacrylic acid-co-N-isopropylacrylamide) [chitosan-p(MAA-co-NIPAM)] hydrogels were synthesized by emulsion polymerization. In order to be used as a carrier for drug delivery systems, the hydrogels had to be biocompatible, biodegradable and multi-responsive. The polymerization was performed by copolymerize MAA and NIPAM with chitosan polymer to produce a chitosan-based hydrogel. Due to instability during synthesis and complexity of components to produce the hydrogel, further study at different times of reaction is important to observe the synthesis process, the effect of end product on swelling behaviour and the most important is to find the best way to control the hydrogel synthesis in order to have an optimal swelling behaviour for drug release application. Studied by using Fourier transform infra-red (FTIR) spectroscopy found that, the synthesized was successfully produced stable chitosan-based hydrogel with PNIPAM continuously covered the outer surface of hydrogel which influenced much on the stability during synthesis. The chitosan and PMAA increased the zeta potential of the hydrogel and the chitosan capable to control shrinkage above human body temperature. The chitosan-p(MAA-co-NIPAM) hydrogels also responses to pH and temperature thus improved the ability to performance as a drug carrier.
    Matched MeSH terms: Acrylic Resins/chemistry; Methacrylates/chemistry; Polymers/chemistry; Hydrogels/chemistry*; Chitosan/chemistry*; Chemistry Techniques, Synthetic*
  20. Fagge II, Khalid K, Noh MAM, Yusof NSM, Zain SM, Khan MN
    J Oleo Sci, 2018 Jan 01;67(1):55-66.
    PMID: 29238023 DOI: 10.5650/jos.ess17033
    Behaviors of cationic and nonionic mixed micelles in the form of hexadecyltrimethylammonium bromide (HDABr) and hexadecyltrimethylammonium bromide-Polyethylene glycol hexadecyl ether (C16E20), in the presence of inert salts (NaBr and 3,5-dichlorosodium benzoate), by the use of reaction probe between Pp and ionized PhSH (Pp = piperidine and PhSH = phenyl salicylate), has been reported in this work. The values of RXBr (RXBr denotes ion exchange constants obtained in the presence of micelles of different structural features) or KXBr (KXBr denotes ion exchange constants obtained in the presence of micelles of the same structural features) for 3,5-Cl2C6H3CO2- were almost the same at three different [HDABr]T (0.006, 0.010 and 0.015 M). The average value of RXBr or KXBr determined, in the presence of pure HDABr micelles, using semi empirical kinetic (SEK) method appeared to be almost 2½-fold larger (RXBr or KXBr = 198) than that in the presence of mixed HDABr-C16E20 micelles (RXBr or KXBr = 78). Rheological measurements indicated the existence of wormlike/twisted micelles and vesicle at 0.015 M pure HDABr, various [3,5-Cl2C6H3CO2Na], and 25 and 35℃ whereas there were evidence of only spherical micelles in the presence of mixed HDABr-C16E20 ([HDABr]T = 0.015 M and [C16E20]T = 0.006 M) at both temperatures.
    Matched MeSH terms: Quaternary Ammonium Compounds/chemistry; Bromides/chemistry*; Cetomacrogol/chemistry; Chlorobenzoates/chemistry*; Piperidines/chemistry*; Salicylates/chemistry*; Sodium Compounds/chemistry*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links