Displaying publications 621 - 640 of 3445 in total

Abstract:
Sort:
  1. Azrizal-Wahid N, Sofian-Azirun M, Low VL
    PMID: 33609991 DOI: 10.1016/j.cimid.2021.101621
    Flea-borne pathogens were screened from 100 individual cat fleas using a PCR approach, of which 38 % were infected with at least one bacterium. Overall, 28 % of the flea samples were positive for Bartonella as inferred from ITS DNA region. Of these, 25 % (7/28) were identified as Bartonella clarridgeiae, 42.9 % (12/28) as Bartonella henselae consisted of two different strains, and 32.1 % (9/28) as Bartonella koehlerae, which was detected for the first time in Malaysia. Sequencing of gltA amplicons detected Rickettsia DNA in 14 % of cat flea samples, all of them identified as Rickettsia asembonensis (100 %). None of the flea samples were positive for Mycoplasma DNA in 16S rRNA gene detection. Four fleas were co-infected with Bartonella and Rickettsia DNAs. Statistical analyses reveal no significant association between bacterial infection and mtDNA diversity of the cat flea. Nevertheless, in all types of pathogen infections, infected populations demonstrated lower nucleotide and haplotype diversities compared to uninfected populations. Moreover, lower haplotype numbers were observed in infected populations.
    Matched MeSH terms: DNA, Mitochondrial/genetics*
  2. Wong SF, Chong AL, Mak JW, Tan J, Ling SJ, Ho TM
    Exp Appl Acarol, 2011 Oct;55(2):123-33.
    PMID: 21468750 DOI: 10.1007/s10493-011-9460-6
    Mites are known causes of allergic diseases. Currently, identification of mites based on morphology is difficult if only one mite is isolated from a (dust) sample, or when only one gender is found, or when the specimen is not intact especially with the loss of the legs. The purpose of this study was to use polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) of the ITS2 gene, to complement the morphological data for the identification of mites to the species level. For this, six species were cultured: Dermatophagoides pteronyssinus, D. farinae, Blomia tropicalis, Tyrophagus putrescentiae, Aleuroglyphus ovatus and Glycycometus malaysiensis. Genomic DNA of the mites was extracted, quantified, amplified and digested individually with restriction enzymes. Hinf I and Ple I differentiated the restriction patterns of D. pteronyssinus and D. farinae. Bfa I and Alu I enzymes differentiated B. tropicalis and G. malaysiensis. Ple I enzyme was useful for the differentiation between T. putrescentiae and A. ovatus. Bfa I was useful for the differentiation of G. malaysiensis from the rest of the species. In conclusion, different species of mites can be differentiated using PCR-RFLP of ITS2 region. With the established PCR-RFLP method in this study, identification of these mites to the species level is possible even if complete and intact adult specimens of both sexes are not available. As no study to date has reported PCR-RFLP method for the identification of domestic mites, the established method should be validated for the identification of other species of mites that were not included in this study.
    Matched MeSH terms: DNA, Intergenic*
  3. Lee SK, Tan KW, Ng SW
    J Inorg Biochem, 2016 06;159:14-21.
    PMID: 26901628 DOI: 10.1016/j.jinorgbio.2016.02.010
    Three transition metal derivatives (Zn, Cu, and Ni) of 2-[2-bromoethyliminomethyl]-4-[ethoxymethyl]phenol (L) were synthesized by the reaction of the metal salts with the Schiff base ligand in one pot. In the crystal structure of [Zn(L)Br], the Schiff base ligand binds to the metal center through its phenolate oxygen and imine nitrogen, and adopts a distorted tetrahedral geometry. These compounds were found to inhibit topoisomerase I (topo I) activity, induce DNA cleavage and show DNA binding activity. Moreover, these compounds were found to be cytotoxic towards several cancer cell lines (A2780, MCF-7, HT29, HepG2, A549, PC3, LNCaP) and prevent metastasis of PC3. Collectively, Cu(II) complex 2 shows superior activity relative to its Zn(II) and Ni(II) analogs.
    Matched MeSH terms: DNA, Bacterial/metabolism*
  4. Mohd Safwan Ibrahim, Ahmad Azuhairi Ariffin, Sri Ganesh Muthiah
    MyJurnal
    Introduction: Workers in health sector are exposed 5 times more workplace violence as compared to workers in other sectors. Their consequences can range from mild to severe, affecting the victim, quality of services and orga-nization. The objective is to evaluate the effectiveness of educational intervention on workplace violence among healthcare workers in health clinics. Methods: This study is a single blinded cluster randomized trial to see the ef-fectiveness of education intervention on coping with workplace violence involving 10 cluster clinics with total 82 respondents in each control and intervention group. Data was collected using pretested questionnaire at baseline, 1-month and 6-months post intervention. The analysis used were descriptive, compared mean at baseline, repeated measures of variance and Mixed Model. Results: Response rate 94% at 1-month due to loss to follow up. Majority of the respondents were female (82.3%), and Malays (83.5%). The prevalence of workplace violence was 27.4% and mostly involved psychological violence (95.6%). There were no significant different between control and interven-tion group characteristic at baseline. Repeated measures MANOVA test was conducted to test intervention effect on dependent variables. The results until 1-month time showed significant difference between intervention and control group on combination of the dependent variables over time in coping (F(1,162)=9.51, p=0.002, and η2=0.06), knowledge (F(1,162)=10.47, p=0.001, and η2=0.061) and confidence (F(1,162)=15.65, p
    Matched MeSH terms: DNA-Directed DNA Polymerase
  5. Nasehi A, Kadir JB, Esfahani MN, Mahmodi F, Ghadirian H, Ashtiani FA, et al.
    Plant Dis, 2013 May;97(5):689.
    PMID: 30722195 DOI: 10.1094/PDIS-10-12-0901-PDN
    In 2011, a severe gray leaf spot was observed on eggplant (Solanum melongena) in major eggplant growing areas in Malaysia, including the Pahang, Johor, and Selangor states. Disease incidence was >70% in severely infected areas of about 150 ha of eggplant greenhouses and fields examined. Symptoms initially appeared as small (1 to 5 mm diameter), brownish-black specks with concentric circles on the lower leaves. The specks then coalesced and developed into greyish-brown, necrotic lesions, which also appeared on the upper leaves. Eventually, the leaves senesced and were shed. Tissue cut from the edges of leaf spots were surface-sterilized in 1% NaOCl for 2 min, rinsed in sterilized water, dried, and incubated on potato dextrose agar (PDA). Fungal colonies were greyish green to light brown, and produced a yellow pigment. Single, muriform, brown, oblong conidia formed at the terminal end of each conidiophore, were each 21.6 to 45.6 μm long and 11.5 to 21.6 μm wide, and contained 2 to 7 transverse and 1 to 4 longitudinal septa. The conidiophores were tan to light brown and ≤220 μm long. Based on these morphological criteria, 25 isolates of the fungus were identified as Stemphylium solani (1). To produce conidia in culture, 7-day-old single-conidial cultures were established on potato carrot agar (PCA) and V8 juice agar media under an 8-h/16-h light/dark photoperiod at 25°C (4). Further confirmation of the identification was obtained by molecular characterization in which fungal DNA was extracted and the internal transcribed spacer (ITS) region of ribosomal DNA amplified using primers ITS5 and ITS4 (2), followed by direct sequencing. A BLAST search in the NCBI database revealed that the sequence was 99% identical with published ITS sequences for two isolates of S. solani (Accession Nos. AF203451 and HQ840713). The amplified ITS region was deposited in GenBank (JQ736023). Pathogenicity testing of a representative isolate was performed on detached, 45-day-old eggplant leaves of the cv. 125066-X under laboratory conditions. Four fully expanded leaves (one wounded and two non-wounded leaflets/leaf) were placed on moist filter paper in petri dishes, and each leaflet inoculated with a 20-μl drop of a conidial suspension containing 1 × 105 conidia/ml in sterilized, distilled water (3). The leaves were wounded by applying pressure to leaf blades with the serrated edge of forceps. Four control leaves were inoculated similarly with sterilized, distilled water. Inoculated leaves were incubated in humid chambers at 25°C with 95% RH and a 12-h photoperiod. After 7 days, symptoms similar to those observed in the original fields developed on both wounded and non-wounded inoculated leaves, but not on control leaves, and S. solani was reisolated consistently from the symptoms using the same method as the original isolations. Control leaves remained asymptomatic and the fungus was not isolated from these leaves. The pathogenicity testing was repeated with similar results. To our knowledge, this is the first report of S. solani on eggplant in Malaysia. References: (1) B. S. Kim et al. Plant Pathol. J. 20:85, 2004. (2) Y. R. Mehta et al. Curr. Microbiol. 44:323, 2002. (3) B. M. Pryor and T. J. Michailides. Phytopathology 92:406, 2002. (4) E. G. Simmons. CBS Biodiv. Series 6:775, 2007.
    Matched MeSH terms: DNA, Fungal; DNA, Ribosomal
  6. Jomkumsing P, Tangkawanit U, Wongpakam K, Pramual P
    Acta Trop, 2019 Aug;196:22-29.
    PMID: 31059708 DOI: 10.1016/j.actatropica.2019.05.001
    Black flies (Simuliidae) are important biting insects and vectors of diseases agents of humans and livestock. Thus, understanding the taxonomy and biodiversity of these insects is crucial for control and management of these diseases. In this study, we used mitochondrial cytochrome c oxidase I sequences to examine genetic diversity of three human-biting and possible vector black fly taxa; the Simulium asakoae species-complex, S. chamlongi and S. nigrogilvum. High levels of genetic diversity (>3.5% intraspecific genetic divergence) were found in all three taxa. Phylogenetic analyses indicated that the S. asakoae complex can be divided into seven groups with the largest group consisting of specimens from Thailand, Malaysia and Myanmar. This group most likely represents true S. asakoae. The remaining haplotypes formed groups with conspecific haplotypes or with other closely related species. Among these groups, one including S. monglaense and another including S. myanmarense suggest that certain specimens identified as S. asakoae most likely belong to those species. Therefore, they constitute new locality records for Thailand and also represent new records of anthropophily. Members of S. chamlongi are not monophyletic as its clade also included S. hackeri. A median joining network revealed strong geographic associations of the haplotypes of S. nigrogilvum suggesting limitation of gene flow. Because this species occurs mainly in high elevation habitats, low land areas could present a barrier to gene flow.
    Matched MeSH terms: DNA Barcoding, Taxonomic*
  7. Shahimi S, Abd Mutalib S, Ismail N, Elias A, Hashim H, Kashim MIAM
    Saudi J Biol Sci, 2021 Apr;28(4):2447-2452.
    PMID: 33911957 DOI: 10.1016/j.sjbs.2021.01.043
    This study was conducted to detect the presence of chicken and porcine DNA in meatballs using mitochondria DNA (mtDNA) of cytochrome b (cyt b) and nuclear DNA (nDNA) short interspersed nuclear element (SINE) species-specific primers, respectively. While, the mtDNA primers targeted transfer RNA-ATP8 (tRNA-ATP8) gene was used for 1 and 5% (w/w) chicken meatball spiked with commercial porcine blood plasm. Chicken meatballs spiked with 1% and 5% (v/w) fresh and commercial porcine blood plasma, respectively were prepared and heat-treated using five (n = 5) cooking methods: boiling, pan-frying, roasting, microwaving and autoclaving. Two pairs of mtDNA and nDNA primers used, produced 129 and 161 bp amplicons, respectively. Whereas, tRNA-ATP8 primers produced 212 bp of amplicon. Electrophoresis analysis showed positive results for porcine DNA at 1% and 5% (w/w or v/v) for all of the different cooking techniques, either for fresh or commercial blood plasma using SINE primers but not for tRNA-ATP8 primers. The present study has highlighted the useful of species-specific primers of SINE primers in PCR analysis for detecting porcine DNA blood plasma in heat-treated chicken meatballs.
    Matched MeSH terms: DNA, Mitochondrial; DNA Primers
  8. Tarmizi AAA, Wagiran A, Mohd Salleh F, Chua LS, Abdullah FI, Hasham R, et al.
    Plants (Basel), 2021 Apr 07;10(4).
    PMID: 33917172 DOI: 10.3390/plants10040717
    Labisia pumila is a precious herb in Southeast Asia that is traditionally used as a health supplement and has been extensively commercialized due to its claimed therapeutic properties in boosting a healthy female reproductive system. Indigenous people used these plants by boiling the leaves; however, in recent years it has been marketed as powdered or capsuled products. Accordingly, accuracy in determination of the authenticity of these modern herbal products has faced great challenges. Lack of authenticity is a public health risk because incorrectly used herbal species can cause adverse effects. Hence, any measures that may aid product authentication would be beneficial. Given the widespread use of Labisia herbal products, the current study focuses on authenticity testing via an integral approach of DNA barcoding and qualitative analysis using HPLC. This study successfully generated DNA reference barcodes (ITS2 and rbcL) for L. pumila var. alata and pumila. The DNA barcode that was generated was then used to identify species of Labisia pumila in herbal medicinal products, while HPLC was utilized to determine their quality. The findings through the synergistic approach (DNA barcode and HPLC) implemented in this study indicate the importance of both methods in providing the strong evidence required for the identification of true species and to examine the authenticity of such herbal medicinal products.
    Matched MeSH terms: DNA; DNA Barcoding, Taxonomic
  9. Ahmed A, Ijaz M, Ghauri HN, Aziz MU, Ghaffar A, Naveed M, et al.
    PMID: 32829184 DOI: 10.1016/j.cimid.2020.101524
    Feline anaplasmosis is considered as an emerging tick-borne disease of zoonotic potential. The aim of current study was to investigate the molecular prevalence of anaplasmosis, associated risk factors, and alterations in hematological parameters of domestic cats from Lahore, Pakistan. Blood samples of 100 domestic cats from district Lahore were examined microscopically and the extracted genomic DNA from each sample was processed for the amplification of 16 S rRNA gene of Anaplasma. PCR confirmed isolates were purified for sequencing. The data regarding the risk factors was collected in a predesigned questionnaire and statistically analyzed by logistic regression analysis. The study found a molecular prevalence of 13% (13/100) among analyzed blood samples. The nucleotide analysis of Anaplasmataceae species sequences amplified by PCR showed high resemblance (99%) with isolates from Korea, Japan, Malaysia, Philippines, and India. The potential risk factors found to be significantly associated (p 
    Matched MeSH terms: DNA, Bacterial/genetics
  10. Rashid AA, Ghazali SS, Mohamad I, Mawardi M, Musa H, Roslan D
    PLoS One, 2020;15(7):e0235685.
    PMID: 32678838 DOI: 10.1371/journal.pone.0235685
    INTRODUCTION: House Officer (HO) Preparatory Courses in Malaysia are designed to prepare medical graduates to work as a HO. The courses are designed to address the issues related to lack of confidence and readiness to work, which could lead to stress and HO dropping out of work. The modules focus on how to prepare medical graduates into the real-life working scenario. Hence, we determined the effectiveness of a HO Preparatory Course on the level of confidence and readiness to work among medical graduates.

    METHODOLOGY: A quasi-experimental study was conducted at three time-points (pre-intervention, post-intervention and one-month after working as a HO) on the level of confidence and readiness of medical graduates. The intervention was the Medicorp module, which included information and training needed for the HO such as common clinical cases in the wards, case referrals, experience sharing and hands on clinical training. We recruited eligible participants undergoing the course between April-November 2018. The adapted IMU Student Competency Survey was used to measure the confidence and readiness levels, which were scored from a Likert scale of 1-5. The higher score indicated higher levels of confidence or readiness.

    RESULTS: A total of 239 participants were recruited at baseline (90% response rate). They were mostly female (77.8%), Malays (79.1%), single (90.0%), graduated overseas (73.6%), in 2018 (65.3%). The mean (SE) confidence scores significantly increased from 2.18 (1.00) pre-course to 3.50 (0.75) immediately after course and 3.79 (0.92) after one-month of work (p <0.001, η2 = 0.710). The mean (SE) readiness scores at pre-course, immediately and one-month post work were 2.36 (1.03), 3.46(0.78) and 3.70(0.90), respectively (p< 0.001, η2 = 0.612).

    CONCLUSION: The HO Preparatory Course module was effective in increasing levels of confidence and readiness for medical graduates, most of whom are overseas graduates; namely Egypt, Russia and Indonesia.

    Matched MeSH terms: DNA-Directed DNA Polymerase
  11. Cree SL, Chua EW, Crowther J, Dobson RCJ, Kennedy MA
    Biochimie, 2020 Aug 14.
    PMID: 32805304 DOI: 10.1016/j.biochi.2020.07.022
    Next generation DNA sequencing and analysis of amplicons spanning the pharmacogene CYP2D6 suggested that the Nextera transposase used for fragmenting and providing sequencing priming sites displayed a targeting bias. This manifested as dramatically lower sequencing coverage at sites in the amplicon that appeared likely to form G-quadruplex structures. Since secondary DNA structures such as G-quadruplexes are abundant in the human genome, and are known to interact with many other proteins, we further investigated these sites of low coverage. Our investigation revealed that G-quadruplex structures are formed in vitro within the CYP2D6 pharmacogene at these sites, and G-quadruplexes can interact with the hyperactive Tn5 transposase (EZ-Tn5) with high affinity. These findings indicate that secondary DNA structures such as G-quadruplexes may represent preferential transposon integration sites and provide additional evidence for the role of G-quadruplex structures in transposition or viral integration processes.
    Matched MeSH terms: DNA; Sequence Analysis, DNA
  12. Gangathraprabhu B, Kannan S, Santhanam G, Suryadevara N, Maruthamuthu M
    Microb Pathog, 2020 Oct;147:104352.
    PMID: 32592823 DOI: 10.1016/j.micpath.2020.104352
    Salmonellosis continues to remain a health problem as the causative organism Salmonella spp. developed resistance to many of the antibiotics. As per World Health Organization (WHO), it is estimated that enteric fever, accounts for almost 16 million cases annually and over 600,000 deaths worldwide. Recent data revealed that the multi-drug resistance (MDR) rate of enteric fever was as high as 70% in Asian countries, as compared with the overall reported incidence of 50%. Emergence of MDR typhoid fever demands the use of newer antibiotics which also not offer promising effect in recent days. Effective antimicrobial therapy is required to control morbidity and prevent death from typhoid fever. The studies on PhoP/Q regulation revealed it as a best-characterized transcriptional regulation; a two-component system required for Salmonella pathogenesis which controls the expression of more than 40 genes. The PhoP DNA binding proteins possess positively charged amino acids such as arginine, lysine and histidine which present in the DNA binding site. Prevention of PhoP binding in phoP box may ultimately prevent the expression of many regulatory mechanism which plays vital role in Salmonella virulence. Deepness study of PhoP protein and various mutation swots may offer effectual controlling of MDR Salmonella.
    Matched MeSH terms: DNA; DNA-Binding Proteins
  13. Kang TL, Chelliah S, Velappan RD, Kabir N, Mohamad J, Nor Rashid N, et al.
    Lett Appl Microbiol, 2019 Nov;69(5):366-372.
    PMID: 31508837 DOI: 10.1111/lam.13215
    We evaluate the efficacy of recombinant DNA vaccine ABA392 against haemorrhagic septicaemia infection through intranasal administration route by targeting the mucosal immunity. The DNA vaccine was constructed and subjected to animal study using the Sprague Dawley (SD) rat. The study was divided into two major parts: (i) active and (ii) passive immunization studies, involving 30 animals for each part. Each group was then divided into five test groups: two test samples G1 and G2 with 50 and 100 µg ml-1 purified DNA vaccine; one positive control G5 with 106  CFU per ml formalin-killed PMB2; and two negative controls, G3 and G4 with normal saline and pVAX1 vector. Both studies were conducted for the determination of immunogenicity by total white blood cell count (TWBC), indirect ELISA and histopathological changes for the presence of the bronchus-associated lymphoid tissue (BALT). Our findings demonstrate that TWBC, IgA and IgG increased after each of the three vaccination regimes: groups G1, G2 and G5. Test samples G1 and G2 showed significant differences (P DNA vaccine ABA392 can provoke mucosal immunity which makes it a potential prophylactic against HS. SIGNIFICANCE AND IMPACT OF THE STUDY: New approach of combating haemorrhagic septicaemia disease among bovines by recombinant DNA vaccine is crucial to overcome the loss of edible products from the infected bovines. DNA vaccine can potentially serve as a better immunogen which would elicit both cellular and humoral immunity, and it is also stable for its molecular reproduction. This research report demonstrates an effective yet simple way of administering the DNA vaccine via the intranasal route in rats, to provoke the mucosal immunity through the development of immunoglobulins IgA, IgG and bronchus-associated lymphoid tissue which guard as the first-line defence at the host's mucosal lining.
    Matched MeSH terms: DNA, Recombinant/administration & dosage; DNA, Recombinant/genetics; DNA, Recombinant/immunology; Vaccines, DNA/administration & dosage*; Vaccines, DNA/genetics; Vaccines, DNA/immunology
  14. Al Amin M, Mahfujur Rahman M, Razimi MSA, Chowdhury ZZ, Hussain MNM, Desa MNM
    J Food Compost Anal, 2020 Sep;92:103565.
    PMID: 32546895 DOI: 10.1016/j.jfca.2020.103565
    Determination of feline meat in food products is an important issue for social, health, economic and religious concern. Hence this paper documented the application of species specific polymerase chain reaction-restriction fragment length polymorphism (SP-PCR-RFLP) assay targeting a short-fragments (69 bp) of mitochondrial cytochrome b (cytb) gene to screen feline meat in commercial meat products using lab-on-a-chip. The SP-PCR assay proved its specificity theoretically and experimentally while testing with different common animal, aquatic and plant species of DNA. The feline specific (69 bp, 43- and 26-bp) characteristic molecular DNA pattern was observed by SP-PCR and RFLP analysis. For assay performance, it was tested in three different types of commercial dummy meat products such as frankfurters, nuggets and meatballs and digested with AluI-restriction enzyme. The highest sensitivity of the assay using lab-on-a-chip was as low as 0.1 pg or 0.01 % (w/w) in commercial dummy meat products. We have also applied this assay to screen three important commercial meat products of six different brand from six supermarket chains located at three different states of Malaysia. Thus total 378 samples were tested to validate the specificity, sensitivity, stability of the assay and utilization of it for commercial meat product screening.
    Matched MeSH terms: DNA; DNA Restriction Enzymes
  15. Ching HC, Naidu R, Seong MK, Har YC, Taib NA
    Int J Oncol, 2011 Sep;39(3):621-33.
    PMID: 21687935 DOI: 10.3892/ijo.2011.1081
    Breast cancer is a heterogeneous disease, marked by extensive chromosomal aberrations. In this study, we aimed to explicate the underlying chromosomal copy number (CN) alterations and loss of heterozygosity (LOH) implicated in a cohort of Malaysian hospital-based primary breast carcinoma samples using a single nucleotide polymorphism (SNP) array platform. The analysis was conducted by hybridizing the extracted DNA of 70 primary breast carcinomas and 37 normal peripheral blood samples to the Affymetrix 250K Sty SNP arrays. Locus-specific CN aberrations and LOH were statistically summarized using the binary segmentation algorithm and hidden Markov model. Selected genes from the SNP array analysis were also validated using quantitative real-time PCR. The merging of CN and LOH data fabricated distinctive integrated alteration profiles, which were comprised of finely demarcated minimal sites of aberrations. The most prevalent gains (≥ 30%) were detected at the 8q arm: 8q23.1, 8q23.3, 8q24.11, 8q24.13, 8q24.21, 8q24.22, 8q24.23 and 8q24.3, whilst the most ubiquitous losses (≥ 20%) were noted at the 8p12, 8p21.1, 8p21.2, 8p21.1-p21.2, 8p21.3, 8p22, 8p23.1, 8p23.1‑p23.2, 8p23.3, 17p11.2, 17p12, 17p11.2-p12, 17p13.1 and 17p13.2 regions. Copy-neutral LOH was characterized as the most prevailing LOH event, in which the most frequent distributions (≥ 30%) were revealed at 3p21.31, 5q33.2, 12q24.12, 12q24.12‑q24.13 and 14q23.1. These findings offer compre-hensive genome-wide views on breast cancer genomic changes, where the most recurrent gain, loss and copy-neutral LOH events were harboured within the 8q24.21, 8p21.1 and 14q23.1 loci, respectively. This will facilitate the uncovering of true driver genes pertinent to breast cancer biology and the develop-ment of prospective therapeutics.
    Matched MeSH terms: DNA Copy Number Variations*
  16. Cheng S, Mat-Isa MN, Sapian IS, Ishak SF
    Mol Biol Rep, 2021 Feb;48(2):1281-1290.
    PMID: 33582950 DOI: 10.1007/s11033-021-06189-0
    The estuarine firefly, Pteroptyx tener, aggregates in the thousands in mangrove trees lining tidal rivers in Southeast Asia where they engage one another in a nocturnal, pre-mating ritual of synchronised courtship flashes. Unfortunately, populations of the species by virtue of being restricted to isolated estuarine rivers systems in the region, are at risk of genetic isolation. Because of this concern we undertook the task of sequencing and characterising the mitochondrial DNA genome of P. tener, as the first step towards helping us to characterise and better understand their genetic diversity. We sequenced and assembled the mitochondrial DNA genome of P. tener from two male and female specimens from the district of Kuala Selangor in Peninsular Malaysia and announce the molecules in this publication. We also reconstructed the phylogenetic trees of all available lampyrids mitogenomes and suggest the need to re-examine our current understanding of their classification which have largely been based on morphological data and the cox1 gene. Separately, our analysis of codon usage patterns among lampyrid mitogenomes showed that the codon usage in a majority of the protein-coding genes were non-neutral. Codon usage patterns between mitogenome sequences of P. tener were, however, largely neutral. Our findings demonstrate the usefulness of mitochondrial genes/mitogenomes for analysing both inter- and intra- specific variation in the Lampyridae to aid in species discovery in this highly variable genus; and elucidate the phylogenetic relationships of Pteroptyx spp. from the region.
    Matched MeSH terms: DNA, Mitochondrial/genetics*
  17. LIEW YOU EN, SALWANI ABDULLAH, TAN MIN PAU, MAZLAN ABD GHAFFAR, ALIAS MAN, TUN NURUL AIMI MAT JAAFAR
    MyJurnal
    DNA Barcoding, primarily focusing on cytochrome coxidase subunit I (COI) gene has been appraised as an effective tool for species identification. Nonetheless, species identification based on molecular approach is essential for discrimination of look-alike species. In this study, we focused on the marine fishes Family Nemipteridae, one of the commercially important group distributed within the surrounding seas of Malaysia. Some of the samples were collected during the National Demersal Trawl Survey in the Exclusive Economic Zone of East Coast Peninsular Malaysia by the Department of Fishery Malaysia. A 652bp region of COI was sequenced for 74 individuals from nine putative species. Additional 34 COIsequences from GenBank were also included in this study making the total number of samples analysed to 108 individuals. The averageKimura 2-parameter (K2P) nucleotide divergence was 0.34% among individuals within species and 6.97% within genera. All putative species formed monophyletic clades in both Neighbour-joining (NJ) and Maximum-likelihood (ML) trees. However, there was a potential misidentification in specimen identified as Nemipterus tambuloides,as the specimen did not group with their own taxa. It was genetically grouped in Nemipterus thosaporni clade. This study supports the effectiveness of COIgene in species discrimination of Family Nemipteridae.
    Matched MeSH terms: DNA; DNA Barcoding, Taxonomic
  18. Drinkwater R, Jucker T, Potter JHT, Swinfield T, Coomes DA, Slade EM, et al.
    Mol Ecol, 2021 07;30(13):3299-3312.
    PMID: 33171014 DOI: 10.1111/mec.15724
    The application of metabarcoding to environmental and invertebrate-derived DNA (eDNA and iDNA) is a new and increasingly applied method for monitoring biodiversity across a diverse range of habitats. This approach is particularly promising for sampling in the biodiverse humid tropics, where rapid land-use change for agriculture means there is a growing need to understand the conservation value of the remaining mosaic and degraded landscapes. Here we use iDNA from blood-feeding leeches (Haemadipsa picta) to assess differences in mammalian diversity across a gradient of forest degradation in Sabah, Malaysian Borneo. We screened 557 individual leeches for mammal DNA by targeting fragments of the 16S rRNA gene and detected 14 mammalian genera. We recorded lower mammal diversity in the most heavily degraded forest compared to higher quality twice logged forest. Although the accumulation curves of diversity estimates were comparable across these habitat types, diversity was higher in twice logged forest, with more taxa of conservation concern. In addition, our analysis revealed differences between the community recorded in the heavily logged forest and that of the twice logged forest. By revealing differences in mammal diversity across a human-modified tropical landscape, our study demonstrates the value of iDNA as a noninvasive biomonitoring approach in conservation assessments.
    Matched MeSH terms: DNA/genetics
  19. Yang Q, Ge YM, Iqbal NM, Yang X, Zhang XL
    Antonie Van Leeuwenhoek, 2021 Jul;114(7):1091-1106.
    PMID: 33895907 DOI: 10.1007/s10482-021-01580-0
    Marine phycosphere harbors unique cross-kingdom associations with enormous ecological significance in aquatic ecosystems as well as relevance for algal biotechnology industry. During our investigating the microbial composition and bioactivity of marine phycosphere microbiota (PM), a novel lightly yellowish and versatile bacterium designated strain AM1-D1T was isolated from cultivable PM of marine dinoflagellate Alexandrium minutum amtk4 that produces high levels of paralytic shellfish poisoning toxins (PSTs). Strain AM1-D1T demonstrates notable bioflocculanting bioactivity with bacterial exopolysaccharides (EPS), and microalgae growth-promoting (MGP) potential toward its algal host. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain AM1-D1T was affiliated to the members of genus Sulfitobacter within the family Rhodobacteraceae, showing the highest sequence similarity of 97.9% with Sulfitobacter noctilucae NB-68T, and below 97.8% with other type strains. The complete genome of strain AM1-D1T consisted of a circular 3.84-Mb chromosome and five circular plasmids (185, 95, 15, 205 and 348 Kb, respectively) with the G+C content of 64.6%. Low values obtained by phylogenomic calculations on the average nucleotide identity (ANI, 77.2%), average amino acid identity (AAI, 74.7%) and digital DNA-DNA hybridization (dDDH, 18.6%) unequivocally separated strain AM1-D1T from its closest relative. The main polar lipids were identified as phosphatidylglycerol, phosphatidylethanolamine, phosphatidylcholine, diphosphatidylglycerol, one unidentified phospholipid and one unidentified lipid. The predominant fatty acids (> 10%) were C18:1 ω7c, C19:0 cyclo ω8c and C16:0. The respiratory quinone was Q-10. The genome of strain AM1-D1T was predicted to encode series of gene clusters responsible for sulfur oxidation (sox) and utilization of dissolved organic sulfur exometabolites from marine dinoflagellates, taurine (tau) and dimethylsulfoniopropionate (DMSP) (dmd), as well as supplementary vitamin B12 (cob), photosynthesis carotenoids (crt) which are pivotal components during algae-bacteria interactions. Based on the evidences by the polyphasic characterizations, strain AM1-D1T represents a novel species of the genus Sulfitobacter, for which the name Sulfitobacter alexandrii sp. nov. is proposed. The type strain is AM1-D1T (= CCTCC 2017277T = KCTC 62491T).
    Matched MeSH terms: DNA, Bacterial; Sequence Analysis, DNA
  20. Ng HF, Ngeow YF
    Pathog Dis, 2020 11 11;78(8).
    PMID: 32945880 DOI: 10.1093/femspd/ftaa055
    The subspecies classification of Mycobacteroides abscessus complex into M. abscessus, M. massiliense and M. bolletii requires the amplification and sequencing of multiple genes. The objective of this study was to evaluate the possibility of subspecies classification using a single PCR target. An in silico study was performed to classify 1613 strains deposited in a public database using 9 genes (partial gene sequences of hsp65, rpoB, sodA, argH, cya, glpK, gnd, and murC, and the full gene sequence of MAB_3542c). We found the housekeeping gene gnd to be able to classify the M. abscessus subspecies with high accuracy (99.94%). A single-gene PCR approach based on gnd would be a suitable replacement for the more expensive, labor-intensive and time-consuming multi-gene PCR analysis currently in use for the subspecies identification of M. abscessus.
    Matched MeSH terms: DNA, Bacterial; Sequence Analysis, DNA
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links