Displaying publications 661 - 680 of 1357 in total

Abstract:
Sort:
  1. Uda MNA, Gopinath SCB, Hashim U, Halim NH, Parmin NA, Afnan Uda MN, et al.
    Prep Biochem Biotechnol, 2021;51(1):86-95.
    PMID: 32713293 DOI: 10.1080/10826068.2020.1793174
    A chemical method to synthesize amorphous silica nanoparticles from the incinerated paddy straw has been introduced. The synthesis was conducted through the hydrolysis by alkaline-acidic treatments. As a result, silica particles produced with the sizes were ranging at 60-90 nm, determined by high-resolution microscopy. The crystallinity was confirmed by surface area electron diffraction. Apart from that, chemical and diffraction analyses for both rice straw ash and synthesized silica nanoparticles were conducted by X-ray diffraction and Fourier-transform infrared spectroscopy. The percentage of silica from the incinerated straw was calculated to be 28.3. The prominent surface chemical bonding on the generated silica nanoparticles was with Si-O-Si, stretch of Si-O and symmetric Si-O bonds at peaks of 1090, 471, and 780 cm-1, respectively. To confirm the impurities of the elements in the produced silica, were analyzed using X-ray photoelectron spectroscopy and energy dispersive X-ray spectroscopy. The stability of silica nanoparticles was investigated using thermogravimetric analysis and zeta potential. The measured size from zeta potential analysis was 411.3-493 nm and the stability of mass reduction was located at 200 °C with final amount of mass reduced ∼88% and an average polydispersity Index was 0.195-0.224.
    Matched MeSH terms: Nanoparticles/chemistry*
  2. Hussein MZ, Sarijo SH, Yahaya AH, Zainal Z
    J Nanosci Nanotechnol, 2007 Aug;7(8):2852-62.
    PMID: 17685307
    Layered organic-inorganic hybrid nanocomposite material was synthesised using 4-chlorophenoxyacetate (4CPA) as guest anion intercalated into the Zn-Al layered double hydroxide inorganic host by direct co-precipitation method at pH = 7.5 and Zn to Al molar ratio of 4. Both PXRD and FTIR results confirmed that the 4CPA was successfully intercalated into the Zn-AI-LDH interlayer. As a result, a well-ordered nanolayered organic-inorganic hybrid nanocomposite, with the expansion of the basal spacing from 8.9 angstroms in the layered double hydroxide to 20.1 angstroms in the resulting nanocomposite was observed. The FTIR spectrum of the nanocomposite (ZAC) showed that it composed spectral features of Zn-AI-LDH (ZAL) and 4CPA. The nanocomposites synthesized in this work are of mesoporous-type containing 39.8% (w/w) of 4CPA with mole fraction of Al3+ in the inorganic brucite-like layers (xAI) of 0.224. The release studies showed a rapid release of the 4CPA for the first 600 min, and more sustained thereafter. The total amount of 4CPA released from the nanocomposite interlayer into the aqueous solution were 21%, 66%, and 72% in 0.0001, 0.00025, and 0.0005 M sodium carbonate, respectively. In distilled water, about 75, 35, and 57% of 4CPA could be released in 1000 min, when the pH of the release media was set at 3, 6.25, and 12, respectively. In comparison with a structurally similar organic moiety with one more chlorine atom at the 2-position of the aromatic ring, namely 2,4-dichlorophenoxyacetate (24D), the 4CPA showed a slower release rate. The slightly bulkier organic moiety of 24D together with the presence of chlorine atom at the 2-position presumably had contributed to its higher release rate, and it seems that these factors may be exploited for tuning the release rate of intercalated guest anions with similar properties. This study suggests that layered double hydroxide can be used as a carrier for an active agent and the chemical structure of the intercalated moiety can be used to tune the desired release kinetics of the beneficial agent.
    Matched MeSH terms: Metal Nanoparticles/chemistry*
  3. Abu Bakar NH, Abu Bakar M, Bettahar MM, Ismail J, Monteverdi S
    J Nanosci Nanotechnol, 2013 Jul;13(7):5034-43.
    PMID: 23901527
    A detailed study on the surface properties of oleic acid-stabilized PtNi nanoparticles supported on silica is reported. The oleic acid-stabilized PtNi nanoparticles were synthesized using NaBH4 as the reducing agent at various temperatures and oleic acid concentrations, prior to incorporation onto the silica support. X-ray diffraction studies of the unsupported oleic acid-stabilized PtNi particles revealed that the PtNi existed as alloys. Upon incorporation onto silica support, surface properties of the catalysts were investigated using H2-temperature reduction (H2-TPR), H2-temperature desorption (H2-TPD) and H2-chemisorption techniques. It was found that for the bimetallic catalysts, no oxides or very little oxidation occurred. Furthermore, these catalysts exhibited both Pt and Ni active sites on its surface though the availability of Ni active sites was dominant. A comparison of the surface properties of these materials with those prepared without oleic acid in our previous work [N. H. H. Abu Bakar et al., J. Catal. 265, 63 (2009)] and how they affect the hydrogenation of benzene is also discussed.
    Matched MeSH terms: Metal Nanoparticles/chemistry*
  4. Masri A, Abdelnasir S, Anwar A, Iqbal J, Numan A, Jagadish P, et al.
    Appl Microbiol Biotechnol, 2021 Apr;105(8):3315-3325.
    PMID: 33797573 DOI: 10.1007/s00253-021-11221-1
    BACKGROUND: Conducting polymer based nanocomposites are known to be effective against pathogens. Herein, we report the antimicrobial properties of multifunctional polypyrrole-cobalt oxide-silver nanocomposite (PPy-Co3O4-AgNPs) for the first time. Antibacterial activities were tested against multi-drug-resistant Gram-negative Escherichia coli (E. coli) and Gram-positive methicillin-resistant Staphylococcus aureus (MRSA) bacteria, while antiamoebic effects were assessed against opportunistic protist Acanthamoeba castellanii (A. castellanii).

    RESULTS: The ternary nanocomposite containing conducting polymer polypyrrole, cobalt oxide, and silver nanoparticles showed potent antimicrobial effects against these pathogens. The antibacterial assay showed that PPy-Co3O4-AgNPs exhibited significant bactericidal activity against neuropathogenic E. coli K1 at only 8 μg/mL as compared to individual components of the nanocomposite, whereas a 70 % inhibition of A. castellanii viability was observed at 50 μg/mL. Moreover, PPy-Co3O4-AgNPs were found to have minimal cytotoxicity against human keratinocytes HaCaT cells in vitro even at higher concentration (50 μg/mL), and also reduced the microbes-mediated cytopathogenicity against host cells.

    CONCLUSION: These results demonstrate that PPy-Co3O4-AgNPs hold promise in the development of novel antimicrobial nanomaterials for biomedical applications.

    KEY POINTS: •Synthesis of polypyrrole-cobalt oxide-silver (PPy-Co3O4-AgNPs) nanocomposite. •Antimicrobial activity of nanocomposite. •PPy-Co3O4-AgNPs hold promise for biomedical applications.

    Matched MeSH terms: Metal Nanoparticles*
  5. Khaniabadi PM, Shahbazi-Gahrouei D, Aziz AA, Dheyab MA, Khaniabadi BM, Mehrdel B, et al.
    Photodiagnosis Photodyn Ther, 2020 Sep;31:101896.
    PMID: 32585402 DOI: 10.1016/j.pdpdt.2020.101896
    BACKGROUND: Theranostic agents can combine photosensitizers and contrast agents into a single unit for photothermal therapy (PTT) and magnetic resonance imaging (MRI). The possibility of treating and diagnosing malignant cancers without any ionizing radiation could become an option. This study investigates the theranostic potential of Fe3O4 nanoparticles (IONs) for the diagnosis and treatment of cancer by developing a single integrated nanoprobe.

    METHODS: Oleylamin-coated IONs (ION-Ol) were synthesized and surface of the IONs was modified using protoporphyrin (PP) and trastuzumab (TZ) to develop the TZ-conjugated SPION-porphyrin [ION-PP-TZ]. The structure, morphology, size, and cytotoxicity of all samples were investigated using Fourier-transform infrared spectroscopy (FT-IR), Transmission electron microscopy (TEM), X-ray powder diffraction (XRD), WST-1 assay, respectively. In addition to MRI and in vitro laser irradiation (808 nm, 200 mW) to determine the r2 values and photothermal ablation.

    RESULTS: The sizes of monodispersed nanoparticles were measured in rang 5.74-7.17 nm. No cytotoxicity was observed after incubating MCF 7 cells under various Fe concentrations of nanoparticles and theranostic agents. The transverse relaxation time of the protoporphyrin conjugated to IONs (52.32 mM-1s-1) exceeded that of ION-Ol and TZ-conjugated ION-PP. In addition, the in vitro photothermal ablation of ION-PP-TZ revealed a 74 % MCF 7 cell reduction after 10 min of at the highest Fe concentration (1.00 mg Fe/mL).

    CONCLUSIONS: In summary, the water-soluble ION-PP-TZ is a promising bimodal agent for the diagnosis and treatment of human epidermal growth factor receptor 2-positive breast cancer cells using a T2 MRI contrast agent and photothermal therapy.

    Matched MeSH terms: Magnetite Nanoparticles*
  6. Karim S, Bae S, Greenwood D, Hanna K, Singhal N
    Water Res, 2017 11 15;125:32-41.
    PMID: 28826034 DOI: 10.1016/j.watres.2017.08.029
    The catalytic properties of nanoparticles (e.g., nano zero valent iron, nZVI) have been used to effectively treat a wide range of environmental contaminants. Emerging contaminants such as endocrine disrupting chemicals (EDCs) are susceptible to degradation by nanoparticles. Despite extensive investigations, questions remain on the transformation mechanism on the nZVI surface under different environmental conditions (redox and pH). Furthermore, in terms of the large-scale requirement for nanomaterials in field applications, the effect of polymer-stabilization used by commercial vendors on the above processes is unclear. To address these factors, we investigated the degradation of a model EDC, the steroidal estrogen 17α-ethinylestradiol (EE2), by commercially sourced nZVI at pH 3, 5 and 7 under different oxygen conditions. Following the use of radical scavengers, an assessment of the EE2 transformation products shows that under nitrogen purging direct reduction of EE2 by nZVI occurred at all pHs. The radicals transforming EE2 in the absence of purging and upon air purging were similar for a given pH, but the dominant radical varied with pH. Upon air purging, EE2 was transformed by the same radical species as the non-purged system at the same respective pH, but the degradation rate was lower with more oxygen - most likely due to faster nZVI oxidation upon aeration, coupled with radical scavenging. The dominant radicals were OH at pH 3 and O2- at pH 5, and while neither radical was involved at pH 7, no conclusive inferences could be made on the actual radical involved at pH 7. Similar transformation products were observed without purging and upon air purging.
    Matched MeSH terms: Nanoparticles/chemistry
  7. Chan Y, Ng SW, Mehta M, Gupta G, Chellappan DK, Dua K
    Future Med Chem, 2020 11;12(21):1887-1890.
    PMID: 33054387 DOI: 10.4155/fmc-2020-0206
    Matched MeSH terms: Nanoparticles/chemistry*
  8. Wan Mohd Shukri WN, Bakhtiar H, Islam S, Bidin N, Baba S, Hamdan S, et al.
    Biomed Environ Sci, 2021 Feb 20;34(2):119-123.
    PMID: 33685570 DOI: 10.3967/bes2021.017
    Matched MeSH terms: Metal Nanoparticles/therapeutic use*
  9. Gan X, Gong T, Zheng Y, Gopinath SCB, Zhao K
    Biotechnol Appl Biochem, 2021 Apr;68(2):272-278.
    PMID: 32275089 DOI: 10.1002/bab.1921
    C-reactive protein (CRP) is an acute phase reactant to be a marker of inflammation and has been correlated with the cardiac injury. An immunoassay was performed using anti-human CRP antibody on an InterDigitated electrode (IDE) sensor to determine and specify CRP concentration for diagnosing the condition of myocardial inflammation. To promote the detection, gold nanoparticle (GNP) was seeded on the aminated-IDE surface. Anti-CRP was hitched on the GNP-seeded surface and identified the abundance of CRP. The limit of quantification was found as 100 fM, and the higher current response was noticed by increasing CRP concentrations with the sensitivity at 1 pM. Furthermore, CRP-spiked human serum did not interfere the determination of CRP and increased the current response, indicating suitability for a real-life sample. Similarly, the control experiments with nonimmune antibody Troponin I are not showing the definite current responses, proving the selective identification of CRP. This method of diagnosing is needful to determine the cardiovascular injury at the right time.
    Matched MeSH terms: Metal Nanoparticles/chemistry*
  10. Lah NAC, Gray R, Trigueros S
    Microb Cell Fact, 2021 Feb 17;20(1):46.
    PMID: 33596912 DOI: 10.1186/s12934-020-01478-y
    With the long-term goal of developing an ultra-sensitive microcantilever-based biosensor for versatile biomarker detection, new controlled bioreceptor-analytes systems are being explored to overcome the disadvantages of conventional ones. Gold (Au) microwires have been used as a probe to overcome the tolerance problem that occurs in response to changes in environmental conditions. However, the cytotoxicity of Au microwires is still unclear. Here, we examined the cytotoxicity of Au microwires systems using both commercial and as-synthesised Au microwires. In vitro experiments show that commercial Au microwires with an average quoted length of 5.6 µm are highly toxic against Gram-negative Escherichia coli (E. coli) at 50 µg/mL. However, this toxicity is due to the presence of CTAB surfactant not by the microwires. Conversely, the as-synthesised Au microwires show non-cytotoxicity even at the maximum viable concentration (330 µg/mL). These findings may lead to the development of potentially life-saving cytotoxicity-free biosensors for an early diagnostic of potential diseases.
    Matched MeSH terms: Metal Nanoparticles/chemistry*
  11. Noman E, Al-Gheethi A, Radin Mohamed RMS, Talip B, Al-Sahari M, Al-Shaibani M
    J Hazard Mater, 2021 10 05;419:126418.
    PMID: 34171673 DOI: 10.1016/j.jhazmat.2021.126418
    The current review highlighted the quantitative microbiological risk assessment of Vibrio parahaemolyticus in Prawn farm wastewaters (PFWWs) and the applicability of nanoparticles for eliminating antibiotic-resistant bacteria (ARB). The high availability of the antibiotics in the environment and their transmission into human through the food-chain might cause unknown health effects. The aquaculture environments are considered as a reservoir for the antibiotic resistance genes (ARGs) and contributed effectively in the increasing of ABR. The metagenomic analysis is used to explore ARGs in the non-clinical environment. V. parahaemolyticus is among the pathogenic bacteria which are transmitted through sea food causing human acute gastroenteritis due to available thermostable direct hemolysin (tdh), adhesins, TDH related hemolysin (trh). The inactivation of pathogenic bacteria using nanoparticles act by disturbing the cell membrane, interrupting the transport system, DNA and mitochondria damage, and oxidizing the cellular component by reactive oxygen species (ROS). The chloramphenicol, nitrofurans, and nitroimidazole are among the prohibited drugs in fish and fishery product. The utilization of probiotics is the most effective and safe alternative for antibiotics in Prawn aquaculture. This review will ensure public understanding among the readers on how they can decrease the risk of the antimicrobial resistance distribution in the environment.
    Matched MeSH terms: Nanoparticles*
  12. Herdiana Y, Wathoni N, Shamsuddin S, Muchtaridi M
    Molecules, 2021 Aug 24;26(17).
    PMID: 34500560 DOI: 10.3390/molecules26175119
    α-Mangostin (AMG) is a potent anticancer xanthone that was discovered in mangosteen (Garcinia mangostana Linn.). AMG possesses the highest opportunity for chemopreventive and chemotherapeutic therapy. AMG inhibits every step in the process of carcinogenesis. AMG suppressed multiple breast cancer (BC) cell proliferation and apoptosis by decreasing the creation of cancerous compounds. Accumulating BC abnormalities and their associated molecular signaling pathways promotes novel treatment strategies. Chemotherapy is a commonly used treatment; due to the possibility of unpleasant side effects and multidrug resistance, there has been substantial progress in searching for alternative solutions, including the use of plant-derived natural chemicals. Due to the limitations of conventional cancer therapy, nanotechnology provides hope for effective and efficient cancer diagnosis and treatment. Nanotechnology enables the delivery of nanoparticles and increased solubility of drugs and drug targeting, resulting in increased cytotoxicity and cell death during BC treatment. This review summarizes the progress and development of AMG's cytotoxicity and the mechanism of death BC cells. The combination of natural medicine and nanotechnology into a synergistic capital will provide various benefits. This information will aid in the development of AMG nanoparticle preparations and may open up new avenues for discovering an effective BC treatment.
    Matched MeSH terms: Nanoparticles/chemistry*
  13. Wang S, Su S, Yu C, Gopinath SCB, Yang Z
    Biotechnol Appl Biochem, 2021 Aug;68(4):726-731.
    PMID: 32621620 DOI: 10.1002/bab.1981
    The urinary C-terminal telopeptide fragment of type II collagen (uCTX-II) has been reported as the efficient blood-based biomarker for osteoarthritis, which affects knees, hands, spine, and hips. This study reports a sensing strategy with antibody-conjugated gold nanoparticles (GNP) on an interdigitated electrode (IDE) to determine uCTX-II. The GNP-antibody complex was chemically immobilized on the IDE surface through the amine linker. uCTX-II was determined by monitoring the alteration in current upon interacting the GNP-complexed antibody. This strategy was improved the detection by attracting higher uCTX-II molecules, and the detection limit falls in the range of 10-100 pM with an acceptable regression value [y = 0.6254x - 0.4073, R² = 0.9787]. The sensitivity of the detection was recognized at 10 pM. Additionally, upon increasing the uCTX-II concentration, the current changes were increased in a linear fashion. Control detection with nonimmune antibody and control protein do not increase the current level, confirming the specific detection of uCTX-II. This method of detection helps in diagnosing osteoarthritis and its follow-up treatment.
    Matched MeSH terms: Metal Nanoparticles/chemistry*
  14. Hosseini S, Jahangirian H, Webster TJ, Soltani SM, Aroua MK
    Int J Nanomedicine, 2016;11:3969-78.
    PMID: 27574426 DOI: 10.2147/IJN.S96558
    Nanostructured photoanodes were prepared via a novel combination of titanium dioxide (TiO2) nanoparticles and mesoporous carbon (C). Four different photoanodes were synthesized by sol-gel spin coating onto a glassy substrate of fluorine-doped tin oxide. The photocatalytic activities of TiO2, TiO2/C/TiO2, TiO2/C/C/TiO2, and TiO2/C/TiO2/C/TiO2 photoanodes were evaluated by exposing the synthesized photoanodes to UV-visible light. The photocurrent density observed in these photoanodes confirmed that an additional layer of mesoporous carbon could successfully increase the photocurrent density. The highest photocurrent density of ~1.022 mA cm(-2) at 1 V/saturated calomel electrode was achieved with TiO2/C/C/TiO2 under an illumination intensity of 100 mW cm(-2) from a solar simulator. The highest value of surface roughness was measured for a TiO2/C/C/TiO2 combination owing to the presence of two continuous layers of mesoporous carbon. The resulting films had a thickness ranging from 1.605 µm to 5.165 µm after the calcination process. The presence of double-layer mesoporous carbon resulted in a 20% increase in the photocurrent density compared with the TiO2/C/TiO2 combination when only a single mesoporous carbon layer was employed. The improved performance of these photoanodes can be attributed to the enhanced porosity and increased void space due to the presence of mesoporous carbon. For the first time, it has been demonstrated here that the photoelectrochemical performance of TiO2 can be improved by integrating several layers of mesoporous carbon. Comparison of the rate of removal of humic acid by the prepared photoanodes showed that the highest performance from TiO2/C/C/TiO2 was due to the highest photocurrent density generated. Therefore, this study showed that optimizing the sequence of mesoporous carbon layers can be a viable and inexpensive method for enhanced humic acid removal.
    Matched MeSH terms: Nanoparticles/chemistry
  15. Samson S, Basri M, Fard Masoumi HR, Abdul Malek E, Abedi Karjiban R
    PLoS One, 2016;11(7):e0157737.
    PMID: 27383135 DOI: 10.1371/journal.pone.0157737
    A predictive model of a virgin coconut oil (VCO) nanoemulsion system for the topical delivery of copper peptide (an anti-aging compound) was developed using an artificial neural network (ANN) to investigate the factors that influence particle size. Four independent variables including the amount of VCO, Tween 80: Pluronic F68 (T80:PF68), xanthan gum and water were the inputs whereas particle size was taken as the response for the trained network. Genetic algorithms (GA) were used to model the data which were divided into training sets, testing sets and validation sets. The model obtained indicated the high quality performance of the neural network and its capability to identify the critical composition factors for the VCO nanoemulsion. The main factor controlling the particle size was found out to be xanthan gum (28.56%) followed by T80:PF68 (26.9%), VCO (22.8%) and water (21.74%). The formulation containing copper peptide was then successfully prepared using optimum conditions and particle sizes of 120.7 nm were obtained. The final formulation exhibited a zeta potential lower than -25 mV and showed good physical stability towards centrifugation test, freeze-thaw cycle test and storage at temperature 25°C and 45°C.
    Matched MeSH terms: Nanoparticles/chemistry
  16. Jukapli NM, Bagheri S
    J. Photochem. Photobiol. B, Biol., 2016 Oct;163:421-30.
    PMID: 27639172 DOI: 10.1016/j.jphotobiol.2016.08.046
    This review provides a background, fundamental and advanced application of titania nanoparticles (TiO2) on the disinfection and killing of cancer cell through photocatalytic chemistry. It starts with the characteristic properties focused on the surface, light sensitivity, crystallinity and toxicology of TiO2 as a photocatalyst. Consequently, outline and design of photocatalytic reactor has been figured out based on the target organisms, including bacteria, viruses, fungi and cancer cells. Despite a large number of studies undertaken, limited selectivity and efficacy of TiO2 photocatalyst are still widely accepted problems. An ideal TiO2 photocatalyst should have the combined properties of highly stable reactive oxygen species yield and a greater degree of selectivity towards cancerous cell without damaging the healthy tissues. Hybridization of TiO2 with metal, metal oxide and carbon nano materials significantly improved both of stability and selectivity of TiO2, whilst maintaining its high Photodynamic reactivity.
    Matched MeSH terms: Nanoparticles*
  17. Nadeem M, Ahmad M, Akhtar MS, Shaari A, Riaz S, Naseem S, et al.
    PLoS One, 2016;11(6):e0158084.
    PMID: 27348436 DOI: 10.1371/journal.pone.0158084
    The current study emphasizes the synthesis of iron oxide nanoparticles (IONPs) and impact of hydrophilic polymer polyvinyl alcohol (PVA) coating concentration as well as anticancer drug doxorubicin (DOX) loading on saturation magnetization for target drug delivery applications. Iron oxide nanoparticles particles were synthesized by a reformed version of the co-precipitation method. The coating of polyvinyl alcohol along with doxorubicin loading was carried out by the physical immobilization method. X-ray diffraction confirmed the magnetite (Fe3O4) structure of particles that remained unchanged before and after polyvinyl alcohol coating and drug loading. Microstructure and morphological analysis was carried out by transmission electron microscopy revealing the formation of nanoparticles with an average size of 10 nm with slight variation after coating and drug loading. Transmission electron microscopy, energy dispersive, and Fourier transform infrared spectra further confirmed the conjugation of polymer and doxorubicin with iron oxide nanoparticles. The room temperature superparamagnetic behavior of polymer-coated and drug-loaded magnetite nanoparticles were studied by vibrating sample magnetometer. The variation in saturation magnetization after coating evaluated that a sufficient amount of polyvinyl alcohol would be 3 wt. % regarding the externally controlled movement of IONPs in blood under the influence of applied magnetic field for in-vivo target drug delivery.
    Matched MeSH terms: Magnetite Nanoparticles/chemistry*
  18. Siddiqui NA, Billa N, Roberts CJ
    J Biomater Sci Polym Ed, 2017 Jun;28(8):781-793.
    PMID: 28278045 DOI: 10.1080/09205063.2017.1301774
    The principal challenge for the use of boronic acids (BA) as glucose sensors is their lack of specificity for glucose. We examined the selectivity of and insulin release from two boronic acids- (2-formyl-3-thienylboronic acid (FTBA) and 4-formylphenylboronic acid (FPBA)) conjugated chitosan scaffolds to glucose and fructose. Adsorption of glucose to BA: chitosan conjugates was dose-dependent up to 1:1 at 35 and 42% for FPBA and FTBA respectively but the FTBA conjugates adsorbed more glucose and fructose at respective FPBA ratios. The affinity of both BA conjugates to glucose decreased with increase in BA ratio. On the other hand, the affinity of both BA conjugates for fructose decreased from ratio 1:1 to 2:1 then rose again at 3:1. Insulin release from FPBA nanoparticles (FPBAINP) and FTBA nanoparticles (FTBAINP) were both concentration-dependent within glyceamically relevant values (1-3 mg/ml glucose and 0.002 mg/ml fructose). Furthermore, the total amounts of insulin released from FPBAINP in both the media were higher than from FTBAINP. Both FPBAINP and FTBAINP have the potential for development as a glucose-selective insulin delivery system in physiological settings.
    Matched MeSH terms: Nanoparticles/chemistry
  19. Khan FU, Asimullah, Khan SB, Kamal T, Asiri AM, Khan IU, et al.
    Int J Biol Macromol, 2017 Sep;102:868-877.
    PMID: 28428128 DOI: 10.1016/j.ijbiomac.2017.04.062
    A very simple and low-cost procedure has been adopted to synthesize efficient copper (Cu), silver (Ag) and copper-silver (Cu-Ag) mixed nanoparticles on the surface of pure cellulose acetate (CA) and cellulose acetate-copper oxide nanocomposite (CA-CuO). All nanoparticles loaded onto CA and CA-CuO presented excellent catalytic ability, but Cu-Ag nanoparticles loaded onto CA-CuO (Cu0-Ag0/CA-CuO) exhibited outstanding catalytic efficiency to convert 4-nitrophenol (4-NP) into 4-aminophenol (4-AP) in the presence of NaBH4. Additionally, the Cu0-Ag0/CA-CuO can be easily recovered by removing the sheet from the reaction media, and can be recycled several times, maintaining high catalytic ability for four cycles.
    Matched MeSH terms: Metal Nanoparticles/chemistry*
  20. Jahangirian H, Lemraski EG, Webster TJ, Rafiee-Moghaddam R, Abdollahi Y
    Int J Nanomedicine, 2017;12:2957-2978.
    PMID: 28442906 DOI: 10.2147/IJN.S127683
    This review discusses the impact of green and environmentally safe chemistry on the field of nanotechnology-driven drug delivery in a new field termed "green nanomedicine". Studies have shown that among many examples of green nanotechnology-driven drug delivery systems, those receiving the greatest amount of attention include nanometal particles, polymers, and biological materials. Furthermore, green nanodrug delivery systems based on environmentally safe chemical reactions or using natural biomaterials (such as plant extracts and microorganisms) are now producing innovative materials revolutionizing the field. In this review, the use of green chemistry design, synthesis, and application principles and eco-friendly synthesis techniques with low side effects are discussed. The review ends with a description of key future efforts that must ensue for this field to continue to grow.
    Matched MeSH terms: Nanoparticles/chemistry*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links