Three series of sulfonamides incorporating long, bulky tails were obtained by applying synthetic strategies in which substituted anthranilic acids, quinazolines and aromatic sulfonamides have been used as starting materials. They incorporate long, bulky diamide-, 4-oxoquinazoline-3-yl- or quinazoline-4-yl moieties in their molecules, and were investigated for the inhibition of four physiologically relevant carbonic anhydrase (CA, EC 4.2.1.1) isoforms, the cytosolic human (h) hCA I and II, as well as the transmembrane hCA IX and XII. Most of the new sulfonamides showed excellent inhibitory effects against the four isoforms, with KIs of 7.6-322nM against hCA I, of 0.06-85.4nM against hCA II; of 6.7-152nM against hCA IX and of 0.49-237nM against hCA XII; respectively. However no relevant isoform-selective behavior has been observed for any of them, although hCA II and XII, isoforms involved in glaucoma-genesis were the most inhibited ones. The structure-activity relationship for inhibiting the four CAs with these derivatives is discussed in detail.
Medicinal mushrooms have been used for centuries against cancer and infectious diseases. These positive biological effects of mushrooms are due in part to the indirect action of stimulating immune cells. The objective of the current study is to investigate the possible immunomodulatory effects of mushroom polysaccharides on NK cells against different cancer cells. In this current study, fruiting bodies isolated from cultured Pleurotus ostreatus were extracted and partially purified using DEAE ion-exchange chromatography. The activation action of the collected fractions on Natural Killer cells was quantified against three different cancer cell lines in the presence or absence of human recombinant IL2 using three different activation and co-culture conditions. The possible modes of action of mushroom polysaccharides against cancer cells were evaluated at the cellular and molecular levels. Our results indicate that P. ostreatus polysaccharides induced NK-cells cytotoxic effects against lung and breast cancer cells with the largest effect being against breast cancer cells (81.2%). NK cells activation for cytokine secretion was associated with upregulation of KIR2DL genes while the cytotoxic activation effect of NK cells against cancer cells correlated with NKG2D upregulation and induction of IFNγ and NO production. These cytotoxic effects were enhanced in the presence of IL2. Analysis of the most active partially purified fraction indicates that it is predominantly composed of glucans. These results indicate bioactive 6-linked glucans present in P. ostreatus extracts activate NK-cell cytotoxicity via regulation of activation and induction of IFNγ and NO. These studies establish a positive role for bioactive P. ostreatus polysaccharides in NK-cells activation and induction of an innate immune response against breast and lung cancer cells.
Hibiscus species (Malvaceae) have been long used as an antihypertensive folk remedy. The aim of our study was to specify the optimum solvent for extraction of the angiotensin-converting enzyme inhibiting (ACEI) constituents from Hibiscus sabdariffa L. The 80% methanol extract (H2) showed the highest ACEI activity, which exceeds that of the standard captopril (IC50 0.01255 ± 0.00343 and 0.210 ± 0.005 µg/mL, respectively). Additionally, in a comprehensive metabolomics approach, an ultra-performance liquid chromatography (UPLC) coupled to the high resolution tandem mass spectrometry (HRMS) method was used to trace the metabolites from each extraction method. Interestingly, our comprehensive analysis showed that the 80% methanol extract was predominated with secondary metabolites from all classes including flavonoids, anthocyanins, phenolic and organic acids. Among the detected metabolites, phenolic acids such as ferulic and chlorogenic acids, organic acids such as citrate derivatives and flavonoids such as kaempferol have been positively correlated to the antihypertensive potential. These results indicates that these compounds may significantly contribute synergistically to the ACE inhibitory activity of the 80% methanol extract.
Depression can occur due to common major life transitions, such as giving birth, menopause, retirement, empty-nest transition, and midlife crisis. Although some of these transitions are perceived as positive (e.g., giving birth), they may still lead to depression. We conducted a systematic literature review of the factors underlying the occurrence of depression following major life transition in some individuals. This review shows that major common life transitions can cause depression if they are sudden, major, and lead to loss (or change) of life roles (e.g., no longer doing motherly or fatherly chores after children leave family home). Accordingly, we provide a theoretical framework that explains depression caused by transitions in women. One of the most potential therapeutic methods of ameliorating depression associated with life transitions is either helping individuals accept their new roles (e.g., accepting new role as a mother to ameliorate postpartum depression symptoms) or providing them with novel life roles (e.g., volunteering after retirement or children leave family home) may help them overcome their illness.
Guava (Psidium guajava) leaves are commonly used in the treatment of diseases. They are considered a waste product resulting from guava cultivation. The leaves are very rich in essential oils (EOs) and volatiles. This work represents the detailed comparative chemical profiles of EOs derived from the leaves of six guava varieties cultivated in Egypt, including Red Malaysian (RM), El-Qanater (EQ), White Indian (WI), Early (E), El-Sabahya El-Gedida (ESEG), and Red Indian (RI), cultivated on the same farm in Egypt. The EOs from the leaves of guava varieties were extracted by hydro-distillation and analyzed with GC-MS. The EOs were categorized in a holistic manner using chemometric tools. The hydro-distillation of the samples yielded 0.11-0.48% of the EO (v/w). The GC-MS analysis of the extracted EOs showed the presence of 38 identified compounds from the six varieties. The sesquiterpene compounds were recorded as main compounds of E, EQ, ESEG, RI, and WI varieties, while the RM variety attained the highest content of monoterpenes (56.87%). The sesquiterpenes, β-caryophyllene (11.21-43.20%), and globulol (76.17-26.42%) were detected as the major compounds of all studied guava varieties, while trans-nerolidol (0.53-10.14) was reported as a plentiful compound in all of the varieties except for the RM variety. A high concentration of D-limonene was detected in the EOs of the RM (33.96%), WI (27.04%), and ESEG (9.10%) varieties. These major compounds were consistent with those reported for other genotypes from different countries. Overall, the EOs' composition and the chemometric analysis revealed substantial variations among the studied varieties that might be ascribed to genetic variability, considering the stability of the cultivation and climate conditions. Therefore, this chemical polymorphism of the studied varieties supports that these varieties could be considered as genotypes of P. guajava. It is worth mentioning here that the EOs, derived from leaves considered to be agricultural waste, of the studied varieties showed that they are rich in biologically active compounds, particularly β-caryophyllene, trans-nerolidol, globulol, and D-limonene. These could be considered as added value for pharmacological and industrial applications. Further study is recommended to confirm the chemical variations of the studied varieties at a molecular level, as well as their possible medicinal and industrial uses.
Condensation of substituted anthranilic acids with 4-isothiocyanatoethyl-benzenesulfonamide led to series of heterocyclic benzenesulfonamides incorporating 2-mercapto-quinazolin-4-one tails. These sulfonamides were investigated as inhibitors of the human carbonic anhydrase (hCA, EC 4.2.1.1) isoforms hCA I and II (cytosolic isozymes), as well as hCA XII (a transmembrane, tumor-associated enzyme also involved in glaucoma-genesis). The new sulfonamides acted as medium potency inhibitors of hCA I (KIs of 28.5-2954nM), being highly effective as hCA II (KIs in the range of 0.62-12.4nM) and XII (KIs of 0.54-7.11nM) inhibitors. All substitution patterns present in these compounds (e.g., halogens, methyl and methoxy moieties, in positions 6, 7 and/or 8 of the 2-mercapto-quinazolin-4-one ring) led to highly effective hCA II/XII inhibitors. These compounds should thus be of interest as preclinical candidates in pathologies in which the activity of these enzymes should be inhibited, such as glaucoma (CA II and XII as targets) or some tumors in which the activity of isoforms CA II and XII is dysregulated.
Some novel hydrazone derivatives 6a-o were synthesized from the key intermediate 4-Chloro-N-(2-hydrazinocarbonyl-phenyl)-benzamide 5 and characterized using IR, ¹H-NMR, 13C-NMR, mass spectroscopy and elemental analysis. The inhibitory potential against two secretory phospholipase A₂ (sPLA₂), three protease enzymes and eleven bacterial strains were evaluated. The results revealed that all compounds showed preferential inhibition towards hGIIA isoform of sPLA₂ rather than DrG-IB with compounds 6l and 6e being the most active. The tested compounds exhibited excellent antiprotease activity against proteinase K and protease from Bacillus sp. with compound 6l being the most active against both enzymes. Furthermore, the maximum zones of inhibition against bacterial growth were exhibited by compounds; 6a, 6m, and 6o against P. aeruginosa; 6a, 6b, 6d, 6f, 6l, 6m, 6n, and 6o against Serratia; 6k against S. mutans; and compounds 6a, 6d, 6e, 6m, and 6n against E. feacalis. The docking simulations of hydrazones 6a-o with GIIA sPLA₂, proteinase K and hydrazones 6a-e with glutamine-fructose-6-phosphate transaminase were performed to obtain information regarding the mechanism of action.
Some new 3H-quinazolin-4-one derivatives were synthesised and screened for anticancer, antiphospholipases, antiproteases, and antimetabolic syndrome activities. Compound 15d was more potent in reducing the cell viabilities of HT-29 and SW620 cells lines to 38%, 36.7%, compared to 5-FU which demonstrated cell viabilities of 65.9 and 42.7% respectively. The IC50 values of 15d were ∼20 µg/ml. Assessment of apoptotic activity revealed that 15d decreased the cell viability by down regulating Bcl2 and BclxL. Moreover, compounds, 8j, 8d/15a/15e, 5b, and 8f displayed lowered IC50 values than oleanolic acid against proinflammatory isoforms of hGV, hG-X, NmPLA2, and AmPLA2. In addition, 8d, 8h, 8j, 15a, 15b, 15e, and 15f showed better anti-α-amylase than quercetin, whereas 8g, 8h, and 8i showed higher anti-α-glucosidase activity than allopurinol. Thus, these compounds can be considered as potential antidiabetic agents. Finally, none of the compounds showed higher antiproteases or xanthine oxidase activities than the used reference drugs.
Phyllanthin and related lignans were found to be responsible, at least in part, for most of the activity of Phyllanthus species. This observation encouraged the authors to develop methods for the preparation of an extract rich in phyllanthin and related lignans from the aerial parts of P. niruri L. Direct extraction with solvents produced extracts with variable yields and contents of lignans. Lignans were identified by LC-ESI-MS analysis as phyllanthin (used as marker substance), hypophyllanthin, phylltetralin, nirtetralin, and niranthin. Extraction with boiling water produced 18.10 g% (w/w) extract with a trace amount of lignans (phyllanthin content of 0.33 ± 0.10 mg/g extract), while extraction with MeOH gave 3.6 g% w/w extract with a low phyllanthin content (3.1 mg/g extract), as determined by HPLC. However, Soxhlet extraction with hexane, CH2Cl2, or acetone gave extracts with low yields (0.82, 1.12, and 3.40 g% w/w, respectively) and a higher phyllanthin contents (36.2 ± 2.6, 11.7 ± 1.68, and 11.7 ± 1.10 mg/g extract, respectively). Extraction quality and efficiency were optimized by adopting the following three different approaches: (1) Alkaline digestion of the plant material with 30% potassium hydroxide yielded 3.1 g% w/w of purified extract with high phyllanthin content (22.34 ± 0.13 mg/g); (2) microwave-assisted extraction using 80% MeOH gave an extract with a better yield (8.13 g% w/w) and phyllanthin content (21.2 ± 1.30 mg/g) (after filtration through a Diaion HP-20 column); and (3) treatment of the ground plant material at 50 °C with two hydrolytic enzymes, cellulase (9 U/g for 12 h) and then, protease (4 U/g up to 72 h) optimized the yield of extract (13.92 g% w/w) and phyllanthin content (25.9 mg/g extract and total lignans content of 85.87 mg/g extract). In conclusion, the nonconventional methods presented here are superior for optimizing the yield of extract and its lignan contents from the aerial parts of P. niruri.
We prepared red clays by introducing different percentages of PbO, Bi2O3, and CdO. In order to understand how the introduction of these oxides into red clay influences its attenuation ability, the mass attenuation coefficient of the clays was experimentally measured in a lab using an HPGe detector. The theoretical shielding capability of the material present was obtained using XCOM to verify the accuracy of the experimental results. We found that the experimental and theoretical values agree to a very high degree of precision. The effective atomic number (Zeff) of pure red clay, and red clay with the three metal oxides was determined. The pure red clay had the lowest Zeff of the tested samples, which means that introducing any of these three oxides into the clay will greatly enhance its Zeff, and consequently its attenuation capability. Additionally, the Zeff for red clay with 10 wt% CdO is lower than the Zeff of red clay with 10 wt% Bi2O3 and PbO. We also prepared red clay using 10 wt% CdO nanoparticles and compared its attenuation ability with the red clay prepared with 10 wt% PbO, Bi2O3, and CdO microparticles. We found that the MAC of the red clay with 10 wt% nano-CdO was higher than the MAC of the clay with microparticle samples. Accordingly, nanoparticles could be a useful way to enhance the shielding ability of current radiation shielding materials.
Access to dependable and environmentally friendly energy sources is critical to a country's economic growth and long-term development. As countries seek greener energy alternatives, the interaction of environmental elements, temperature, and sunlight becomes more critical in utilizing renewable energy sources such as wind and bioenergy. Solar power has received much attention due to extraordinary efficiency advances. under this context, the present work focus on solar radiation and chemical processes in the presence of modified ternary hybrid nanofluids (THNFs) circulating over an exponentially stretched surface in both aiding flow (A-F) and opposing flow (O-F) circumstances. The primary objective of this investigation is to dive into the complicated dynamics of these structures, which are distinguished by complex interactions involving radiation, chemical reactions, and the movement of fluids. We construct reduced ordinary differential equations from the governing equations using suitable similarity transformations, which allows for a more in-depth examination of the liquid's behavior. Numerical simulations using the Runge-Kutta Fehlberg (RKF) approach and shooting techniques are used to understand the underlying difficulties of these reduced equations. The results show that thermal radiation improves heat transmission substantially under O-F circumstances in contrast to A-F conditions. Furthermore, the reaction rate parameter has an exciting connection with concentration levels, with greater rates corresponding to lower concentrations. Furthermore, compared to the O-F scenario, the A-F scenario promotes higher heat transfer in the context of a modified nanofluid. Rising reaction rate and solid fraction volume enhanced mass transfer rate. The rate of thermal distribution in THNFs improves from 0.13 to 20.4% in A-F and 0.16 to 15.06% in O-F case when compared to HNFs. This study has real-world implications in several fields, including developing more efficient solar water heaters, solar thermal generating plants, and energy-saving air conditioners.
In the present research, the structural, electronic and optical properties of transition metal dichalcogenide-doped transition metal oxides MoS2-doped-V2O5 with various doping concentrations (x = 1-3%) of MoS2 atoms are studied by using first principles calculation. The generalized gradient approximation Perdew-Burke-Ernzerhof simulation approach is used to investigate the energy bandgap (Eg) of orthorhombic structures. We examined the energy bandgap (Eg) decrement from 2.76 to 1.30 eV with various doping (x = 1-3%) of molybdenum disulfide (MoS2) atoms. The bandgap nature shows that the material is a well-known direct bandgap semiconductor. MoS2 doping (x = 1-3%) atoms in pentoxide (V2O5) creates the extra gamma active states which contribute to the formation of conduction and valance bands. MoS2-doped-V2O5 composite is a proficient photocatalyst, has a large surface area for absorption of light, decreases the electron-hole pairs recombination rate and increases the charge transport. A comprehensive study of optical conductivity reveals that strong peaks of MoS2-doped-V2O5 increase in ultraviolet spectrum region with small shifts at larger energy bands through increment doping x = 1-3% atoms of MoS2. A significant decrement was found in the reflectivity due to the decrement in the bandgap with doping. The optical properties significantly increased by the decrement of bandgap (Eg). Two-dimensional MoS2-doped-V2O5 composite has high energy absorption, optical conductivity and refractive index, and is an appropriate material for photocatalytic applications.
Plastic sand paver blocks provide a sustainable alternative by using plastic waste and reducing the need for cement. This innovative approach leads to a more sustainable construction sector by promoting environmental preservation. No model or Equation has been devised that can predict the compressive strength of these blocks. This study utilized gene expression programming (GEP) and multi-expression programming (MEP) to develop empirical models to forecast the compressive strength of plastic sand paver blocks (PSPB) comprised of plastic, sand, and fibre in an effort to advance the field. The database contains 135 results for compressive strength with seven input parameters. The R2 values of 0.87 for GEP and 0.91 for MEP for compressive strength reveal a relatively significant relationship between predicted and actual values. MEP outperformed GEP by displaying a higher R2 and lower values for statistical evaluations. In addition, a sensitivity analysis was conducted, which revealed that the sand grain size and percentage of fibres play an essential part in compressive strength. It was estimated that they contributed almost 50% of the total. The outcomes of this research have the potential to promote the reuse of PSPB in the building of green environments, hence boosting environmental protection and economic advantage.
A series of symmetric molecules incorporating aryl or pyridyl moieties as central core and 1,4-substituted triazoles as a side bridge was synthesised. The new compounds were investigated as lactate dehydro-genase (LDH, EC 1.1.1.27) inhibitors. The cancer associated LDHA isoform was inhibited with IC50 = 117-174 µM. Seven compounds exhibited better LDHA inhibition (IC50 117-136 µM) compared to known LDH inhibitor - galloflavin (IC50 157 µM).
Elevated blood glucose and increased activities of secreted phospholipase A2 (sPLA2) are strongly linked to coronary heart disease. In this report, our goal was to develop small heterocyclic compound that inhibit sPLA2. The title compounds were also tested against α-glucosidase and α-amylase. This array of enzymes was selected due to their implication in blood glucose regulation and diabetic cardiovascular complications. Therefore, two distinct series of quinoxalinone derivatives were synthesised; 3-[N'-(substituted-benzylidene)-hydrazino]-1H-quinoxalin-2-ones 3a-f and 1-(substituted-phenyl)-5H-[1,2,4]triazolo[4,3-a]quinoxalin-4-ones 4a-f. Four compounds showed promising enzyme inhibitory effect, compounds 3f and 4b-d potently inhibited the catalytic activities of all of the studied proinflammatory sPLA2. Compound 3e inhibited α-glucosidase (IC50 = 9.99 ± 0.18 µM); which is comparable to quercetin (IC50 = 9.93 ± 0.66 µM), a known inhibitor of this enzyme. Unfortunately, all compounds showed weak activity against α-amylase (IC50 > 200 µM). Structure-based molecular modelling tools were utilised to rationalise the SAR compared to co-crystal structures with sPLA2-GX as well as α-glucosidase. This report introduces novel compounds with dual activities on biochemically unrelated enzymes mutually involved in diabetes and its complications.
The customization of hybrid nanofluids to achieve a particular and controlled growth rate of thermal transport is done to meet the needs of applications in heating and cooling systems, aerospace and automotive industries, etc. Due to the extensive applications, the aim of the current paper is to derive a numerical solution to a wall jet flow problem through a stretching surface. To study the flow problem, authors have considered a non-Newtonian Eyring-Powell hybrid nanofluid with water and CoFe2O4and TiO2nanoparticles. Furthermore, the impact of a magnetic field and irregular heat sink/source are studied. To comply with the applications of the wall jet flow, the authors have presented the numerical solution for two cases; with and without a magnetic field. The numerical solution is derived with a similarity transformation and MATLAB-based bvp4c solver. The value of skin friction for wall jet flow at the surface decreases by more than 50% when the magnetic fieldMA=0.2is present. The stream function value is higher for the wall jet flow without the magnetic field. The temperature of the flow rises with the dominant strength of the heat source parameters. The results of this investigation will be beneficial to various applications that utilize the applications of a wall jet, such as in car defrosters, spray paint drying for vehicles or houses, cooling structures for the CPU of high-processor laptops, sluice gate flows, and cooling jets over turbo-machinery components, etc.
Parkinson's disease (PD), the second most common neurodegenerative disorder, is characterized by cardinal motor impairments, including akinesia and tremor, as well as by a host of non-motor symptoms, including both autonomic and cognitive dysfunction. PD is associated with a death of nigral dopaminergic neurons, as well as the pathological spread of Lewy bodies, consisting predominantly of the misfolded protein alpha-synuclein. To date, only symptomatic treatments, such as levodopa, are available, and trials aiming to cure the disease, or at least halt its progression, have not been successful. Wong et al. (2019) suggested that the lack of effective therapy against neurodegeneration in PD might be attributed to the fact that the molecular mechanisms standing behind the dopaminergic neuronal vulnerability are still a major scientific challenge. Understanding these molecular mechanisms is critical for developing effective therapy. Thirty-five years ago, Calne and William Langston (1983) raised the question of whether biological or environmental factors precipitate the development of PD. In spite of great advances in technology and medicine, this question still lacks a clear answer. Only 5-15% of PD cases are attributed to a genetic mutation, with the majority of cases classified as idiopathic, which could be linked to exposure to environmental contaminants. Rodent models play a crucial role in understanding the risk factors and pathogenesis of PD. Additionally, well-validated rodent models are critical for driving the preclinical development of clinically translatable treatment options. In this review, we discuss the mechanisms, similarities and differences, as well as advantages and limitations of different neurotoxin-induced rat models of PD. In the second part of this review, we will discuss the potential future of neurotoxin-induced models of PD. Finally, we will briefly demonstrate the crucial role of gene-environment interactions in PD and discuss fusion or dual PD models. We argue that these models have the potential to significantly further our understanding of PD.
Physical and psychological stress has an inverse relation with male libido and sperm quality. The present study investigates the potential fertility-enhancing properties of Desmodium gangeticum (DG) root extracts in male Wister rats subjected to immobilization-induced stress (SIMB). DG roots were extracted using n-hexane (HEDG), chloroform (CEDG), and water (AEDG). In the pilot study, aphrodisiac protentional was investigated at two doses (125 and 250 mg kg-1) of each extract. In the main study, the HEDG and AEDG at 125 and 250 mg kg-1 were challenged for the stress by immobilization (SIMB), for 6 h daily over 28 days. Parameters assessed included aphrodisiac effects, gonadosomatic index (GSI), semen quality, sperm quantity, fructose content, serum hormonal levels, testicular oxidative stress, and testicular histopathology. Additional in silico studies, including the lipid solubility index, molecular docking, molecular dynamics, and SymMap studies were conducted for validation. HEDG demonstrated significant aphrodisiac activity, improved - GSI, sperm quality and quantity, and fructose content, serum testosterone levels, histological changes induced by SIMB in the testes. Swiss ADME studies indicated Gangetin (a pterocarpan) had a high brain permeation index (4.81), a superior docking score (-8.22), and higher glide energy (-42.60), compared with tadalafil (-7.17). The 'Lig fit Prot' plot in molecular dynamics simulations revealed a strong alignment between Gangetin and phosphodiesterase type 5 (PDE5). HEDG exerts aphrodisiac effects by increasing blood testosterone levels and affecting PDE5 activity. The protective effects on spermatozoa-related parameters and testicular histological changes are attributed to the antioxidant and anti-inflammatory properties, of pterocarpan (gangetin).
The brain is an energy demanding organ, constituting about 20 % of the body's resting metabolic rate. An efficient energy metabolism is critical to neuronal functions. Glucose serves as the primary essential energy source for the adult brain and plays a critical role in supporting neural growth and development. Endocrine disrupting chemicals (EDCs) such as phthalates has been shown to have a negative impact on neurological functions. The impact of diisononyl phthalate (DiNP) on neural energy transduction using cellular energy metabolizing enzymes as indicators was examined. Over the course of 14 days, eighteen (18) albino rats divided into three groups (1,2 and 3) of six albino rats were given Tween-80/saline, 20 and 200 mg/kg body weight respectively. In the brain, we assessed histological changes as well as activities of selected enzymes of energy metabolism such as the glycolytic pathway, citric acid cycle and mitochondrial electron transport-linked complexes. Activities of the glycolytic and TCA cycle enzymes assayed were significantly decreased except citrate synthase activity with no statistically significant change following the administration of DiNP. Also, respiratory chain complexes (Complex I-IV) activities were significantly reduced when compared to control. DiNP exposure altered the histological integrity of various brain sections. These include degenerated Purkinje neurons, distortion of the granular layer and Purkinje cell layer. Data from this study indicated impaired brain energy metabolism via down-regulation of enzymes of cellular respiration of the glycolytic and oxidative phosphorylation pathways and altered brain histoarchitecture orchestrated by DiNP exposure.
Protection against a malaria infection can be achieved by immunization with live-attenuated Plasmodium sporozoites and while the precise mechanisms of protection remain unknown, T cell responses are thought to be critical in the elimination of infected liver cells. In cancer immunotherapies, agonistic antibodies that target T cell surface proteins, such as CD27, OX40 (CD134), and 4-1BB (CD137), have been used to enhance T cell function by increasing co-stimulation. In this study, we have analyzed the effect of agonistic OX40 monoclonal antibody treatment on protective immunity induced in mice immunized with genetically attenuated parasites (GAPs). OX40 stimulation enhanced protective immunity after vaccination as shown by an increase in the number of protected mice and delay to blood-stage infection after challenge with wild-type sporozoites. Consistent with the enhanced protective immunity enforced OX40 stimulation resulted in an increased expansion of antigen-experienced effector (CD11ahiCD44hi) CD8+ and CD4+ T cells in the liver and spleen and also increased IFN-γ and TNF producing CD4+ T cells in the liver and spleen. In addition, GAP immunization plus α-OX40 treatment significantly increased sporozoite-specific IgG responses. Thus, we demonstrate that targeting T cell costimulatory receptors can improve sporozoite-based vaccine efficacy.