Displaying publications 61 - 74 of 74 in total

Abstract:
Sort:
  1. Aanniz T, Bouyahya A, Balahbib A, El Kadri K, Khalid A, Makeen HA, et al.
    Chem Biol Interact, 2024 Apr 01;392:110907.
    PMID: 38395253 DOI: 10.1016/j.cbi.2024.110907
    The regulation of gene expression is fundamental to health and life and is essentially carried out at the promoter region of the DNA of each gene. Depending on the molecular context, this region may be accessible or non-accessible (possibility of integration of RNA polymerase or not at this region). Among enzymes that control this process, DNA methyltransferase enzymes (DNMTs), are responsible for DNA demethylation at the CpG islands, particularly at the promoter regions, to regulate transcription. The aberrant activity of these enzymes, i.e. their abnormal expression or activity, can result in the repression or overactivation of gene expression. Consequently, this can generate cellular dysregulation leading to instability and tumor development. Several reports highlighted the involvement of DNMTs in human cancers. The inhibition or activation of DNMTs is a promising therapeutic approach in many human cancers. In the present work, we provide a comprehensive and critical summary of natural bioactive molecules as primary inhibitors of DNMTs in human cancers. The active compounds hold the potential to be developed as anti-cancer epidrugs targeting DNMTs.
  2. Bouyahya A, Bakrim S, Aboulaghras S, El Kadri K, Aanniz T, Khalid A, et al.
    Biomed Pharmacother, 2024 May;174:116432.
    PMID: 38520868 DOI: 10.1016/j.biopha.2024.116432
    Oxidative stress results from a persistent imbalance in oxidation levels that promotes oxidants, playing a crucial role in the early and sustained phases of DNA damage and genomic and epigenetic instability, both of which are intricately linked to the development of tumors. The molecular pathways contributing to carcinogenesis in this context, particularly those related to double-strand and single-strand breaks in DNA, serve as indicators of DNA damage due to oxidation in cancer cases, as well as factors contributing to epigenetic instability through ectopic expressions. Oxidative stress has been considered a therapeutic target for many years, and an increasing number of studies have highlighted the promising effectiveness of natural products in cancer treatment. In this regard, we present significant research on the therapeutic targeting of oxidative stress using natural molecules and underscore the essential role of oxidative stress in cancer. The consequences of stress, especially epigenetic instability, also offer significant therapeutic prospects. In this context, the use of natural epi-drugs capable of modulating and reorganizing the epigenetic network is beginning to emerge remarkably. In this review, we emphasize the close connections between oxidative stress, epigenetic instability, and tumor transformation, while highlighting the role of natural substances as antioxidants and epi-drugs in the anti-tumoral context.
  3. Rehman F, Ahmad P, Rahman AU, Alharthi AI, Khalid A, Faruque MRI, et al.
    Heliyon, 2024 Jul 15;10(13):e33606.
    PMID: 39040251 DOI: 10.1016/j.heliyon.2024.e33606
    Here we report the synthesis of Sm-doped Na0.5Bi4.5Ti4O15 (Na0.5Sm0.5Bi4Ti4O15) lead-free ceramics via a conventional solid-state technique. Investigations of Na0.5Bi4.5Ti4O15 (NBT) and Na0.5Sm0.5Bi4.5Ti4O15 (NSBT) ceramics were demonstrated in detail to understand the composition-based structure-property of Aurivillius compounds and related functional material. Dielectric properties for frequency and temperature in a wide range were analyzed. The conduction activation energy values of NSBT ceramics are obtained to be 1.40 eV, whereas, the NBT ceramics get the value to be 1.31 eV. At higher temperatures, the conduction activation energy value of NSBT ceramics is 1.32 eV for both frequencies of 100 Hz and 1 kHz, whereas, for NBT compounds, the calculated value is 1.27 eV for both frequencies. The simulation performed on the impedance data for capacitive and resistance elements shows well-fitting curves which indicates a single relaxation behavior in the material. Similarly, the AC-conductivity data were analyzed which gives different conduction processes and relaxation activation energies in the NSBT ceramics.
  4. Bakrim S, El Hachlafi N, Khalid A, Abdalla AN, El Omari N, Aboulaghras S, et al.
    Biomed Pharmacother, 2024 Aug;177:116886.
    PMID: 38945700 DOI: 10.1016/j.biopha.2024.116886
    Colorectal cancer (CRC) is one of the most significant forms of human cancer. It is characterized by its heterogeneity because several molecular factors are involved in contiguity and can link it to others without having a linear correlation. Among the factors influencing tumor transformation in CRC, transforming growth factor-beta (TGF-β) plays a key promoter role. This factor is associated with human colorectal tumors with a very high prognosis: it increases the survival, invasion, and metastasis of CRC cells, thus functioning as an oncogene. The inhibition of this factor can constitute a major therapeutic route for CRC treatment. Various chemical drugs including synthetic molecules and biotherapies have been developed as TGF-β inhibitors. Moreover, the scientific community has recently shown a major interest in screening natural drugs inhibiting TGF-β in CRC. In this context, we carried out this review article using computerized databases, such as PubMed, Google Scholar, Springer Link, Science Direct, Cochrane Library, Embase, Web of Science, and Scopus, to highlight the molecular mechanism of TGF-β in CRC induction and progression and current advances in the pharmacodynamic effects of natural bioactive substances targeting TGF-β in CRC.
  5. Khalid A, Ahmad P, Khan A, Muhammad S, Khandaker MU, Alam MM, et al.
    Bioinorg Chem Appl, 2022;2022:9459886.
    PMID: 35873731 DOI: 10.1155/2022/9459886
    Environmental problems with chemical and biological water pollution have become a major concern for society. Providing people with safe and affordable water is a grand challenge of the 21st century. The study investigates the photocatalytic degradation capabilities of hydrothermally prepared pure and Cu-doped ZnO nanoparticles (NPs) for the elimination of dye pollutants. A simple, cost-effective hydrothermal process is employed to synthesize the Cu-doped ZnO NPs. The photocatalytic dye degradation activity of the synthesized Cu-doped ZnO NPs is tested by using methylene blue (MB) dye. In addition, the parameters that affect photodegradation efficiency, such as catalyst concentration, starting potential of hydrogen (pH), and dye concentration, were also assessed. The dye degradation is found to be directly proportional to the irradiation time, as 94% of the MB dye is degraded in 2 hrs. Similarly, the dye degradation shows an inverse relation to the MB dye concentration, as the degradation reduced from 94% to 20% when the MB concentration increases from 5 ppm to 80 ppm. The synthesized cost-effective and environmentally friendly Cu-doped ZnO NPs exhibit improved photocatalytic activity against MB dye and can therefore be employed in wastewater treatment materials.
  6. Rahbeni TA, Satapathy P, Itumalla R, Marzo RR, Mugheed KAL, Khatib MN, et al.
    JMIR Public Health Surveill, 2024 Apr 30;10:e54769.
    PMID: 38687992 DOI: 10.2196/54769
    BACKGROUND: The unprecedented emergence of the COVID-19 pandemic necessitated the development and global distribution of vaccines, making the understanding of global vaccine acceptance and hesitancy crucial to overcoming barriers to vaccination and achieving widespread immunization.

    OBJECTIVE: This umbrella review synthesizes findings from systematic reviews and meta-analyses to provide insights into global perceptions on COVID-19 vaccine acceptance and hesitancy across diverse populations and regions.

    METHODS: We conducted a literature search across major databases to identify systematic reviews and meta-analysis that reported COVID-19 vaccine acceptance and hesitancy. The AMSTAR-2 (A Measurement Tool to Assess Systematic Reviews) criteria were used to assess the methodological quality of included systematic reviews. Meta-analysis was performed using STATA 17 with a random effect model. The data synthesis is presented in a table format and via a narrative.

    RESULTS: Our inclusion criteria were met by 78 meta-analyses published between 2021 and 2023. Our analysis revealed a moderate vaccine acceptance rate of 63% (95% CI 0.60%-0.67%) in the general population, with significant heterogeneity (I2 = 97.59%). Higher acceptance rates were observed among health care workers and individuals with chronic diseases, at 64% (95% CI 0.57%-0.71%) and 69% (95% CI 0.61%-0.76%), respectively. However, lower acceptance was noted among pregnant women, at 48% (95% CI 0.42%-0.53%), and parents consenting for their children, at 61.29% (95% CI 0.56%-0.67%). The pooled vaccine hesitancy rate was 32% (95% CI 0.25%-0.39%) in the general population. The quality assessment revealed 19 high-quality, 38 moderate-quality, 15 low-quality, and 6 critically low-quality meta-analyses.

    CONCLUSIONS: This review revealed the presence of vaccine hesitancy globally, emphasizing the necessity for population-specific, culturally sensitive interventions and clear, credible information dissemination to foster vaccine acceptance. The observed disparities accentuate the need for continuous research to understand evolving vaccine perceptions and to address the unique concerns and needs of diverse populations, thereby aiding in the formulation of effective and inclusive vaccination strategies.

    TRIAL REGISTRATION: PROSPERO CRD42023468363; https://tinyurl.com/2p9kv9cr.

  7. Abuzeid N, Kalsum S, Koshy RJ, Larsson M, Glader M, Andersson H, et al.
    J Ethnopharmacol, 2014 Nov 18;157:134-9.
    PMID: 25261689 DOI: 10.1016/j.jep.2014.09.020
    The emergence of multidrug-resistant strains of Mycobacterium tuberculosis underscores the need for continuous development of new and efficient methods to determine the susceptibility of isolates of Mycobacterium tuberculosis in the search for novel antimycobacterial agents. Natural products constitute an important source of new drugs, and design and implementation of antimycobacterial susceptibility testing methods are necessary to evaluate the different extracts and compounds. In this study we have explored the antimycobacterial properties of 50 ethanolic extracts from different parts of 46 selected medicinal plants traditionally used in Sudan to treat infectious diseases.
  8. Bouyahya A, Bakrim S, Chamkhi I, Taha D, El Omari N, El Mneyiy N, et al.
    Biomed Pharmacother, 2024 Jan;170:115989.
    PMID: 38103309 DOI: 10.1016/j.biopha.2023.115989
    Cyanobacteria and microalgae contain various phytochemicals, including bioactive components in the form of secondary metabolites, namely flavonoids, phenolic acids, terpenoids, and tannins, with remarkable anticancer effects. This review highlights the recent advances in bioactive compounds, with potential anticancer activity, produced by cyanobacteria and microalgae. Previous in vitro investigations showed that many of these bioactive compounds exhibit potent effects against different human cancer types, such as leukemia and breast cancers. Multiple mechanisms implicated in the antitumor effect of these compounds were elucidated, including their ability to target cellular, subcellular, and molecular checkpoints linked to cancer development and promotion. Recent findings have highlighted various mechanisms of action of bioactive compounds produced by cyanobacteria and microalgae, including induction of autophagy and apoptosis, inhibition of telomerase and protein kinases, as well as modulation of epigenetic modifications. In vivo investigations have demonstrated a potent anti-angiogenesis effect on solid tumors, as well as a reduction in tumor volume. Some of these compounds were examined in clinical investigations for certain types of cancers, making them potent candidates/scaffolds for antitumor drug development.
  9. Aanniz T, Zeouk I, Elouafy Y, Touhtouh J, Hassani R, Hammani K, et al.
    Biomed Pharmacother, 2024 Aug;177:117072.
    PMID: 38991301 DOI: 10.1016/j.biopha.2024.117072
    The development of natural substances derived from nature poses a significant challenge as technologies for the extraction and characterization of active principles advance. Hispolon has received a lot of attention in recent years, ascribable to its wide range of biological activities. It is a phenolic molecule that was extracted from several mushroom species such as Phellinus igniarius, Phellinus linteus, Phellinus lonicerinus, Phellinus merrillii, and Inonotus hispidus. To provide a comprehensive overview of the pharmacological activities of hispolon, this review highlights its anticancer, anti-inflammatory, antioxidant, antibacterial, and anti-diabetic activities. Several scientific research databases, including Google Scholar, Web of Science, PubMed, SciFinder, SpringerLink, Science Direct, Scopus, and, Wiley Online were used to gather the data on hispolon until May 2024. The in vitro and in vivo studies have revealed that hispolon exhibited significant anticancer properties through modifying several signaling pathways including cell apoptosis, cycle arrest, autophagy, and inhibition of angiogenesis and metastasis. Hispolon's antimicrobial activity was proven against many bacterial, fungal, and viral pathogens, highlighting its potential use as a novel antimicrobial agent. Additionally, hispolon displayed potent anti-inflammatory activity through the suppression of key inflammatory mediators, such as inducible NO synthase (iNOS), tumor necrosis factor-α (TNF-α), and cyclooxygenases-2 (COX-2), and the modulation of mitogen-activated protein kinases (MAPK) and nuclear factor kappa B (NF-κB) signaling pathways. The antioxidant potential of hispolon was attributed to its capacity to neutralize reactive oxygen species (ROS) and to increase the activity of antioxidant enzymes, indicating a possible involvement in the prevention of oxidative stress-related illnesses. Hispolon's antidiabetic activity was associated with the inhibition of aldose reductase and α-glucosidase. Studies on hispolon emphasized its potential use as a promising scaffold for the development of novel therapeutic agents targeting various diseases, including cancer, infectious diseases, inflammatory disorders, and diabetes.
  10. Okwaraji YB, Suárez-Idueta L, Ohuma EO, Bradley E, Yargawa J, Pingray V, et al.
    BJOG, 2023 Nov 29.
    PMID: 38018284 DOI: 10.1111/1471-0528.17653
    OBJECTIVE: To examine the contribution of preterm birth and size-for-gestational age in stillbirths using six 'newborn types'.

    DESIGN: Population-based multi-country analyses.

    SETTING: Births collected through routine data systems in 13 countries.

    SAMPLE: 125 419 255 total births from 22+0 to 44+6 weeks' gestation identified from 2000 to 2020.

    METHODS: We included 635 107 stillbirths from 22+0  weeks' gestation from 13 countries. We classified all births, including stillbirths, into six 'newborn types' based on gestational age information (preterm, PT, <37+0  weeks versus term, T, ≥37+0  weeks) and size-for-gestational age defined as small (SGA, <10th centile), appropriate (AGA, 10th-90th centiles) or large (LGA, >90th centile) for gestational age, according to the international newborn size for gestational age and sex INTERGROWTH-21st standards.

    MAIN OUTCOME MEASURES: Distribution of stillbirths, stillbirth rates and rate ratios according to six newborn types.

    RESULTS: 635 107 (0.5%) of the 125 419 255 total births resulted in stillbirth after 22+0  weeks. Most stillbirths (74.3%) were preterm. Around 21.2% were SGA types (PT + SGA [16.2%], PT + AGA [48.3%], T + SGA [5.0%]) and 14.1% were LGA types (PT + LGA [9.9%], T + LGA [4.2%]). The median rate ratio (RR) for stillbirth was highest in PT + SGA babies (RR 81.1, interquartile range [IQR], 68.8-118.8) followed by PT + AGA (RR 25.0, IQR, 20.0-34.3), PT + LGA (RR 25.9, IQR, 13.8-28.7) and T + SGA (RR 5.6, IQR, 5.1-6.0) compared with T + AGA. Stillbirth rate ratios were similar for T + LGA versus T + AGA (RR 0.7, IQR, 0.7-1.1). At the population level, 25% of stillbirths were attributable to small-for-gestational-age.

    CONCLUSIONS: In these high-quality data from high/middle income countries, almost three-quarters of stillbirths were born preterm and a fifth small-for-gestational age, with the highest stillbirth rates associated with the coexistence of preterm and SGA. Further analyses are needed to better understand patterns of gestation-specific risk in these populations, as well as patterns in lower-income contexts, especially those with higher rates of intrapartum stillbirth and SGA.

  11. Nadzirah S, Mohamad Zin N, Khalid A, Abu Bakar NF, Kamarudin SS, Zulfakar SS, et al.
    Crit Rev Anal Chem, 2024;54(8):3083-3094.
    PMID: 37358486 DOI: 10.1080/10408347.2023.2224433
    Since diagnostic laboratories handle large COVID-19 samples, researchers have established laboratory-based assays and developed biosensor prototypes. Both share the same purpose; to ascertain the occurrence of air and surface contaminations by the SARS-CoV-2 virus. However, the biosensors further utilize internet-of-things (IoT) technology to monitor COVID-19 virus contamination, specifically in the diagnostic laboratory setting. The IoT-capable biosensors have great potential to monitor for possible virus contamination. Numerous studies have been done on COVID-19 virus air and surface contamination in the hospital setting. Through reviews, there are abundant reports on the viral transmission of SARS-CoV-2 through droplet infections, person-to-person close contact and fecal-oral transmission. However, studies on environmental conditions need to be better reported. Therefore, this review covers the detection of SARS-CoV-2 in airborne and wastewater samples using biosensors with comprehensive studies in methods and techniques of sampling and sensing (2020 until 2023). Furthermore, the review exposes sensing cases in public health settings. Then, the integration of data management together with biosensors is well explained. Last, the review ended with challenges to having a practical COVID-19 biosensor applied for environmental surveillance samples.
  12. Khalil I, Colombara DV, Forouzanfar MH, Troeger C, Daoud F, Moradi-Lakeh M, et al.
    Am J Trop Med Hyg, 2016 Dec 07;95(6):1319-1329.
    PMID: 27928080 DOI: 10.4269/ajtmh.16-0339
    Diarrheal diseases (DD) are leading causes of disease burden, death, and disability, especially in children in low-income settings. DD can also impact a child's potential livelihood through stunted physical growth, cognitive impairment, and other sequelae. As part of the Global Burden of Disease Study, we estimated DD burden, and the burden attributable to specific risk factors and particular etiologies, in the Eastern Mediterranean Region (EMR) between 1990 and 2013. For both sexes and all ages, we calculated disability-adjusted life years (DALYs), which are the sum of years of life lost and years lived with disability. We estimate that over 125,000 deaths (3.6% of total deaths) were due to DD in the EMR in 2013, with a greater burden of DD in low- and middle-income countries. Diarrhea deaths per 100,000 children under 5 years of age ranged from one (95% uncertainty interval [UI] = 0-1) in Bahrain and Oman to 471 (95% UI = 245-763) in Somalia. The pattern for diarrhea DALYs among those under 5 years of age closely followed that for diarrheal deaths. DALYs per 100,000 ranged from 739 (95% UI = 520-989) in Syria to 40,869 (95% UI = 21,540-65,823) in Somalia. Our results highlighted a highly inequitable burden of DD in EMR, mainly driven by the lack of access to proper resources such as water and sanitation. Our findings will guide preventive and treatment interventions which are based on evidence and which follow the ultimate goal of reducing the DD burden.
  13. Crous PW, Wingfield MJ, Lombard L, Roets F, Swart WJ, Alvarado P, et al.
    Persoonia, 2019;43:223-425.
    PMID: 32214501 DOI: 10.3767/persoonia.2019.43.06
    Novel species of fungi described in this study include those from various countries as follows: Antarctica, Apenidiella antarctica from permafrost, Cladosporium fildesense from an unidentified marine sponge. Argentina, Geastrum wrightii on humus in mixed forest. Australia, Golovinomyces glandulariae on Glandularia aristigera, Neoanungitea eucalyptorum on leaves of Eucalyptus grandis, Teratosphaeria corymbiicola on leaves of Corymbia ficifolia, Xylaria eucalypti on leaves of Eucalyptus radiata. Brazil, Bovista psammophila on soil, Fusarium awaxy on rotten stalks of Zea mays, Geastrum lanuginosum on leaf litter covered soil, Hermetothecium mikaniae-micranthae (incl. Hermetothecium gen. nov.) on Mikania micrantha, Penicillium reconvexovelosoi in soil, Stagonosporopsis vannaccii from pod of Glycine max. British Virgin Isles, Lactifluus guanensis on soil. Canada, Sorocybe oblongispora on resin of Picea rubens. Chile, Colletotrichum roseum on leaves of Lapageria rosea. China, Setophoma caverna from carbonatite in Karst cave. Colombia, Lareunionomyces eucalypticola on leaves of Eucalyptus grandis. Costa Rica, Psathyrella pivae on wood. Cyprus, Clavulina iris on calcareous substrate. France, Chromosera ambigua and Clavulina iris var. occidentalis on soil. French West Indies, Helminthosphaeria hispidissima on dead wood. Guatemala, Talaromyces guatemalensis in soil. Malaysia, Neotracylla pini (incl. Tracyllales ord. nov. and Neotracylla gen. nov.) and Vermiculariopsiella pini on needles of Pinus tecunumanii. New Zealand, Neoconiothyrium viticola on stems of Vitis vinifera, Parafenestella pittospori on Pittosporum tenuifolium, Pilidium novae-zelandiae on Phoenix sp. Pakistan, Russula quercus-floribundae on forest floor. Portugal, Trichoderma aestuarinum from saline water. Russia, Pluteus liliputianus on fallen branch of deciduous tree, Pluteus spurius on decaying deciduous wood or soil. South Africa, Alloconiothyrium encephalarti, Phyllosticta encephalarticola and Neothyrostroma encephalarti (incl. Neothyrostroma gen. nov.) on leaves of Encephalartos sp., Chalara eucalypticola on leaf spots of Eucalyptus grandis × urophylla, Clypeosphaeria oleae on leaves of Olea capensis, Cylindrocladiella postalofficium on leaf litter of Sideroxylon inerme, Cylindromonium eugeniicola (incl. Cylindromonium gen. nov.) on leaf litter of Eugenia capensis, Cyphellophora goniomatis on leaves of Gonioma kamassi, Nothodactylaria nephrolepidis (incl. Nothodactylaria gen. nov. and Nothodactylariaceae fam. nov.) on leaves of Nephrolepis exaltata, Falcocladium eucalypti and Gyrothrix eucalypti on leaves of Eucalyptus sp., Gyrothrix oleae on leaves of Olea capensis subsp. macrocarpa, Harzia metrosideri on leaf litter of Metrosideros sp., Hippopotamyces phragmitis (incl. Hippopotamyces gen. nov.) on leaves of Phragmites australis, Lectera philenopterae on Philenoptera violacea, Leptosillia mayteni on leaves of Maytenus heterophylla, Lithohypha aloicola and Neoplatysporoides aloes on leaves of Aloe sp., Millesimomyces rhoicissi (incl. Millesimomyces gen. nov.) on leaves of Rhoicissus digitata, Neodevriesia strelitziicola on leaf litter of Strelitzia nicolai, Neokirramyces syzygii (incl. Neokirramyces gen. nov.) on leaf spots of Syzygium sp., Nothoramichloridium perseae (incl. Nothoramichloridium gen. nov. and Anungitiomycetaceae fam. nov.) on leaves of Persea americana, Paramycosphaerella watsoniae on leaf spots of Watsonia sp., Penicillium cuddlyae from dog food, Podocarpomyces knysnanus (incl. Podocarpomyces gen. nov.) on leaves of Podocarpus falcatus, Pseudocercospora heteropyxidicola on leaf spots of Heteropyxis natalensis, Pseudopenidiella podocarpi, Scolecobasidium podocarpi and Ceramothyrium podocarpicola on leaves of Podocarpus latifolius, Scolecobasidium blechni on leaves of Blechnum capense, Stomiopeltis syzygii on leaves of Syzygium chordatum, Strelitziomyces knysnanus (incl. Strelitziomyces gen. nov.) on leaves of Strelitzia alba, Talaromyces clemensii from rotting wood in goldmine, Verrucocladosporium visseri on Carpobrotus edulis. Spain, Boletopsis mediterraneensis on soil, Calycina cortegadensisi on a living twig of Castanea sativa, Emmonsiellopsis tuberculata in fluvial sediments, Mollisia cortegadensis on dead attached twig of Quercus robur, Psathyrella ovispora on soil, Pseudobeltrania lauri on leaf litter of Laurus azorica, Terfezia dunensis in soil, Tuber lucentum in soil, Venturia submersa on submerged plant debris. Thailand, Cordyceps jakajanicola on cicada nymph, Cordyceps kuiburiensis on spider, Distoseptispora caricis on leaves of Carex sp., Ophiocordyceps khonkaenensis on cicada nymph. USA, Cytosporella juncicola and Davidiellomyces juncicola on culms of Juncus effusus, Monochaetia massachusettsianum from air sample, Neohelicomyces melaleucae and Periconia neobrittanica on leaves of Melaleuca styphelioides × lanceolata, Pseudocamarosporium eucalypti on leaves of Eucalyptus sp., Pseudogymnoascus lindneri from sediment in a mine, Pseudogymnoascus turneri from sediment in a railroad tunnel, Pulchroboletus sclerotiorum on soil, Zygosporium pseudomasonii on leaf of Serenoa repens. Vietnam, Boletus candidissimus and Veloporphyrellus vulpinus on soil. Morphological and culture characteristics are supported by DNA barcodes.
  14. Hashemi F, Hoepner L, Hamidinejad FS, Haluza D, Afrashteh S, Abbasi A, et al.
    Environ Sci Pollut Res Int, 2023 Jun;30(28):72368-72388.
    PMID: 37166731 DOI: 10.1007/s11356-023-27197-6
    COVID-19 has affected all aspects of human life so far. From the outset of the pandemic, preventing the spread of COVID-19 through the observance of health protocols, especially the use of sanitizers and disinfectants was given more attention. Despite the effectiveness of disinfection chemicals in controlling and preventing COVID-19, there are critical concerns about their adverse effects on human health. This study aims to assess the health effects of sanitizers and disinfectants on a global scale. A total of 91,056 participants from 154 countries participated in this cross-sectional study. Information on the use of sanitizers and disinfectants and health was collected using an electronic questionnaire, which was translated into 26 languages via web-based platforms. The findings of this study suggest that detergents, alcohol-based substances, and chlorinated compounds emerged as the most prevalent chemical agents compared to other sanitizers and disinfectants examined. Most frequently reported health issues include skin effects and respiratory effects. The Chi-square test showed a significant association between chlorinated compounds (sodium hypochlorite and per-chlorine) with all possible health effects under investigation (p-value <0.001). Examination of risk factors based on multivariate logistic regression analysis showed that alcohols and alcohols-based materials were associated with skin effects (OR, 1.98; 95%CI, 1.87-2.09), per-chlorine was associated with eye effects (OR, 1.83; 95%CI, 1.74-1.93), and highly likely with itching and throat irritation (OR, 2.00; 95%CI, 1.90-2.11). Furthermore, formaldehyde was associated with a higher prevalence of neurological effects (OR, 2.17; 95%CI, 1.92-2.44). Furthermore, formaldehyde was associated with a higher prevalence of neurological effects (OR, 2.17; 95%CI, 1.92-2.44). The use of sodium hypochlorite and per-chlorine also had a high chance of having respiratory effects. The findings of the current study suggest that health authorities need to implement more awareness programs about the side effects of using sanitizers and disinfectants during viral epidemics especially when they are used or overused.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links