Displaying publications 61 - 80 of 352 in total

Abstract:
Sort:
  1. Tumasyan A, Adam W, Andrejkovic JW, Bergauer T, Chatterjee S, Damanakis K, et al.
    Phys Rev Lett, 2023 Aug 11;131(6):061801.
    PMID: 37625071 DOI: 10.1103/PhysRevLett.131.061801
    A search for the standard model Higgs boson decaying to a charm quark-antiquark pair, H→cc[over ¯], produced in association with a leptonically decaying V (W or Z) boson is presented. The search is performed with proton-proton collisions at sqrt[s]=13  TeV collected by the CMS experiment, corresponding to an integrated luminosity of 138  fb^{-1}. Novel charm jet identification and analysis methods using machine learning techniques are employed. The analysis is validated by searching for Z→cc[over ¯] in VZ events, leading to its first observation at a hadron collider with a significance of 5.7 standard deviations. The observed (expected) upper limit on σ(VH)B(H→cc[over ¯]) is 0.94 (0.50_{-0.15}^{+0.22})pb at 95% confidence level (C.L.), corresponding to 14 (7.6_{-2.3}^{+3.4}) times the standard model prediction. For the Higgs-charm Yukawa coupling modifier, κ_{c}, the observed (expected) 95% C.L. interval is 1.1
  2. Liu Y, Yan N, Chen Q, Dong L, Li Y, Weng P, et al.
    PMID: 37552798 DOI: 10.1080/10408398.2023.2239350
    Citrus polyphenols can modulate gut microbiota and such bi-directional interaction that can yield metabolites such as short-chain fatty acids (SCFAs) to aid in gut homeostasis. Such interaction provides citrus polyphenols with powerful prebiotic potential, contributing to guts' health status and metabolic regulation. Citrus polyphenols encompass unique polymethoxy flavonoids imparting non-polar nature that improve their bioactivities and ability to penetrate the blood-brain barrier. Green extraction technology targeting recovery of these polyphenols has received increasing attention due to its advantages of high extraction yield, short extraction time, low solvent consumption, and environmental friendliness. However, the low bioavailability of citrus polyphenols limits their applications in extraction from citrus by-products. Meanwhile, nano-encapsulation technology may serve as a promising approach to improve citrus polyphenols' bioavailability. As citrus polyphenols encompass multiple hydroxyl groups, they are potential to interact with bio-macromolecules such as proteins and polysaccharides in nano-encapsulated systems that can improve their bioavailability. This multifaceted review provides a research basis for the green and efficient extraction techniques of citrus polyphenols, as well as integrated mechanisms for its anti-inflammation, alleviating metabolic syndrome, and regulating gut homeostasis, which is more capitalized upon using nano-delivery systems as discussed in that review to maximize their health and food applications.
  3. Liu A, Chai X, Zhu S, Chin PT, He M, Xu YJ, et al.
    Int J Biol Macromol, 2023 Jul 31;244:125311.
    PMID: 37302627 DOI: 10.1016/j.ijbiomac.2023.125311
    Astaxanthin (AST) has outstanding antioxidant and anti-inflammation bioactivities, but the low biocompatibility and stability limit its application in foods. In this study, N-succinyl-chitosan (NSC)-coated AST polyethylene glycol (PEG)-liposomes were constructed to enhance the biocompatibility, stability, and intestinal-targeted migration of AST. The AST NSC/PEG-liposomes were uniform in size, had larger particles, greater encapsulation efficiency, and better storage, pH, and temperature stability than the AST PEG-liposomes. AST NSC/PEG-liposomes exerted stronger antibacterial and antioxidant activities against Escherichia coli and Staphylococcus aureus than AST PEG-liposomes. The NSC coating not only protects AST PEG-liposomes from gastric acid but also prolongs the retention and sustained release of AST NSC/PEG-liposomes depending on the intestinal pH. Moreover, caco-2 cellular uptake studies showed that AST NSC/PEG-liposomes had higher cellular uptake efficiency than AST PEG-liposomes. And AST NSC/PEG-liposomes were taken up by caco-2 cells through clathrin mediated endocytic, macrophage pathways and paracellular transport pathway. These results further proved that AST NSC/PEG-liposomes delayed the release and promoted the intestinal absorption of AST. Hence, AST PEG-liposomes coated with NSC could potentially be used as an efficient delivery system for therapeutic AST.
  4. Tumasyan A, Adam W, Andrejkovic JW, Bergauer T, Chatterjee S, Damanakis K, et al.
    Phys Rev Lett, 2023 Jul 28;131(4):041803.
    PMID: 37566864 DOI: 10.1103/PhysRevLett.131.041803
    A search for nonresonant Higgs boson (H) pair production via gluon and vector boson (V) fusion is performed in the four-bottom-quark final state, using proton-proton collision data at 13 TeV corresponding to 138  fb^{-1} collected by the CMS experiment at the LHC. The analysis targets Lorentz-boosted H pairs identified using a graph neural network. It constrains the strengths relative to the standard model of the H self-coupling and the quartic VVHH couplings, κ_{2V}, excluding κ_{2V}=0 for the first time, with a significance of 6.3 standard deviations when other H couplings are fixed to their standard model values.
  5. Tumasyan A, Adam W, Andrejkovic JW, Bergauer T, Chatterjee S, Damanakis K, et al.
    Phys Rev Lett, 2023 Jul 28;131(4):041801.
    PMID: 37566854 DOI: 10.1103/PhysRevLett.131.041801
    A search for the standard model (SM) Higgs boson (H) produced with transverse momentum (p_{T}) greater than 450 GeV and decaying to a charm quark-antiquark (cc[over ¯]) pair is presented. The search is performed using proton-proton collision data collected at sqrt[s]=13  TeV by the CMS experiment at the LHC, corresponding to an integrated luminosity of 138  fb^{-1}. Boosted H→cc[over ¯] decay products are reconstructed as a single large-radius jet and identified using a deep neural network charm tagging technique. The method is validated by measuring the Z→cc[over ¯] decay process, which is observed in association with jets at high p_{T} for the first time with a signal strength of 1.00_{-0.14}^{+0.17}(syst)±0.08(theo)±0.06(stat), defined as the ratio of the observed process rate to the SM expectation. The observed (expected) upper limit on σ(H)B(H→cc[over ¯]) is set at 47 (39) times the SM prediction at 95% confidence level.
  6. Chen Y, Gong Y, Shan L, Tan CY, Al-Furjan MS, Ramesh S, et al.
    Materials (Basel), 2023 Jul 28;16(15).
    PMID: 37570016 DOI: 10.3390/ma16155312
    Cartilage damage is difficult to heal and poses a serious problem to human health as it can lead to osteoarthritis. In this work, we explore the application of biological 3D printing to manufacture new cartilage scaffolds to promote cartilage regeneration. The hydrogel made by mixing sodium alginate (SA) and gelatin (GA) has high biocompatibility, but its mechanical properties are poor. The addition of hydroxyapatite (HA) can enhance its mechanical properties. In this paper, the preparation scheme of the SA-GA-HA composite hydrogel cartilage scaffold was explored, the scaffolds prepared with different concentrations were compared, and better formulations were obtained for printing and testing. Mathematical modeling of the printing process of the bracket, simulation analysis of the printing process based on the mathematical model, and adjustment of actual printing parameters based on the results of the simulation were performed. The cartilage scaffold, which was printed using Bioplotter 3D printer, exhibited useful mechanical properties suitable for practical needs. In addition, ATDC-5 cells were seeded on the cartilage scaffolds and the cell survival rate was found to be higher after one week. The findings demonstrated that the fabricated chondrocyte scaffolds had better mechanical properties and biocompatibility, providing a new scaffold strategy for cartilage tissue regeneration.
  7. Liu Y, Marshall NM, Yu SS, Kim W, Gao YG, Robinson H, et al.
    Inorg Chem, 2023 Jul 24;62(29):11618-11625.
    PMID: 37424080 DOI: 10.1021/acs.inorgchem.3c01365
    In order to investigate the effects of the secondary coordination sphere in fine-tuning redox potentials (E°') of type 1 blue copper (T1Cu) in cupredoxins, we have introduced M13F, M44F, and G116F mutations both individually and in combination in the secondary coordination sphere of the T1Cu center of azurin (Az) from Pseudomonas aeruginosa. These variants were found to differentially influence the E°' of T1Cu, with M13F Az decreasing E°', M44F Az increasing E°', and G116F Az showing a negligible effect. In addition, combining the M13F and M44F mutations increases E°' by 26 mV relative to WT-Az, which is very close to the combined effect of E°' by each mutation. Furthermore, combining G116F with either M13F or M44F mutation resulted in negative and positive cooperative effects, respectively. Crystal structures of M13F/M44F-Az, M13F/G116F-Az, and M44F/G116F-Az combined with that of G116F-Az reveal these changes arise from steric effects and fine-tuning of hydrogen bond networks around the copper-binding His117 residue. The insights gained from this study would provide another step toward the development of redox-active proteins with tunable redox properties for many biological and biotechnological applications.
  8. Wang C, Zhang Y, Lim LG, Cao W, Zhang W, Wan X, et al.
    Sci Rep, 2023 Jul 10;13(1):11141.
    PMID: 37429942 DOI: 10.1038/s41598-023-38057-1
    Living in high expressed emotion (EE) environments tends to increase the relapse rate in schizophrenia (SZ). At present, the neural substrates responsible for high EE in SZ remain poorly understood. Functional near-infrared spectroscopy (fNIRS) may be of great use to quantitatively assess cortical hemodynamics and elucidate the pathophysiology of psychiatric disorders. In this study, we designed novel low- (positivity and warmth) and high-EE (criticism, negative emotion, and hostility) stimulations, in the form of audio, to investigate cortical hemodynamics. We used fNIRS to measure hemodynamic signals while participants listened to the recorded audio. Healthy controls (HCs, [Formula: see text]) showed increased hemodynamic activation in the major language centers across EE stimulations, with stronger activation in Wernicke's area during the processing of negative emotional language. Compared to HCs, people with SZ ([Formula: see text]) exhibited smaller hemodynamic activation in the major language centers across EE stimulations. In addition, people with SZ showed weaker or insignificant hemodynamic deactivation in the medial prefrontal cortex. Notably, hemodynamic activation in SZ was found to be negatively correlated with the negative syndrome scale score at high EE. Our findings suggest that the neural mechanisms in SZ are altered and disrupted, especially during negative emotional language processing. This supports the feasibility of using the designed EE stimulations to assess people who are vulnerable to high-EE environments, such as SZ. Furthermore, our findings provide preliminary evidence for future research on functional neuroimaging biomarkers for people with psychiatric disorders.
  9. Tumasyan A, Adam W, Andrejkovic JW, Bergauer T, Chatterjee S, Damanakis K, et al.
    Phys Rev Lett, 2023 Jul 07;131(1):011803.
    PMID: 37478454 DOI: 10.1103/PhysRevLett.131.011803
    The first search exploiting the vector boson fusion process to probe heavy Majorana neutrinos and the Weinberg operator at the LHC is presented. The search is performed in the same-sign dimuon final state using a proton-proton collision dataset recorded at sqrt[s]=13  TeV, collected with the CMS detector and corresponding to a total integrated luminosity of 138  fb^{-1}. The results are found to agree with the predictions of the standard model. For heavy Majorana neutrinos, constraints on the squared mixing element between the muon and the heavy neutrino are derived in the heavy neutrino mass range 50 GeV-25 TeV; for masses above 650 GeV these are the most stringent constraints from searches at the LHC to date. A first test of the Weinberg operator at colliders provides an observed upper limit at 95% confidence level on the effective μμ Majorana neutrino mass of 10.8 GeV.
  10. Zhang Y, Ren H, Li B, Udin SM, Maarof H, Zhou W, et al.
    Int J Biol Macromol, 2023 Jul 01;242(Pt 2):124829.
    PMID: 37210053 DOI: 10.1016/j.ijbiomac.2023.124829
    Deep eutectic solvents (DESs) composed by amino acids (L-arginine, L-proline, L-alanine) as the hydrogen bond acceptors (HBAs) and carboxylic acids (formic acid, acetic acid, lactic acid, levulinic acid) as hydrogen bond donors (HBDs) were prepared and used for the dissolution of dealkaline lignin (DAL). The mechanism of lignin dissolution in DESs was explored at molecular level by combining the analysis of Kamlet-Taft (K-T) solvatochromic parameters, FTIR spectrum and density functional theory (DFT) calculations of DESs. Firstly, it was found that the formation of new hydrogen bonds between lignin and DESs mainly drove the dissolution of lignin, which were accompanied by the erosion of hydrogen bond networks in both lignin and DESs. The nature of hydrogen bond network within DESs was fundamentally determined by the type and number of functional groups in both HBA and HBD, which affected its ability to form hydrogen bond with lignin. One hydroxyl group and carboxyl group in HBDs provided active protons, which facilitated proton-catalyzed cleavage of β-O-4, thus enhancing the dissolution of DESs. The superfluous functional group resulted in more extensive and stronger hydrogen bond network in the DESs, thus decreasing the lignin dissolving ability. Moreover, it was found that lignin solubility had a closed positive correlation with the subtraction value of α and β (net hydrogen donating ability) of DESs. Among all the investigated DESs, L-alanine/formic acid (1:3) with the strong hydrogen-bond donating ability (acidity), weak hydrogen-bond accepting ability (basicity) and small steric-hindrance effect showed the best lignin dissolving ability (23.99 wt%, 60 °C). On top of that, the value of α and β of L-proline/carboxylic acids DESs showed some positive correlation with the global electrostatic potential (ESP) maxima and minima of the corresponding DESs respectively, indicating the analysis of ESP quantitative distributions of DESs could be an effective tool for DESs screening and design for lignin dissolution as well as other applications.
  11. Zhang X, Dong X, Saripan MIB, Du D, Wu Y, Wang Z, et al.
    Thorac Cancer, 2023 Jul;14(19):1802-1811.
    PMID: 37183577 DOI: 10.1111/1759-7714.14924
    BACKGROUND: Radiomic diagnosis models generally consider only a single dimension of information, leading to limitations in their diagnostic accuracy and reliability. The integration of multiple dimensions of information into the deep learning model have the potential to improve its diagnostic capabilities. The purpose of study was to evaluate the performance of deep learning model in distinguishing tuberculosis (TB) nodules and lung cancer (LC) based on deep learning features, radiomic features, and clinical information.

    METHODS: Positron emission tomography (PET) and computed tomography (CT) image data from 97 patients with LC and 77 patients with TB nodules were collected. One hundred radiomic features were extracted from both PET and CT imaging using the pyradiomics platform, and 2048 deep learning features were obtained through a residual neural network approach. Four models included traditional machine learning model with radiomic features as input (traditional radiomics), a deep learning model with separate input of image features (deep convolutional neural networks [DCNN]), a deep learning model with two inputs of radiomic features and deep learning features (radiomics-DCNN) and a deep learning model with inputs of radiomic features and deep learning features and clinical information (integrated model). The models were evaluated using area under the curve (AUC), sensitivity, accuracy, specificity, and F1-score metrics.

    RESULTS: The results of the classification of TB nodules and LC showed that the integrated model achieved an AUC of 0.84 (0.82-0.88), sensitivity of 0.85 (0.80-0.88), and specificity of 0.84 (0.83-0.87), performing better than the other models.

    CONCLUSION: The integrated model was found to be the best classification model in the diagnosis of TB nodules and solid LC.

  12. Dama G, Hu X, Yan Y, Li Y, Li H, Yang F, et al.
    Histochem Cell Biol, 2023 Jul;160(1):11-25.
    PMID: 37014442 DOI: 10.1007/s00418-023-02186-5
    Experimental autoimmune encephalomyelitis (EAE) is a classical animal model of human multiple sclerosis (MS) that is most commonly used to study the neuropathology and therapeutic effects of the disease. Telocytes (TCs) are a specialized type of interstitial or mesenchymal cell first identified by Popescu in various tissues and organs. However, the existence, distribution and role of CD34+ stromal cells (SCs)/TCs in the EAE-induced mouse spleen remain to be elucidated. We conducted immunohistochemistry, immunofluorescence (double staining for CD34 and c-kit, vimentin, F4/80, CD163, Nanog, Sca-1, CD31 or tryptase) and transmission electron microscopy experiments to investigate the existence, distribution and role of CD34+ SCs/TCs in the EAE-induced mouse spleen. Interestingly, immunohistochemistry, double-immunofluorescence, and transmission electron microscopy results revealed that CD34+ SCs/TCs were significantly upregulated in the EAE mouse spleen. Immunohistochemical or double-immunofluorescence staining of CD34+ SCs/TCs showed positive expression for CD34, c-kit, vimentin, CD34/vimentin, c-kit/vimentin and CD34/c-kit, and negative expression for CD31 and tryptase. Transmission electron microscopy (TEM) results demonstrated that CD34+ SCs/TCs established close connections with lymphocytes, reticular cells, macrophages, endothelial cells and erythrocytes. Furthermore, we also found that M1 (F4/80) or M2 (CD163) macrophages, and haematopoietic, pluripotent stem cells were markedly increased in EAE mice. Our results suggest that CD34+ SCs/TCs are abundant and may play a contributing role in modulating the immune response, recruiting macrophages and proliferation of haematopoietic and pluripotent stem cells following injury to promote tissue repair and regeneration in EAE mouse spleens. This suggests that their transplantation combined with stem cells might represent a promising therapeutic target for the treatment and prevention of multiple autoimmune and chronic inflammatory disorders.
  13. Zhong W, Tang M, Xie Y, Huang X, Liu Y
    Foodborne Pathog Dis, 2023 Jul;20(7):294-302.
    PMID: 37347934 DOI: 10.1089/fpd.2022.0085
    Staphylococcus aureus can cause bacterial food intoxication and seriously affect human health. Tea polyphenols (TP) are a kind of natural, safe, and broad-spectrum bacteriostatic substances, with a wide range of bacteriostatic effects. In the study, we explored the possible bacteriostatic mode of TP. The minimum inhibitory concentration of TP against S. aureus was 64 μg/mL. Protein, DNA, and K+ leak experiments, fluorescence microscopy, and transmission electron microscopy suggested that TP disrupt cell membranes, leading to intracellular component loss. By studying the effect of TP on the toxicity of S. aureus, it was found that the expression levels of two toxin genes, coa and spa, were downregulated by 2.37 and 32.6, respectively. Furthermore, after treatment with TP, a large number of reactive oxygen species (ROS) were propagated and released, leading to oxidative stress in cells. We speculated that the bacteriostatic mechanism of TP may be through the destruction of the cell membrane and ROS-mediated oxidative stress. Meanwhile, the hemolysis activity proved the safety of TP. Our results suggested that TP may be a potential antimicrobial agent for food.
  14. Huang S, Huat KT, Liu Y
    Math Biosci Eng, 2023 Jun 29;20(8):14281-14305.
    PMID: 37679136 DOI: 10.3934/mbe.2023639
    In accordance with the theory of informal institutions, culture exerts a crucial influence on the enactment of corporate social responsibility. Based on the two core variables of Chinese traditional culture and corporate environmental responsibility, we designed a panel data model to investigate the impact of Chinese traditional culture on corporate environmental responsibility and its heterogeneity. The findings indicate the following: 1) Chinese traditional culture can promote the performance of corporate environmental responsibility. 2) Chinese traditional culture has a heterogeneous influence on the environmental responsibility of enterprises that depends on the ownership difference of enterprises; that is, the influence of traditional culture on the environmental responsibility of state-owned enterprises is stronger than that of non-state-owned enterprises. 3) Chinese traditional culture has a heterogeneous influence on the environmental responsibility of enterprises according to the difference in industrial pollution levels; that is, traditional culture has a positive correlation with the environmental responsibility of enterprises in heavily polluting industries and a negative correlation with non-heavily polluting industries. 4) Chinese traditional culture has a heterogeneous influence on corporate environmental responsibility according to geographical differences; that is to say, traditional culture promotes the development of corporate environmental responsibility in the central and western regions, and vice versa in the eastern regions.
  15. Liu Y, Han Y, Xiong L, Ma Q, Mei L, Chong MC, et al.
    Work, 2023 Jun 24.
    PMID: 37393480 DOI: 10.3233/WOR-230022
    BACKGROUND: Adaption to clinical work during the internship can induce several stressors among medical students, especially in the context of the coronavirus disease 2019 (COVID-19) pandemic. Particularly, job stress could be linked to the development of psychological traits and the formation of the professional identity of medical interns.

    OBJECTIVE: This study aimed to explore the relationship between job stress, psychological capital, and professional identity through a mediation analysis of Chinese medical interns.

    METHODS: A descriptive cross-sectional study was conducted in 30 hospitals and clinics in China from June 2021 to March 2022. A total of 665 medical interns filled out questionnaires related to demographic questions, psychological capital, job stress, and professional identity. Data analysis was executed using the IBM SPSS version 22.0 software and its add-in PROCESS Windows version 4.0.

    RESULTS: The findings indicated a statistically significant mediating effect of psychological capital between job stress and professional identity. Job stress and job stress combined with psychological capital accounted for 5.3% and 37.9%, respectively, of the variance in professional identity. The bootstrapping method corroborated the significance of the indirect effect of job stress through psychological capital (95% bootstrap CI = -4.7921, -2.4345).

    CONCLUSION: The current findings underscore the need for increased attention on improving the psychological capital of medical interns.

  16. Zhang S, Liu Q, Chang M, Pan Y, Yahaya BH, Liu Y, et al.
    Cell Death Dis, 2023 May 24;14(5):340.
    PMID: 37225709 DOI: 10.1038/s41419-023-05859-0
    Chemotherapy was conventionally applied to kill cancer cells, but regrettably, they also induce damage to normal cells with high-proliferative capacity resulting in cardiotoxicity, nephrotoxicity, peripheral nerve toxicity, and ovarian toxicity. Of these, chemotherapy-induced ovarian damages mainly include but are not limited to decreased ovarian reserve, infertility, and ovarian atrophy. Therefore, exploring the underlying mechanism of chemotherapeutic drug-induced ovarian damage will pave the way to develop fertility-protective adjuvants for female patients during conventional cancer treatment. Herein, we firstly confirmed the abnormal gonadal hormone levels in patients who received chemotherapy and further found that conventional chemotherapeutic drugs (cyclophosphamide, CTX; paclitaxel, Tax; doxorubicin, Dox and cisplatin, Cis) treatment significantly decreased both the ovarian volume of mice and the number of primordial and antral follicles and accompanied with the ovarian fibrosis and reduced ovarian reserve in animal models. Subsequently, Tax, Dox, and Cis treatment can induce the apoptosis of ovarian granulosa cells (GCs), likely resulting from excessive reactive oxygen species (ROS) production-induced oxidative damage and impaired cellular anti-oxidative capacity. Thirdly, the following experiments demonstrated that Cis treatment could induce mitochondrial dysfunction through overproducing superoxide in GCs and trigger lipid peroxidation leading to ferroptosis, first reported in chemotherapy-induced ovarian damage. In addition, N-acetylcysteine (NAC) treatment could alleviate the Cis-induced toxicity in GCs by downregulating cellular ROS levels and enhancing the anti-oxidative capacity (promoting the expression of glutathione peroxidase, GPX4; nuclear factor erythroid 2-related factor 2, Nrf2 and heme oxygenase-1, HO-1). Our study confirmed the chemotherapy-induced chaotic hormonal state and ovarian damage in preclinical and clinical examination and indicated that chemotherapeutic drugs initiated ferroptosis in ovarian cells through excessive ROS-induced lipid peroxidation and mitochondrial dysfunction, leading to ovarian cell death. Consequently, developing fertility protectants from the chemotherapy-induced oxidative stress and ferroptosis perspective will ameliorate ovarian damage and further improve the life quality of cancer patients.
  17. Chang L, Chong WT, Yau YH, Cui T, Wang XR, Pei F, et al.
    PMID: 37360559 DOI: 10.1007/s13762-023-04994-7
    Air quality in subway systems is crucial as it affects the health of passengers and staff. Although most tests of PM2.5 concentrations in subway stations have taken place in public areas, PM2.5 is less understood in workplaces. Few studies have estimated the cumulative inhaled dose of passengers based on real-time changes in PM2.5 concentrations as they commute. To clarify the above issues, this study first measured PM2.5 concentrations in four subway stations in Changchun, China, where measuring points included five workrooms. Then, passengers' exposure to PM2.5 during the whole subway commute (20-30 min) was measured and segmented inhalation was calculated. The results showed that PM2.5 concentration in public places ranged from 50 to 180 μg/m3, and was strongly correlated with outdoors. While the PM2.5 average concentration in workplaces was 60 µg/m3, and it was less affected by outdoor PM2.5 concentration. Passenger's cumulative inhalations in single commuting were about 42 μg and 100 μg when the outdoor PM2.5 concentrations were 20-30 μg/m3 and 120-180 μg/m3, respectively. The PM2.5 inhalation in carriages accounted for the largest proportion of the entire commuting, about 25-40%, because of the longer exposure time and higher PM2.5 concentrations. It is recommended to improve the tightness of the carriage and filter the fresh air to improve the air quality inside. The average daily PM2.5 inhaled by staff was 513.53 μg, which was 5-12 times higher than that of passengers. Installing air purification devices in workplaces and reminding staff to take personal protection can positively protect their health.
  18. Gu H, Yan J, Liu Y, Yu X, Feng Y, Yang X, et al.
    Environ Res, 2023 May 01;224:115543.
    PMID: 36822540 DOI: 10.1016/j.envres.2023.115543
    Bioaugmentation helps to obtain a microbiome capable of remediating polycyclic aromatic hydrocarbons (PAHs). In this study, acclimation of microorganisms to soil supplemented with phenanthrene (PHE) led to enrichment with PAH-degraders, including those in Actinobacteriota and in the genera Streptomyces, Rhodococcus, Nocardioides, Sphingomonas, and Mycobacterium. Aqueous (28 °C, pH 6.5) and soil cultures inoculated with PHE-acclimated soil showed a high PHE (ca. 50 mg L-1) degradation efficiency. The PHE degradation kinetics in aqueous and soil incubations fitted to the Gompertz equation and the first-order kinetic equation, respectively. Indigenous microorganisms adapted to PHE in their environment, and this increased their capacity to degrade PHE. The effect of co-contaminants and pathway intermediates on PHE degradation showed that the degradation of PHE improved in the presence of diesel while being hindered by lubricant oil, catechol, salicylic and phthalic acid. Our findings provide theoretical and practical support for bioremediationof PAHs in the environment.
  19. Ge Q, Wang K, Shao X, Wei Y, Zhang X, Liu Y, et al.
    Foodborne Pathog Dis, 2023 May;20(5):197-208.
    PMID: 37172299 DOI: 10.1089/fpd.2022.0083
    Rhizopus nigricans is a widespread phytopathogen in fruits and vegetables that can cause considerable economic effects and resource waste. Flavonoids from Sedum aizoon L. (FSAL) have specific antifungal activities. This study selected FSAL as an antifungal to prolong the preservation of fruits and vegetables. The results showed that the mycelial morphology and ultrastructure were damaged by the FSAL treatment (1.0 minimum inhibitory concentration), led to the increase of reactive oxygen species and malondialdehyde, and affected the activity of key enzymes in the glycolytic pathway, such as lactic dehydrogenase, pyruvate kinase, and hexokinase of R. nigricans. Key genes in glycolysis were upregulated or downregulated. In addition, in the treatment and control groups, 221 differentially expressed genes were found, including 89 that were upregulated and 32 that were downregulated, according to the transcriptome results. The differential genes were mainly enriched in glycolysis, pyruvate metabolism, and citrate cycle pathways. The results revealed some insights into the antifungal mechanism of FSAL against R. nigricans and offered a theoretical foundation for its advancement as a novel plant-derived antifungal agent.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links