Displaying publications 61 - 80 of 102 in total

Abstract:
Sort:
  1. Brishty SR, Hossain MJ, Khandaker MU, Faruque MRI, Osman H, Rahman SMA
    Front Pharmacol, 2021;12:762807.
    PMID: 34803707 DOI: 10.3389/fphar.2021.762807
    Nowadays, nitrogenous heterocyclic molecules have attracted a great deal of interest among medicinal chemists. Among these potential heterocyclic drugs, benzimidazole scaffolds are considerably prevalent. Due to their isostructural pharmacophore of naturally occurring active biomolecules, benzimidazole derivatives have significant importance as chemotherapeutic agents in diverse clinical conditions. Researchers have synthesized plenty of benzimidazole derivatives in the last decades, amidst a large share of these compounds exerted excellent bioactivity against many ailments with outstanding bioavailability, safety, and stability profiles. In this comprehensive review, we have summarized the bioactivity of the benzimidazole derivatives reported in recent literature (2012-2021) with their available structure-activity relationship. Compounds bearing benzimidazole nucleus possess broad-spectrum pharmacological properties ranging from common antibacterial effects to the world's most virulent diseases. Several promising therapeutic candidates are undergoing human trials, and some of these are going to be approved for clinical use. However, notable challenges, such as drug resistance, costly and tedious synthetic methods, little structural information of receptors, lack of advanced software, and so on, are still viable to be overcome for further research.
  2. Omar A, Bakar OC, Adam NF, Osman H, Osman A, Suleiman AH, et al.
    Korean J Parasitol, 2015 Feb;53(1):29-34.
    PMID: 25748706 DOI: 10.3347/kjp.2015.53.1.29
    The aim of this cross sectional case control study was to examine the serofrequency and serointensity of Toxoplasma gondii (Tg) IgG, IgM, and DNA among patients with schizophrenia. A total of 101 patients with schizophrenia and 55 healthy controls from Sungai Buloh Hospital, Selangor, Malaysia and University Malaya Medical Center (UMMC) were included in this study. The diagnosis of schizophrenia was made based on the Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition (DSM-IV). The presence of Tg infection was examined using both indirect (ELISA) and direct (quantitative real-time PCR) detection methods by measuring Tg IgG and IgM and DNA, respectively. The serofrequency of Tg IgG antibodies (51.5%, 52/101) and DNA (32.67%, 33/101) among patients with schizophrenia was significantly higher than IgG (18.2%, 10/55) and DNA (3.64%, 2/55) of the controls (IgG, P=0.000, OD=4.8, CI=2.2-10.5; DNA, P=0.000, OD=12.9, CI=2.17-10.51). However, the Tg IgM antibody between patients with schizophrenia and controls was not significant (P>0.005). There was no significant difference (P>0.005) in both serointensity of Tg IgG and DNA between patients with schizophrenia and controls. These findings have further demonstrated the strong association between the active Tg infection and schizophrenia.
  3. Keng Yoon Y, Ashraf Ali M, Choon TS, Ismail R, Chee Wei A, Suresh Kumar R, et al.
    Biomed Res Int, 2013;2013:926309.
    PMID: 24381946 DOI: 10.1155/2013/926309
    A total of seven novel benzimidazoles were synthesized by a 4-step reaction starting from 4-fluoro-3-nitrobenzoic acid under relatively mild reaction conditions. The synthesized compounds were screened for their antimycobacterial activity against M. tuberculosis H₃₇Rv (MTB-H₃₇Rv) and INH-resistant M. tuberculosis (INHR-MTB) strains using agar dilution method. Three of them displayed good activity with MIC of less than 0.2 μM. Compound ethyl 1-(2-(4-(4-(ethoxycarbonyl)-2-aminophenyl)piperazin-1-yl)ethyl)-2-(4-(5-(4-fluorophenyl)pyridin-3-ylphenyl-1H-benzo[d]imidazole-5-carboxylate (5 g) was found to be the most active with MIC of 0.112 μM against MTB-H₃₇Rv and 6.12 μM against INHR-MTB, respectively.
  4. Yoon YK, Ali MA, Wei AC, Choon TS, Khaw KY, Murugaiyah V, et al.
    Bioorg Chem, 2013 Aug;49:33-9.
    PMID: 23886696 DOI: 10.1016/j.bioorg.2013.06.008
    Two series of novel acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitors containing benzimidazole core structure were synthesized by a four-step reaction pathway starting from 4-fluoro-3-nitrobenzoic acid as the basic compound. The structure of the novel benzimidazoles was characterized and confirmed by the elemental and mass spectral analyses as well as (1)H NMR spectroscopic data. Of the 34 novel synthesized compounds, three benzimidazoles revealed AChE inhibition with IC50<10 μM. The highest inhibitory activity (IC50=5.12 μM for AChE and IC50=8.63 μM for BChE) corresponds to the compound 5IIc (ethyl 1-(3-(1H-imidazol-1-yl)propyl)-2-(4-nitrophenyl)-1H-benzo[d]imidazole-5-carboxylate). The relationship between lipophilicity and the chemical structures as well as their limited structure-activity relationship was discussed.
  5. Helal MH, Al-Mudaris ZA, Al-Douh MH, Osman H, Wahab HA, Alnajjar BO, et al.
    Int J Oncol, 2012 Aug;41(2):504-10.
    PMID: 22614449 DOI: 10.3892/ijo.2012.1491
    Molecules that target the deoxyribonucleic acid (DNA) minor groove are relatively sequence specific and they can be excellent carrier structures for cytotoxic chemotherapeutic compounds which can help to minimize side effects. Two novel isomeric derivatives of diaminobenzene Schiff base [N,N'-bis (2-hydroxy-3-methoxybenzylidene)-1,2-diaminobenzene (2MJ) and N,N'-bis(2-hydroxy-3-methoxybenzylidene)-1,3-diaminobenzene (2MH)] were analyzed for their DNA minor groove binding (MGB) ability using viscometry, UV and fluorescence spectroscopy, computational modeling and clonogenic assay. The result shows that 2MJ and 2MH are strong DNA MGBs with the latter being more potent. 2MH can form interstrand hydrogen bond linkages at its oxygens with N3 of adenines. Changing the 2-hydroxy-3-methoxybenzylidene binding position to the 1,3 location on the diaminobenzene structure (2MJ) completely removed any viable hydrogen bond formation with the DNA and caused significant decrease in binding strength and minor groove binding potency. Neither compound showed any significant cytotoxicity towards human breast, colon or liver cancer cell lines.
  6. Suresh Kumar R, Ashraf Ali M, Osman H, Ismail R, Choon TS, Yoon YK, et al.
    Bioorg Med Chem Lett, 2011 Jul 1;21(13):3997-4000.
    PMID: 21621414 DOI: 10.1016/j.bmcl.2011.05.003
    Hexacyclic derivatives share vital pharmacological properties, considered useful in Alzheimer's disease. The aim of this study was synthesis and its evaluation for acetyl cholinesterase inhibitory activity of novel hexacyclic analogues. Compound 4f, showed potent inhibitory activity against acetyl cholinesterase enzyme with IC(50) 0.72 μmol/L.
  7. Ali MA, Ismail R, Choon TS, Yoon YK, Wei AC, Pandian S, et al.
    Bioorg Med Chem Lett, 2010 Dec 1;20(23):7064-6.
    PMID: 20951037 DOI: 10.1016/j.bmcl.2010.09.108
    Series of pyrolidine analogues were synthesized and examined as acetylcholinesterase (AChE) inhibitors. Among the compounds, compounds 4k and 6k were the most potent inhibitors of the series. Compound 4k, showed potent inhibitory activity against acetyl cholinesterase enzyme with IC(50) 0.10 μmol/L. Pyrolidine analogues might be potential acetyl cholinesterase agents for AD.
  8. Wei AC, Ali MA, Yoon YK, Ismail R, Choon TS, Kumar RS, et al.
    Bioorg Med Chem Lett, 2012 Aug 1;22(15):4930-3.
    PMID: 22749825 DOI: 10.1016/j.bmcl.2012.06.047
    A series of twelve dispiropyrrolidines were synthesized using [3+2]-cycloaddition reactions. The synthesized compounds were screened for their antimycobacterial activity against M. tuberculosis H(37)Rv and INH resistant M. tuberculosis strains using agar dilution method, four of them showed good activity with MIC of less than 1 μM. Compound 4'-[5-(4-fluorophenyl)pyridin-3-yl]-1'-methyldispiro[indan-2,2' pyrrolidine-3',2″-indan]-1,3,1″-trione (4b) was found to be the most active with MIC of 0.1215 and 5.121 μM, respectively.
  9. Ashraf Ali M, Ismail R, Choon TS, Kumar RS, Osman H, Arumugam N, et al.
    Bioorg Med Chem Lett, 2012 Jan 1;22(1):508-11.
    PMID: 22142546 DOI: 10.1016/j.bmcl.2011.10.087
    Pyrrolothiazolyloxindole analogues share vital pharmacological properties, considered useful in Alzheimer's disease (AD). The aim of this study was synthesis and evaluate pyralothiazolyloxindole analogues if possess acetyl cholinesterase (AChE) inhibitory activity. The easily accessible one-pot synthesis of these compounds resulted to be significantly less difficult and expensive than that of donepezil. Several compounds possess anti-cholinesterase activity in the order of micro and sub-micromolar. Particularly, compound was the most potent inhibitors of the series against acetyl cholinesterase enzyme with IC(50) 0.11μmol/L.
  10. Elsafi M, El-Nahal MA, Alrashedi MF, Olarinoye OI, Sayyed MI, Khandaker MU, et al.
    Materials (Basel), 2021 Jul 27;14(15).
    PMID: 34361388 DOI: 10.3390/ma14154194
    In this work, some marble types were collected from Egypt, and their shielding characteristics were estimated. Their rigidity, in addition to their elegant shape, led us to consider their use as a protective shield, in addition to making the workplace more beautiful. The mass attenuation coefficient (μ/ρ) was calculated for three types of marble (Breshia, Galala, and Trista) experimentally, using a narrow gamma ray source and high pure germanium (HPGe). The results obtained were compared with the XCOM program and indicated a very good agreement between the two methods. The linear attenuation coefficient (μ) was evaluated to calculate the half and tenth value layers. The maximum μ value of 1.055, 1.041, and 1.024 cm-1 was obtained for Breshia, Galala, and Trista, respectively, at 0.06 MeV. The mean free path for studying the materials was compared with other shielding materials and showed good results at different energy scales. The energy absorption (EABF) and exposure buildup factors (EBF) were determined at different mean free paths. The fast neutron removal cross section ΣR was calculated and expresses the ability of the marbles to slow down fast neutrons through multiple scattering. This is the ability of the marbles to shield fast neutrons.
  11. Elsafi M, Alrashedi MF, Sayyed MI, Al-Hamarneh IF, El-Nahal MA, El-Khatib M, et al.
    Materials (Basel), 2021 Jul 14;14(14).
    PMID: 34300846 DOI: 10.3390/ma14143928
    This paper aims to study the radiation shielding characteristics and buildup factor of some types of granite in Egypt. The mass attenuation coefficient (MAC) for three types of granite (gandola, white halayeb, and red aswani) was experimentally determined, and the experimental results were validated by XCOM software. The relative deviation between the two methods does not exceed 3% in all discussed granite samples, which means that MAC calculated through the experimental and XCOM are in suitable agreement. The effective atomic number (Zeff) varies from 13.64 to 10.69, 13.68 to 10.59, and 13.45 and 10.66 for gandola, white halayeb, and red aswani, respectively. As well as the equivalent atomic number (Zeq) was calculated in a wide range of energy to deduce the exposure (EBF) and energy absorption (EABF) buildup factors for the studied granite materials. The linear attenuation coefficient (LAC), half-value layer (HVL), mean free path (MFP) were calculated at each investigated energy and showed that the most effective shielding ability at high energy was red aswani, while at low energy, the shielding ability was nearly constant for studied granites. The present study forms the first endeavor to obtain the radiation shielding properties of the studied materials to be used in practical applications.
  12. Ibrahim MM, Al-Refai M, Al-Fawwaz A, Ali BF, Geyer A, Harms K, et al.
    J Fluoresc, 2018 Mar;28(2):655-662.
    PMID: 29680927 DOI: 10.1007/s10895-018-2227-2
    Furopyridine III, namely 1-(3-amino-4-(4-(tert-butyl)phenyl)-6-(p-tolyl)furo[2,3-b]pyridin-2-yl)ethan-1-one, synthesized from 4-(4-(tert-butyl)phenyl)-2-oxo-6-(p-tolyl)-1,2-dihydropyridine-3-carbonitrile I in two steps. The title compound is characterized by NMR, MS and its X-ray structure. The molecular structure consists of planar furopyridine ring with both phenyl rings being inclined from the furopyridine scaffold to a significant different extent. There are three intramolecular hydrogen bonds within the structure. The lattice is stabilized by N-H…O, H2C-H …π and π…π intermolecular interactions leading to three-dimensional network. Compound III exhibits fluorescent properties, which are investigated. Antimicrobial potential and antioxidant activity screening studies for the title compound III and the heterocyclic derivatives, I and II, show no activity towards neither bacterial nor fungal strains, while they exhibited weak to moderate antioxidant activity compared to reference.
  13. Osman H, Raafat BM, Faizo NL, Ahmed RM, Alamri S, Alghamdi AJ, et al.
    Appl Radiat Isot, 2021 Nov 27;180:110049.
    PMID: 34864437 DOI: 10.1016/j.apradiso.2021.110049
    The current study was aimed to estimate the entrance surface air kerma (ESAK, mGy) for adult patients undergoing conventional radiography of Anteroposterior pelvis examination, and finally to establish a local diagnostic reference level (DRL). A total of 500 patients were exposed to diagnostic radiation in four hospitals (coded A, B, C, and D) in Taif and Kharaj city, Saudi Arabia, with different X-ray equipment specifications. Patient demographic data like age (y), body mass index (BMI) in kg/m2 as well as exposure factors and X-ray tube output were recorded. ESAK (mGy) was first calculated using the exposure data and tube output values, then the ESAK values were used to estimate entrance surface dose (ESD). The average BMI was 23.9 kg/m2. The mean tube potential used in A, B, C, and D hospitals and the corresponding estimated ESD were found to be 74.2, 69.8, 73, 76,7 kVp, and 2.54, 2.64, 2.94, 3.03 mGy respectively. The correlation coefficient between ESAK and BMI was found to be 0.98. When compared to computed radiography (CR), the conventional X-ray digital radiography reduces the radiation exposure in pelvic imaging by a factor of 1.18. The third quartile of median proposed a lower than the DRL of the previous studies.
  14. Aamry A, Sulieman A, Tamam N, Abuhadi NH, Johary Y, Aamri H, et al.
    Appl Radiat Isot, 2022 Mar;181:110097.
    PMID: 35063867 DOI: 10.1016/j.apradiso.2022.110097
    Staff occupational radiation exposure is limited to 20 mSv annually to preclude tissue reaction and lower risk of cancer effect. Staff occupational exposure arises during the preparation, injection, and scanning of the patients. Recent studies reported that nuclear medicine personnel might exceed the annual dose limit in high workload and poor radiation protection circumstances. Therefore, an accurate estimation of the annual dose limit is recommended. The goal of this research is to calculate the cumulative external effective dose (mSv) per year for nuclear medicine physicians, technologists, and nurses at SPECT/CT department. A total of 15 staff worked in the nuclear medicine department at King Saud Medical City (KSMC), Riyadh, Saudi Arabia were evaluated for the last six years. 99mTc is used more frequently for most of the patients. The procedures include renal, cardiac scintigraphy procedures. Staff dose was quantified using calibrated thermoluminecnt dosimeters (TLD-100) with an automatic TLD reader (Harshaw 6600). Exposure to ionizing radiation was evaluated in terms of deep doses (Hp(10) were evaluated. The overall average and standard deviation of the external doses for nuclear medicine physicians, technologists' and nurses were 1.8 ± 0.7, 1.9 ± 0.6, 2.0 ± 0.9, 2.2 ± 0.8, 6.0 ± 2.8, and 3.6 ± 1.3 for the years 2015,2016,2017,2018,2019, and 2020, respectively. Technologists and nurses received higher doses of compared to the nuclear medicine physicians. Technologists and nurses involved in radionuclide preparation, patients' injection, and image acquisition. Staff annual exposure is below the annual dose limits; however, this external dose is considered high compared to the current workload.
  15. El-Nahal MA, Elsafi M, Sayyed MI, Khandaker MU, Osman H, Elesawy BH, et al.
    Materials (Basel), 2021 Oct 28;14(21).
    PMID: 34772013 DOI: 10.3390/ma14216487
    The aim of this study is to investigate the radiation shielding properties of novel concrete samples with bulk Bi2O3 and Bi2O3 nanoparticles (Bi2O3 NP) incorporated into its composition. The mass attenuation coefficient of the concrete samples without Bi2O3 and with 5 and 7 wt% bulk Bi2O3 were experimentally determined and were compared against values obtained using the XCOM and Geant4 simulations. Both methods greatly agree with the experimental values. The linear attenuation coefficients (LAC) of blank concrete (C-0), concrete with 5% bulk Bi2O3 (C-B5), and concrete with 5% nanoparticle Bi2O3 (C-N5) were determined and compared at a wide energy range. We found that the LAC follows the trend of C-0 < C-B5 < C-N5 at all the tested energies. Since both C-B5 and C-N5 have a greater LAC than C-0, these results indicate that the addition of Bi2O3 improves the shielding ability of the concretes. In addition, we investigated the influence of nanoparticle Bi2O3 on the LAC of the concretes. The half-value layer (HVL) for the concretes with bulk Bi2O3 and Bi2O3 nanoparticles is also investigated. At all energies, the C-0 has the greatest HVL, while C-N15 has the least. Thus, C-N15 concrete is the most space efficient, while C-0 is the least space efficient. The radiation protection efficiency (RPE) of the prepared concretes was found to decrease with increasing energy for all five samples. For C-0, the RPE decreased from 63.3% at 0.060 MeV to 13.48% at 1.408 MeV, while for C-N15, the RPE decreased from 87.9 to 15.09% for the same respective energies. Additionally, C-N5 had a greater RPE than C-B5, this result demonstrates that Bi2O3 NP are more efficient at shielding radiation than bulk Bi2O3.
  16. Siraz MMM, Kamal MH, Khan ZH, Alam MS, Al Mahmud J, Rashid MB, et al.
    Environ Monit Assess, 2023 Aug 10;195(9):1028.
    PMID: 37558890 DOI: 10.1007/s10661-023-11636-5
    This study marks the first-ever assessment of radiological hazards linked to the sands and rocks of Patuartek Sea Beach, situated along one of the world's longest sea beaches in Cox' Bazar of Bangladesh. Through the utilization of an HPGe detector, a comprehensive analysis of the activity concentrations of 226Ra, 232Th, and 40 K was conducted, and their activity ranged from 7 to 23 Bq/kg, 9-58 Bq/kg, and 172-340 Bq/kg, respectively, in soils, and 19-24 Bq/kg, 27-39 Bq/kg, and 340-410 Bq/kg, respectively, in rocks. Some sand samples exhibited elevated levels of 232Th, while the rock samples displayed higher levels of 40 K compared to the global average. The radiological hazard parameters were assessed, and no values surpassed the recommended limits set by several international organizations. Hence, the sands and rocks of Patuartek sea beach pose no significant radiological risk to the residents or tourists. The findings of this study provide crucial insights for the development of a radiological baseline map in the country, which is important due to the commissioning of the country's first nuclear power plant Rooppur Nuclear Power Plant. The data may also stimulate interest in the rare-earth minerals present in the area, which is important for the electronics industry, thorium-based nuclear fuel cycles.
  17. Khandaker MU, Nawi SNM, Lam SE, Sani SFA, Islam MA, Islam MA, et al.
    Appl Radiat Isot, 2023 Jun;196:110771.
    PMID: 36933313 DOI: 10.1016/j.apradiso.2023.110771
    Thermoluminescence (TL) materials have a broad variety of uses in various fields, such as clinical research, individual dosimetry, and environmental dosimetry, amongst others. However, the use of individual neutron dosimetry has been developing more aggressively lately. In this regard, present study establishes a relationship between the neutron dosage and the optical property changes of graphite-rich materials caused by high doses of neutron radiation. This has been done with the intention of developing a novel, graphite-based radiation dosimeter. Herein, the TL yield of commercially graphite-rich materials (i.e. graphite sheet, 2B and HB grade pencils) irradiated by neutron radiation with doses ranging from 250 Gy to 1500 Gy has been investigated. The samples were bombarded with thermal neutrons as well as a negligible amount of gamma rays, from the nuclear reactor TRIGA-II installed at the Bangladesh Atomic Energy Commission. The shape of the glow curves was observed to be independent of the given dosage, with the predominant TL dosimetric peak maintained within the region of 163 °C-168 °C for each sample. By studying the glow curves of the irradiated samples, some of the most well theoretical models and techniques were used to compute the kinetic parameters such as the order of kinetics (b), activation energy (E) or trap depth, frequency factor (s) or escape probability, and trap lifetime (τ). All of the samples were found to have a good linear response over the whole dosage range, with 2B grade of polymer pencil lead graphite (PPLGs) demonstrating a higher level of sensitivity than both HB grade and graphite sheet (GS) samples. Additionally, the level of sensitivity shown by each of them is highest at the lowest dosage that was given, and it decreases as the dose increases. Importantly, the phenomenon of dose-dependent structural modifications and internal annealing of defects has been observed by assessing the area of deconvoluted micro-Raman spectra of graphite-rich materials in high-frequency areas. This trend is consistent with the cyclical pattern reported in the intensity ratio of defect and graphite modes in previously investigated carbon-rich media. Such recurrent occurrences suggest the idea of employing Raman microspectroscopy as a radiation damage study tool for carbonaceous materials. The excellent responses of the key TL properties of the 2B grade pencil demonstrate its usefulness as a passive radiation dosimeter. As a consequence, the findings suggest that graphite-rich materials have the potential to be useful as a low-cost passive radiation dosimeter, with applications in radiotherapy and manufacturing.
  18. Almeshari M, Alzamil Y, Alyahyawi A, Abanomy A, Althmali O, Al-Enezi MS, et al.
    PLoS One, 2023;18(3):e0282916.
    PMID: 36921002 DOI: 10.1371/journal.pone.0282916
    INTRODUCTION: Awareness of screening procedures and illness warning signals is critical for expanding and implementing screening programs in society, which would improve the odds of early identification of breast cancer.

    OBJECTIVES: This study aimed to evaluate the knowledge, awareness, attitudes, and practices related to breast cancer risk factors, signs, symptoms and methods of screening among female faculty and students at Hail University in the Kingdom of Saudi Arabia.

    METHODS: A cross-sectional study was conducted from January 2021 through February 2021 in the Hail region of Saudi Arabia. A closed-ended questionnaire, which consisted of 37 questions, was distributed online (using a Google Forms link) in both English and Arabic languages. Data was collected from 425 female subjects who participated in the study.

    RESULTS: The study showed an overall knowledge level of 46.36% regarding breast cancer. Participants had average knowledge about risk factors, signs, and symptoms, whereas their awareness and practice of breast self-examination and screening methods were weak.

    CONCLUSION: The current study concluded that public awareness of breast cancer remains relatively low, and Saudi Arabia still needs several public awareness initiatives using mass media, such as television, the Internet, and radio, as well as social media. Special awareness programs should also be held in places where a large number of women can easily be reached, such as colleges, universities, and hospitals.

  19. Itas YS, Suleiman AB, Ndikilar CE, Lawal A, Razali R, Ullah MH, et al.
    ACS Omega, 2023 Oct 17;8(41):38632-38640.
    PMID: 37867711 DOI: 10.1021/acsomega.3c05907
    This study investigated the photocatalytic properties of MoS2-doped boron nitride nanotubes (BNNTs) for overall water splitting using popular density functional theory (DFT). Calculations of the structural, mechanical, electronic, and optical properties of the investigated systems were performed using both the generalized gradient approximation and the GW quasi-particle correction methods. In our calculations, it was observed that only (10, 10) and (12, 12) single-walled BNNTs (SWBNNTs) turned out to be stable toward MoS2 doping. Electronic property calculations revealed metallic behavior of (10, 10)-MoS2-doped SWBNNTs, while the band gap of (12, 12) SWBNNT was narrowed to 2.5 eV after MoS2 doping, which is within the obtained band gaps for other photocatalysts. Hence, MoS2 influences the conduction band of pure BNNT and improves its photocatalytic properties. The water-splitting photocatalytic behavior is found in (12, 12) MoS2-doped SWBNNT, which showed higher water oxidation (OH-/O2) and reduction (H+/H2) potentials. In addition, optical spectral calculations showed that MoS2-doped SWBNNT had an optical absorption edge of 2.6 eV and a higher absorption in the visible region. All of the studied properties confirmed MoS2-doped SWBNNT as a better candidate for next-generation photocatalysts for hydrogen evolution through the overall water-splitting process.
  20. Khandaker MU, Zayadi NSB, Sani SFA, Bradley DA, Osman H, Alzamil Y, et al.
    Radiat Prot Dosimetry, 2023 Nov 02;199(18):2174-2178.
    PMID: 37934995 DOI: 10.1093/rpd/ncad179
    Present study concerns the radiological character of Malaysian honey. A total of 18 samples (representative of the various most common types) were obtained from various honey bee farms throughout the country. Using a high-purity germanium γ-ray spectroscopic system, the samples were analysed for the naturally occurring radionuclides 226Ra, 228Ra and 40K. The respective range of activities (in Bq/kg) was: 3.49 ± 0.35 to 4.51 ± 0.39, 0.99 ± 0.37 to 1.74 ± 0.39 and 41.37 ± 3.26 to 105.02 ± 6.91. The estimated associated committed effective doses were derived from prevailing data on national consumption of honey, the annual dose being found low compared with the UNSCEAR reference dose limit of 290 μSv y-1. The estimated threshold consumption rate for honey indicates a maximum intake of 339 g/d, which poses an insignificant radiological risk to public health; however, the total dietary exposure may not, the guidance level of 290 μSv y-1 being applicable to dietary intake of all foodstuffs. The study is in support of the cultivation of a healthy lifestyle, acknowledging prevailing radioactivity within the environment.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links