Displaying publications 61 - 80 of 112 in total

Abstract:
Sort:
  1. Chay SY, Tan WK, Saari N
    J Microencapsul, 2015;32(5):488-95.
    PMID: 26079597 DOI: 10.3109/02652048.2015.1057250
    The aim of this study was to produce and characterise nanosize liposomes containing bioactive peptides with antioxidative and ACE-inhibitory properties, derived from winged bean seeds (WBS) protein. WBS powder was papain-proteolysed, at 70 °C and pH 6.5 for six hours, followed by encapsulation via a solvent-free heating method. The results showed that the WBS proteolysate was successfully incorporated into spherical, unilamellar liposomal particles, with particle diameter, polydispersity index, zeta potential and encapsulation efficiency of 193.3 ± 0.12 nm, 0.4 ± 0.02 (unit less), -70.5 ± 0.30 mV and 27.6 ± 1.17%, respectively. It also demonstrated good storage stability over eight weeks at 4 °C, indicated by slight increment (15.1%) in particle size and a zeta potential only weaker by 17.2% at the end of the study period. These results suggested the feasibility of entrapping water soluble peptides in hydrophobic liposomal system that, upon optimisation, has the potential to act as bioactive food ingredient.
  2. Tajabadi N, Ebrahimpour A, Baradaran A, Rahim RA, Mahyudin NA, Manap MY, et al.
    Molecules, 2015 Apr 15;20(4):6654-69.
    PMID: 25884548 DOI: 10.3390/molecules20046654
    Dominant strains of lactic acid bacteria (LAB) isolated from honey bees were evaluated for their γ-aminobutyric acid (GABA)-producing ability. Out of 24 strains, strain Taj-Apis362 showed the highest GABA-producing ability (1.76 mM) in MRS broth containing 50 mM initial glutamic acid cultured for 60 h. Effects of fermentation parameters, including initial glutamic acid level, culture temperature, initial pH and incubation time on GABA production were investigated via a single parameter optimization strategy. The optimal fermentation condition for GABA production was modeled using response surface methodology (RSM). The results showed that the culture temperature was the most significant factor for GABA production. The optimum conditions for maximum GABA production by Lactobacillus plantarum Taj-Apis362 were an initial glutamic acid concentration of 497.97 mM, culture temperature of 36 °C, initial pH of 5.31 and incubation time of 60 h, which produced 7.15 mM of GABA. The value is comparable with the predicted value of 7.21 mM.
  3. Muhialdin BJ, Hassan Z, Abu Bakar F, Algboory HL, Saari N
    J Food Sci, 2015 May;80(5):M1026-30.
    PMID: 25847317 DOI: 10.1111/1750-3841.12844
    The ability of Leuconostoc mesenteroides DU15 to produce antifungal peptides that inhibit growth of Aspergillus niger was evaluated under optimum growth conditions of 30 °C for 48 h. The cell-free supernatant showed inhibitory activity against A. niger. Five novel peptides were isolated with the sequences GPFPL, YVPLF, LLHGVPLP, GPFPLEMTLGPT, and TVYPFPGPL as identified by de novo sequencing using PEAKS 6 software. Peptide LLHGVPLP was the only positively charged (cationic peptides) and peptide GPFPLEMTLGPT negatively charged (anionic), whereas the rest are neutral. The identified peptides had high hydrophobicity ratio and low molecular weights with amino acids sequences ranging from 5 to 12 residues. The mode of action of these peptides is observed under the scanning electron microscope and is due to cell lysis of fungi. This work reveals the potential of peptides from L. mesenteroides DU15 as natural antifungal preservatives in inhibiting the growth of A. niger that is implicated to the spoilage during storage.
  4. Ab Kadir S, Wan-Mohtar WA, Mohammad R, Abdul Halim Lim S, Sabo Mohammed A, Saari N
    J Ind Microbiol Biotechnol, 2016 Oct;43(10):1387-95.
    PMID: 27541157 DOI: 10.1007/s10295-016-1828-5
    In this study, four selected commercial strains of Aspergillus oryzae were collected from soy sauce koji. These A. oryzae strains designated as NSK, NSZ, NSJ and NST shared similar morphological characteristics with the reference strain (A. oryzae FRR 1675) which confirmed them as A. oryzae species. They were further evaluated for their ability to produce γ-aminobutyric acid (GABA) by cultivating the spore suspension in a broth medium containing 0.4 % (w/v) of glutamic acid as a substrate for GABA production. The results showed that these strains were capable of producing GABA; however, the concentrations differed significantly (P 
  5. Aabideen ZU, Mumtaz MW, Akhtar MT, Mukhtar H, Raza SA, Touqeer T, et al.
    Molecules, 2020 Oct 26;25(21).
    PMID: 33114490 DOI: 10.3390/molecules25214935
    The naturopathic treatment of obesity is a matter of keen interest to develop efficient natural pharmacological routes for disease management with low or negligible toxicity and side effects. For this purpose, optimized ultrasonicated hydroethanolic extracts of Taraxacum officinale were evaluated for antiobesity attributes. The 2,2-diphenyl-1-picrylhydrazyl method was adopted to evaluate antioxidant potential. Porcine pancreatic lipase inhibitory assay was conducted to assess the in vitro antiobesity property. Ultra-high performance chromatography equipped with a mass spectrometer was utilized to profile the secondary metabolites in the most potent extract. The 60% ethanolic extract exhibited highest extract yield (25.05 ± 0.07%), total phenolic contents (123.42 ± 0.007 mg GAE/g DE), total flavonoid contents (55.81 ± 0.004 RE/g DE), DPPH-radical-scavenging activity (IC50 = 81.05 ± 0.96 µg/mL) and pancreatic lipase inhibitory properties (IC50 = 146.49 ± 4.24 µg/mL). The targeted metabolite fingerprinting highlighted the presence of high-value secondary metabolites. Molecular-binding energies computed by docking tool revealed the possible contribution towards pancreatic lipase inhibitory properties of secondary metabolites including myricetin, isomangiferin, icariside B4, kaempferol and luteolin derivatives when compared to the standard drug orlistat. In vivo investigations revealed a positive impact on the lipid profile and obesity biomarkers of obese mice. The study presents Taraxacum officinale as a potent source of functional bioactive ingredients to impart new insights into the existing pool of knowledge of naturopathic approaches towards obesity management.
  6. Wan-Mohtar WA, Ab Kadir S, Saari N
    Biotechnol Rep (Amst), 2016 Sep;11:2-11.
    PMID: 28352534 DOI: 10.1016/j.btre.2016.05.005
    The morphology of Ganoderma lucidum BCCM 31549 mycelium in a repeated-batch fermentation (RBF) was studied for exopolysaccharide (EPS) production. RBF was optimised for time to replace and volume to replace. G. lucidum mycelium showed the ability to self-immobilise and exhibited high stability for repeated use in RBF with engulfed pellets. Furthermore, the ovoid and starburst-like pellet morphology was disposed to EPS production in the shake flask and bioreactor, respectively. Seven RBF could be carried out in 500 mL flasks, and five repeated batches were performed in a 2 L bioreactor. Under RBF conditions, autolysis of pellet core in the shake flask and shaving off of the outer hairy region in the bioreactor were observed at the later stages of RBF (R4 for the shake flask and R6 for the bioreactor). The proposed strategy showed that the morphology of G. lucidum mycelium can withstand extended fermentation cycles.
  7. Hussin FS, Chay SY, Zarei M, Meor Hussin AS, Ibadullah WZW, Zaharuddin ND, et al.
    Foods, 2020 Dec 09;9(12).
    PMID: 33316941 DOI: 10.3390/foods9121826
    The current study evaluated the γ-aminobutyric acid (GABA) producing ability from three novel strains of lactic acid bacteria (L. plantarum Taj-Apis362, assigned as UPMC90, UPMC91, and UPMC1065) co-cultured with starter culture in a yogurt. A combination of UPMC90 + UPMC91 with starter culture symbiotically revealed the most prominent GABA-producing effect. Response surface methodology revealed the optimized fermentation conditions at 39.0 °C, 7.25 h, and 11.5 mM glutamate substrate concentration to produce GABA-rich yogurt (29.96 mg/100 g) with desirable pH (3.93) and water-holding capacity (63.06%). At 2% glucose to replace pyridoxal-5-phosphate (PLP), a cofactor typically needed during GABA production, GABA content was further enhanced to 59.00 mg/100 g. In vivo study using this sample revealed a blood pressure-lowering efficacy at 0.1 mg/kg GABA dosage (equivalent to 30 mg/kg GABA-rich yogurt) in spontaneously hypertensive rats. An improved method to produce GABA-rich yogurt has been established, involving shorter fermentation time and lower glutamate concentration than previous work, along with glucose induction that omits the use of costly PLP, fostering the potential of developing a GABA-rich functional dairy product through natural fermentation with desirable product quality and antihypertensive property.
  8. Hossain Brishti F, Chay SY, Muhammad K, Rashedi Ismail-Fitry M, Zarei M, Karthikeyan S, et al.
    Food Chem, 2021 May 15;344:128643.
    PMID: 33246681 DOI: 10.1016/j.foodchem.2020.128643
    Mung bean protein isolate was texturized at different feed moisture contents (30.0, 49.3, and 60.0%) at a constant temperature (144.57 °C) to evaluate the changes in protein profile, solubility, thermal, structural (at secondary and tertiary levels) and rheological properties. SDS-PAGE, surface hydrophobicity, circular dichroism, FTIR spectroscopy, and fluorescence analyses revealed protein unfolding, aggregation, and structural rearrangement as a function of feed moisture content. Extrusion at 49.3% feed moisture produced texturized mung bean protein (TMBP) with favourable partial denaturation, the formation of small aggregates, improved solubility, and digestibility with strong gel forming behaviour, whereas 30.0 and 60.0% moisture content resulted in complete protein denaturation, the undesirable formation of large aggregates and weak gels. In conclusion, protein denaturation and formation of aggregates can be controlled by manipulating feed moisture content during extrusion, with 49.3% feed moisture prompting favourable partial denaturation to produce TMBP with desirable qualities for use as a vegetarian-based meat extender.
  9. Hajar-Azhari S, Wan-Mohtar WAAQI, Ab Kadir S, Rahim MHA, Saari N
    Food Sci Biotechnol, 2018 Apr;27(2):479-488.
    PMID: 30263772 DOI: 10.1007/s10068-017-0289-6
    In this study, a selected γ-aminobutyric acid (GABA)-rich Malaysian strain Aspergillus oryzae NSK was collected from soy sauce koji. The strain was used to explore the effect of using renewable native sugar syrup, sugarcane, nipa, and molasses as fermentable substrates for developing a novel functional GABA soy sauce. We evaluated the strain using the chosen native sugars for 7 days using shake flask fermentation at 30 °C. The results showed optimum GABA concentration was achieved using cane molasses as the fermentable substrate (354.08 mg/L), followed by sugarcane syrup (320.7 mg/L) and nipa syrup (232.07 mg/L). Cane molasses was subsequently utilized as a substrate to determine the most suitable concentration for A. oryzae NSK to enhance GABA production and was determined as 50% g/L of glucose standard cane molasses. Our findings indicate that cane molasses can be used as a GABA-rich ingredient to develop a new starter culture for A. oryzae NSK soy sauce production.
  10. Wan-Mohtar WAAQI, Ab Kadir S, Halim-Lim SA, Ilham Z, Hajar-Azhari S, Saari N
    Food Sci Biotechnol, 2019 Dec;28(6):1747-1757.
    PMID: 31807347 DOI: 10.1007/s10068-019-00602-y
    In submerged-liquid fermentation, seven key parameters were assessed using one-factor-at-a-time to obtain the highest GABA yield using an industrial soy sauce koji Aspergillus oryzae strain NSK (AOSNSK). AOSNSK generated maximum GABA at 30 °C (194 mg/L) and initial pH 5 (231 mg/L), thus was able to utilize sucrose (327 mg/L of GABA) for carbon source. Sucrose at 100 g/L, improved GABA production at 646 mg/L. Single nitrogen sources failed to improve GABA production, however a combination of yeast extract (YE) and glutamic acid (GA) improved GABA at 646.78 mg/L. Carbon-to-nitrogen ratio (C8:N3) produced the highest cell (24.01 g/L) and GABA at a minimal time of 216 h. The key parameters of 30 °C, initial pH 5, 100 g/L of sucrose, combination YE and GA, and C8:N3 generated the highest GABA (3278.31 mg/L) in a koji fermentation. AOSNSK promisingly showed for the development of a new GABA-rich soy sauce.
  11. Brishti FH, Chay SY, Muhammad K, Ismail-Fitry MR, Zarei M, Karthikeyan S, et al.
    Food Res Int, 2020 12;138(Pt B):109783.
    PMID: 33288169 DOI: 10.1016/j.foodres.2020.109783
    Mung bean is an inexpensive yet sustainable protein source. Current work compared the effects of freeze (FD), spray (SD) and oven drying (OD), on mung bean protein isolate (MBPI) produced on pilot scale. All samples showed no dissociation of protein subunits and were thermally stable (Td = 157.90-158.07 °C). According to morphological studies, FD formed a porous protein while SD and OD formed wrinkled and compact crystals, respectively. FD and SD formed elastic gels with better gelling capacity than OD (aggregated gel). FD showed exceptional protein solubility, water and oil absorption capacity (4.23 g/g and 8.38 g/g, respectively). SD demonstrated the smallest particle size, excellent emulsion activity index (29.21 m2/g) and stability (351.90 min) and the highest β-sheet amount (37.61%). FTIR spectra for all samples showed characteristic peaks which corresponded well to the secondary structure of legume proteins. Rheological analysis revealed that gelation temperature for all MBPI lied around 90 °C. Current work described the different final properties achieved for MBPI produced under different drying techniques that allowed tailoring for different food systems, whereby FD is ideal for meat extender, SD is suitable for meat emulsion while OD is suitable in general protein-based application.
  12. Brishti FH, Chay SY, Muhammad K, Rashedi Ismail-Fitry M, Zarei M, Saari N
    Food Funct, 2020 Oct 21;11(10):8918-8930.
    PMID: 32996964 DOI: 10.1039/d0fo01463j
    Mung bean is gaining attention as a sustainable and economic source of plant protein. The current study evaluates the techno-functionality, anti-nutrient properties, in vivo protein quality and toxicity of texturized mung bean protein (TMBP) produced under optimized conditions. Our work successfully produces TMBP with improved techno-functionalities that are crucial for meat-based food applications, credited to retained juiciness and fat-binding ability. Alkaline extraction and extrusion significantly reduce trypsin inhibitor, phytic acid and tannin content in TMBP. An in vivo study using Sprague-Dawley rats reveals the good protein quality of TMBP, with a true protein digestibility of 99.26% resembling casein (99.36%, control protein), a net protein utilization of 63.99% and a biological value of 64.46%. The good protein quality, increased lean muscle mass along with reduced cholesterol and triglyceride secures TMBP's potential as a Protein meal replacer and dietary suplement. Non-toxicity of TMBP is confirmed by normal serum biochemical parameters and healthy organs, ascertaining the safety of alkaline extraction. The current study elucidates the production of TMBP with improved techno-functionalities (for meat-based food applications), reduced anti-nutritional factors and high quality (for weight-watchers and malnourished individuals).
  13. Aabideen ZU, Mumtaz MW, Akhtar MT, Raza MA, Mukhtar H, Irfan A, et al.
    Plants (Basel), 2021 Jun 29;10(7).
    PMID: 34210016 DOI: 10.3390/plants10071334
    The present work was aimed at investigating hydroethanolic leaf extracts of Cassia fistula for their antioxidant and pancreatic lipase (PL) enzyme inhibitory properties. The most active extract was selected to profile the phytoconstituents by UHPLC-QTOF-MS/MS technique. Among the tested extracts, the 80% hydroethanolic extract exhibited the maximum levels of total phenolic and flavonoid contents (TPC and TFC) with a contribution of 201.3 ± 2.6 mg of gallic acid equivalent per gram of extract (GAE/g extract), and 116.3 ± 2.4 mg of rutin equivalent per gram of extract (RE/g extract), respectively. The same extract also showed promising 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging and PL inhibitory activity with an IC50 (half maximal inhibitory concentration) of 30.5 ± 2.8 µg/mL and 17.31 ± 1.18 μg/mL, respectively. The phytochemical profiling of 80% hydroethanolic extract confirmed the presence of 23 metabolites of immense medicinal significance. Docking studies were conducted to investigate the potential interactions of compounds identified in the study. The docking study-based binding energy data and the interaction scheme both revealed the possible role of the identified compounds towards PL inhibitor. Moreover, energies of frontier molecular orbitals (FMOs), ionization potentials (IP), electron affinities (EA) and molecular electrostatic potentials (MEP) were also explored. The findings of the current work suggest that C. fistula is a promising natural source of antioxidant and antiobesity agents, which may be exploited to add pharmacological functionalities to food.
  14. Hussin FS, Chay SY, Hussin ASM, Wan Ibadullah WZ, Muhialdin BJ, Abd Ghani MS, et al.
    Sci Rep, 2021 05 03;11(1):9417.
    PMID: 33941803 DOI: 10.1038/s41598-021-88436-9
    This study aimed to enhance natural gamma aminobutyric acid (GABA) production in yoghurt by the addition of simple sugars and commercial prebiotics without the need for pyridoxal 5'-phosphate (PLP) cofactor. The simple sugars induced more GABA production (42.83-58.56 mg/100 g) compared to the prebiotics (34.19-40.51 mg/100 g), with glucose promoting the most GABA production in yoghurt (58.56 mg/100 g) surpassing the control sample with added PLP (48.01 mg/100 g). The yoghurt prepared with glucose also had the highest probiotic count (9.31 log CFU/g). Simulated gastrointestinal digestion of this GABA-rich yoghurt showed a non-significant reduction in GABA content and probiotic viability, demonstrating the resistance towards a highly acidic environment (pH 1.2). Refrigerated storage up to 28 days improved GABA production (83.65 mg/100 g) compared to fresh GABA-rich yoghurt prepared on day 1. In conclusion, the addition of glucose successfully mitigates the over-use of glutamate and omits the use of PLP for increased production of GABA in yoghurt, offering an economical approach to produce a probiotic-rich dairy food with potential anti-hypertensive effects.
  15. Sadegh Vishkaei M, Ebrahimpour A, Abdul-Hamid A, Ismail A, Saari N
    Mar Drugs, 2016 Sep 30;14(10).
    PMID: 27706040
    Food protein hydrolysates are known to exhibit angiotensin converting enzyme (ACE) inhibitory properties and can be used as a novel functional food for prevention of hypertension. This study evaluated the ACE inhibitory potentials of Actinopyga lecanora proteolysate (ALP) in vivo. The pre-fed rats with ALP at various doses (200, 400, 800 mg/kg body weight) exhibited a significant (p ≤ 0.05) suppression effect after inducing hypertension. To determine the optimum effective dose that will produce maximal reduction in blood pressure, ALP at three doses was fed to the rats after inducing hypertension. The results showed that the 800 mg/kg body weight dose significantly reduced blood pressure without noticeable negative physiological effect. In addition, there were no observable changes in the rats' heart rate after oral administration of the ALP. It was concluded that Actinopyga lecanora proteolysate could potentially be used for the development of functional foods and nutraceuticals for prevention and treatment of hypertension.
  16. Muhammad Auwal S, Zarei M, Abdul-Hamid A, Saari N
    Mar Drugs, 2017 Mar 31;15(4).
    PMID: 28362352 DOI: 10.3390/md15040104
    The stone fish is an under-utilized sea cucumber with many nutritional and ethno-medicinal values. This study aimed to establish the conditions for its optimum hydrolysis with bromelain to generate angiotensin I-converting enzyme (ACE)-inhibitory hydrolysates. Response surface methodology (RSM) based on a central composite design was used to model and optimize the degree of hydrolysis (DH) and ACE-inhibitory activity. Process conditions including pH (4-7), temperature (40-70 °C), enzyme/substrate (E/S) ratio (0.5%-2%) and time (30-360 min) were used. A pH of 7.0, temperature of 40 °C, E/S ratio of 2% and time of 240 min were determined using a response surface model as the optimum levels to obtain the maximum ACE-inhibitory activity of 84.26% at 44.59% degree of hydrolysis. Hence, RSM can serve as an effective approach in the design of experiments to improve the antihypertensive effect of stone fish hydrolysates, which can thus be used as a value-added ingredient for various applications in the functional foods industries.
  17. Hanafi MA, Hashim SN, Chay SY, Ebrahimpour A, Zarei M, Muhammad K, et al.
    Food Res Int, 2018 04;106:589-597.
    PMID: 29579964 DOI: 10.1016/j.foodres.2018.01.030
    As a protein-rich, underutilized crop, green soybean could be exploited to produce hydrolysates containing angiotensin-I converting enzyme (ACE) inhibitory peptides. Defatted green soybean was hydrolyzed using four different food-grade proteases (Alcalase, Papain, Flavourzyme and Bromelain) and their ACE inhibitory activities were evaluated. The Alcalase-generated green soybean hydrolysate showed the highest ACE inhibitory activity (IC50: 0.14 mg/mL at 6 h hydrolysis time) followed by Papain (IC50: 0.20 mg/mL at 5 h hydrolysis time), Bromelain (IC50: 0.36 mg/mL at 6 h hydrolysis time) and Flavourzyme (IC50: 1.14 mg/mL at 6 h hydrolysis time) hydrolysates. The Alcalase-generated hydrolysate was profiled based on its hydrophobicity and isoelectric point using reversed phase high performance liquid chromatography (RP-HPLC) and isoelectric point focusing (IEF) fractionators. The Alcalase-generated green soybean hydrolysate comprising of peptides EAQRLLF, PSLRSYLAE, PDRSIHGRQLAE, FITAFR and RGQVLS, revealed the highest ACE inhibitory activity of 94.19%, 99.31%, 92.92%, 101.51% and 90.40%, respectively, while their IC50 values were 878 μM, 532 μM, 1552 μM, 1342 μM and 993 μM, respectively. It can be concluded that Alcalase-digested green soybean hydrolysates could be exploited as a source of peptides to be incorporated into functional foods with antihypertensive activity.
  18. Auwal SM, Zarei M, Tan CP, Basri M, Saari N
    Sci Rep, 2018 Jul 10;8(1):10411.
    PMID: 29991723 DOI: 10.1038/s41598-018-28659-5
    Bromelain-generated biopeptides from stone fish protein exhibit strong inhibitory effect against ACE and can potentially serve as designer food (DF) with blood pressure lowering effect. Contextually, the DF refer to the biopeptides specifically produced to act as ACE-inhibitors other than their primary role in nutrition and can be used in the management of hypertension. However, the biopeptides are unstable under gastrointestinal tract (GIT) digestion and need to be stabilized for effective oral administration. In the present study, the stone fish biopeptides (SBs) were stabilized by their encapsulation in sodium tripolyphosphate (TPP) cross-linked chitosan nanoparticles produced by ionotropic gelation method. The nanoparticles formulation was then optimized via Box-Behnken experimental design to achieve smaller particle size (162.70 nm) and high encapsulation efficiency (75.36%) under the optimum condition of SBs:Chitosan mass ratio (0.35), homogenization speed (8000 rpm) and homogenization time (30 min). The SBs-loaded nanoparticles were characterized for morphology by transmission electron microscopy (TEM), physicochemical stability and efficacy. The nanoparticles were then lyophilized and analyzed using Fourier transform infra-red spectroscopy (FTIR) and X-ray diffraction (XRD). The results obtained indicated a sustained in vitro release and enhanced physicochemical stability of the SBs-loaded nanoparticles with smaller particle size and high encapsulation efficiency following long period of storage. Moreover, the efficacy study revealed improved inhibitory effect of the encapsulated SBs against ACE following simulated GIT digestion.
  19. Hussein FA, Chay SY, Ghanisma SBM, Zarei M, Auwal SM, Hamid AA, et al.
    J Dairy Sci, 2020 Mar;103(3):2053-2064.
    PMID: 31882211 DOI: 10.3168/jds.2019-17462
    We evaluated the acute (single-dose) and subacute (repeated-dose) oral toxicity of alcalase-hydrolyzed whey protein concentrate. Our acute study revealed no death or treatment-related complications, and the median lethal dose of whey protein concentrate hydrolysate was >2,500 mg/kg. In the subacute study, when the hydrolysate was fed at 3 different concentrations (200, 400, and 800 mg/kg), no groups showed toxicity changes compared with controls. Then, whey protein concentrate hydrolysate was orally administered to spontaneously hypertensive rats. Results revealed significant reductions in blood pressure in a dose-dependent manner, and dosing at 400 mg/kg led to significant blood pressure reduction (-47.8 mm Hg) compared with controls (blood pressure maintained) and the findings of previous work (-21 mm Hg). Eight peptides-RHPEYAVSVLLR, GGAPPAGRL, GPPLPRL, ELKPTPEGDL, VLSELPEP, DAQSAPLRVY, RDMPIQAF, and LEQVLPRD-were sequentially identified and characterized. Of the peptides, VLSELPEP and LEQVLPRD showed the most prominent in vitro angiotensin-I converting enzyme inhibition with half-maximal inhibitory concentrations of 0.049 and 0.043 mM, respectively. These findings establish strong evidence for the in vitro and in vivo potential of whey protein concentrate hydrolysate to act as a safe, natural functional food ingredient that exerts antihypertensive activity.
  20. Arulrajah B, Muhialdin BJ, Qoms MS, Zarei M, Hussin ASM, Hasan H, et al.
    Int J Food Microbiol, 2021 Dec 02;359:109418.
    PMID: 34607033 DOI: 10.1016/j.ijfoodmicro.2021.109418
    This study determined the favourable fermentation conditions for the production of antifungal peptides from kenaf seeds and their effectiveness in extending the shelf-life of tomato puree. The optimum fermentation conditions for the maximum activity of the antifungal peptides were 8.4% (w/v), 7 days and 3.7% for substrate/water ratio, fermentation time and glucose concentration, respectively. Eight cationic peptides of low molecular weight ranging from 840 to 1876 Da were identified in kenaf seed peptides mixture (KSPM). The minimum inhibitory concentration and minimum fungicidal concentration of KSPM against Fusarium sp. were 0.18 mg/mL and 0.70 mg/mL, respectively, while those for Aspergillus niger were 1.41 mg/mL and 2.81 mg/mL respectively. KSPM exhibited a fungicidal effect and a prolonged lag phase, with increased fungal membrane permeability as the concentration of KSPM increased, as evidenced by the release of intracellular constituents. The treatment of tomato puree with 1000 mg/kg KSPM delayed fungal growth for up to 14 and 23 days at 25 °C and 4 °C respectively, significantly reducing Aspergillus niger and Fusarium sp. counts. In conclusion, kenaf seed peptides prepared by lacto-fermentation possess antifungal activity, hence can be applied as natural bio preservatives to extend the shelf-life of food products such as tomato puree.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links