Displaying publications 61 - 80 of 107 in total

Abstract:
Sort:
  1. Lakhundi S, Siddiqui R, Khan NA
    Microb Pathog, 2017 Mar;104:97-109.
    PMID: 27998732 DOI: 10.1016/j.micpath.2016.12.013
    Microbial keratitis is a sight-threatening ocular infection caused by bacteria, fungi, and protist pathogens. Epithelial defects and injuries are key predisposing factors making the eye susceptible to corneal pathogens. Among bacterial pathogens, the most common agents responsible for keratitis include Staphylococcus aureus, Pseudomonas aeruginosa, Streptococcus pneumonia and Serratia species. Fungal agents of corneal infections include both filamentous as well as yeast, including Fusarium, Aspergillus, Phaeohyphomycetes, Curvularia, Paecilomyces, Scedosporium and Candida species, while in protists, Acanthamoeba spp. are responsible for causing ocular disease. Clinical features include redness, pain, tearing, blur vision and inflammation but symptoms vary depending on the causative agent. The underlying molecular mechanisms associated with microbial pathogenesis include virulence factors as well as the host factors that aid in the progression of keratitis, resulting in damage to the ocular tissue. The treatment therefore should focus not only on the elimination of the culprit but also on the neutralization of virulence factors to minimize the damage, in addition to repairing the damaged tissue. A complete understanding of the pathogenesis of microbial keratitis will lead to the rational development of therapeutic interventions. This is a timely review of our current understanding of the advances made in this field in a comprehensible manner. Coupled with the recently available genome sequence information and high throughput genomics technology, and the availability of innovative approaches, this will stimulate interest in this field.
  2. Maciver SK, Abdelnasir S, Anwar A, Siddiqui R, Khan NA
    Mol Biochem Parasitol, 2023 Feb;253:111541.
    PMID: 36603708 DOI: 10.1016/j.molbiopara.2022.111541
    Protistan parasitic infections contribute significantly to morbidity and mortality, causing more than 2 billion human infections annually. However, current treatments are often limited; due to ineffective drugs and drug resistance, thus better options are urgently required. In the present context, theranostics agents are those that offer simultaneous detection, diagnosis and even treatment of protistan parasitic diseases. "Nanotheranostics" is the term used to describe such agents, that are around 100 nm or less in size. Anti-parasitic activity of nanoparticles (NPs) has been reported, and many have useful intrinsic imaging properties, but it is perhaps their multifunctional nature that offers the greatest potential. NPs may be used as adapters onto which various subunits with different functions may be attached. These subunits may facilitate targeting parasites, coupled with toxins to eradicate parasites, and probe subunits for detection of particles and/or parasites. The modular nature of nano-platforms promises a "mix and match" approach for the construction of tailored agents by using combinations of these subunits against different protistan parasites. Even though many of the subunits have shown promise alone, these have not yet been put together convincingly enough to form working theranostics against protistan parasites. Although the clinical application of nanotheranostics to protistan parasitic infections in humans requires more research, we conclude that they offer not just a realisation of Paul Ehrlich's long imagined "magic bullet" concept, but potentially are magic bullets combined with tracer bullets.
  3. Masri A, Khan NA, Zoqratt MZHM, Ayub Q, Anwar A, Rao K, et al.
    BMC Microbiol, 2021 Feb 17;21(1):51.
    PMID: 33596837 DOI: 10.1186/s12866-021-02097-2
    BACKGROUNDS: Escherichia coli K1 causes neonatal meningitis. Transcriptome studies are indispensable to comprehend the pathology and biology of these bacteria. Recently, we showed that nanoparticles loaded with Hesperidin are potential novel antibacterial agents against E. coli K1. Here, bacteria were treated with and without Hesperidin conjugated with silver nanoparticles, and silver alone, and 50% minimum inhibitory concentration was determined. Differential gene expression analysis using RNA-seq, was performed using Degust software and a set of genes involved in cell stress response and metabolism were selected for the study.

    RESULTS: 50% minimum inhibitory concentration with silver-conjugated Hesperidin was achieved with 0.5 μg/ml of Hesperidin conjugated with silver nanoparticles at 1 h. Differential genetic analysis revealed the expression of 122 genes (≥ 2-log FC, P

  4. Mohd Hussain RH, Afiqah WN, Abdul Ghani MK, Khan NA, Siddiqui R, Anuar TS
    Saudi J Biol Sci, 2021 Apr;28(4):2352-2359.
    PMID: 33911949 DOI: 10.1016/j.sjbs.2021.01.030
    The incidence of Acanthamoeba keratitis has been increasing since the previous decades, especially among contact lens users. This infection is majorly caused by the use of ineffective contact lens disinfecting solution. Thus, this study was conducted to evaluate the in vitro effects of multi-purpose disinfecting solutions (MPDS) against Acanthamoeba trophozoites and cysts. Acanthamoeba genotype T4 isolated from contact lens paraphernalia and an environmental strains were propagated for trophozoite or cyst-containing culture and adjusted in final concentration of 1 × 105 cells/ml. Amoebicidal and cysticidal assays were conducted by incubating trophozoites and cysts with OPTI-FREE® Express®, ReNu® Fresh™, Complete® Multi-Purpose Solution and AVIZOR Unica® Sensitive according to the manufacturer's minimum recommended disinfectant time (MMRDT) for up to 12 h at 30 ⁰C. Trypan blue hemocytometer-based microscopic counts determined amoebicidal and cysticidal effects. The viability of Acanthamoeba trophozoites and cysts was confirmed by re-inoculated them in the 1.5% non-nutrient agar plates. It was found that none of the MPDS showed amoebicidal and cysticidal effects during the MMRDT. However, OPTI-FREE® Express® demonstrated a significant differences in average cell reduction for both stages within MMRDT. When subjected to 12 h exposure, both OPTI-FREE® Express® and ReNu® Fresh™ led to significant reduction in the number of trophozoite and cyst cells. Notably, Complete® Multi-Purpose Solution and AVIZOR Unica® Sensitive did appreciably improve the solution effectiveness towards trophozoite cells when incubated for 12 h. All MPDS were largely ineffective, with 100% survival of all isolates at MMRDT, while OPTI-FREE® Express® showed limited amoebicidal activity against the contact lens paraphernalia isolate, however, it was more against the environmental strains after 12 h incubation time. The commercially available MPDS employed in this research offered minimal effectiveness against the protozoa despite the contact time. Improvement or development of new solution should consider the adjustment of the appropriate disinfectant concentration, adequate exposure time or the incorporation of novel chemical elements, which are effective against Acanthamoeba for accelerated disinfecting and more reduction of potential exposure of contact lens users to Acanthamoeba keratitis.
  5. Mohd Hussain RH, Ishak AR, Abdul Ghani MK, Ahmed Khan N, Siddiqui R, Shahrul Anuar T
    J Water Health, 2019 Oct;17(5):813-825.
    PMID: 31638031 DOI: 10.2166/wh.2019.214
    This study aimed to identify the Acanthamoeba genotypes and their pathogenic potential in five recreational hot springs in Peninsular Malaysia. Fifty water samples were collected between April and September 2018. Physical parameters of water quality were measured in situ while chemical and microbiological analyses were performed in the laboratory. All samples were filtered through the nitrocellulose membrane and tested for Acanthamoeba using both cultivation and polymerase chain reaction (PCR) by targeting the 18S ribosomal RNA gene. The pathogenic potential of all positive isolates was identified using thermo- and osmotolerance tests. Thirty-eight (76.0%) samples were positive for Acanthamoeba. Water temperature (P = 0.035), chemical oxygen demand (P = 0.026), sulphate (P = 0.002) and Escherichia coli (P < 0.001) were found to be significantly correlated with the presence of Acanthamoeba. Phylogenetic analysis revealed that 24 samples belonged to genotype T4, nine (T15), two (T3) and one from each genotype T5, T11 and T17. Thermo- and osmotolerance tests showed that 6 (15.79%) of the Acanthamoeba strains were highly pathogenic. The existence of Acanthamoeba in recreational hot springs should be considered as a health threat among the public especially for high-risk people. Periodic surveillance of hot spring waters and posting warning signs by health authorities is recommended to prevent disease related to pathogenic Acanthamoeba.
  6. Mohd Hussain RH, Abdul Ghani MK, Khan NA, Siddiqui R, Anuar TS
    J Water Health, 2022 Jan;20(1):54-67.
    PMID: 35100154 DOI: 10.2166/wh.2021.128
    The present study identifies the Acanthamoeba genotypes and their pathogenic potential in five marine waters in Malaysia. Fifty water samples were collected between January and May 2019. Physical parameters of water quality were measured in situ, whereas chemical and microbiological analyses were conducted in the laboratory. All samples had undergone filtration using nitrocellulose membrane and were tested for Acanthamoeba using cultivation and polymerase chain reaction by targeting the 18S ribosomal RNA gene. The pathogenic potential of all positive isolates was identified using physiological tolerance tests. Thirty-six (72.0%) samples were positive for Acanthamoeba. Total coliforms (p = 0.013) and pH level (p = 0.023) displayed significant correlation with Acanthamoeba presence. Phylogenetic analysis showed that 27 samples belonged to genotype T4, four (T11), two (T18) and one from each genotype T5, T15 and T20. Thermo- and osmo-tolerance tests signified that three (8.3%) Acanthamoeba strains displayed highly pathogenic attributes. This study is the first investigation in Malaysia describing Acanthamoeba detection in marine water with molecular techniques and genotyping. The study outcomes revealed that the marine water in Malaysia could be an integral source of Acanthamoeba strains potentially pathogenic in humans. Thus, the potential risk of this water should be monitored routinely in each region.
  7. Mohd Hussain RH, Abdul Ghani MK, Khan NA, Siddiqui R, Aazmi S, Halim H, et al.
    Pathogens, 2022 Dec 05;11(12).
    PMID: 36558808 DOI: 10.3390/pathogens11121474
    Amoebic keratitis and encephalitis are mainly caused by free-living amoebae of the genus Acanthamoeba, which consists of both pathogenic and nonpathogenic species. The global distribution, amphizoic properties and the severity of the disease caused by Acanthamoeba species have inspired the scientific community to put more effort into the isolation of Acanthamoeba, besides exploring the direct and indirect parameters that could signify a pathogenic potential. Therefore, this study was performed to characterize the pathogenic potential of Acanthamoeba isolated from contact lens paraphernalia and water sources in Malaysia. Various methodologies were utilized to analyze the thermotolerance and osmotolerance, the secretion level of proteases and the cytopathic effect of trophozoites on the cell monolayer. In addition, the in vitro cytopathogenicity of these isolates was assessed using the LDH-release assay. A total of 14 Acanthamoeba isolates were classified as thermo- and osmotolerant and had presence of serine proteases with a molecular weight of 45-230 kDa. Four T4 genotypes isolated from contact lens paraphernalia recorded the presence of serine-type proteases of 107 kDa and 133 kDa. In contrast, all T3 genotypes isolated from environmental samples showed the presence of a 56 kDa proteolytic enzyme. Remarkably, eight T4 and a single T3 genotype isolates demonstrated a high adhesion percentage of greater than 90%. Moreover, the use of the HeLa cell monolayer showed that four T4 isolates and one T3 isolate achieved a cytopathic effect in the range of 44.9-59.4%, indicating an intermediate-to-high cytotoxicity level. Apart from that, the LDH-release assay revealed that three T4 isolates (CL5, CL54 and CL149) and one T3 isolate (SKA5-SK35) measured an exceptional toxicity level of higher than 40% compared to other isolates. In short, the presence of Acanthamoeba T3 and T4 genotypes with significant pathogenic potential in this study reiterates the essential need to reassess the functionality of other genotypes that were previously classified as nonpathogenic isolates in past research.
  8. Mosaheb MUFZ, Khan NA, Siddiqui R
    Iran J Basic Med Sci, 2018 Sep;21(9):873-877.
    PMID: 30524685 DOI: 10.22038/IJBMS.2018.30442.7339
    OBJECTIVES: To present a brief overview of various natural sources of antimicrobials with the aim of highlighting invertebrates living in polluted environments as additional sources of antimicrobials.

    MATERIALS AND METHODS: A PubMed search using antibacterials, antimicrobials, invertebrates, and natural products as keywords was carried out. In addition, we consulted conference proceedings, original unpublished research undertaken in our laboratories, and discussions in specific forums.

    RESULTS: Representative of a stupefying 95% of the fauna, invertebrates are fascinating organisms which have evolved strategies to survive germ-infested environments, yet they have largely been ignored. Since invertebrates such as cockroaches inhabit hazardous environments which are rampant with pathogens, they must have developed defense mechanisms to circumvent infections. This is corroborated by the presence of antimicrobial molecules in the nervous systems and hemolymph of cockroaches. Antimicrobial compounds have also been unraveled from the nervous, adipose, and salivary glandular tissues of locusts. Interestingly, the venoms of arthropods including ants, scorpions, and spiders harbor toxins, but also possess multiple antimicrobials.

    CONCLUSION: These findings have rekindled the hopes for newer and enhanced therapeutic agents derived from a plentiful and diverse resource to combat fatal infectious diseases. Such antimicrobials from unusual sources can potentially be translated into clinical practice, however intensive research is needed over the next several years to realize these expectations.

  9. Mungroo MR, Khan NA, Anwar A, Siddiqui R
    Int Microbiol, 2021 Aug 09.
    PMID: 34368912 DOI: 10.1007/s10123-021-00201-0
    Pathogenic free-living amoebae are known to cause fatal central nervous system infections with extremely high mortality rates. High selectivity of the blood-brain barrier hampers delivery of drugs and untargeted delivery of drugs can cause severe side effects. Nanovehicles can be used for targeted drug delivery across the blood-brain barrier. Inorganic nanoparticles have been explored as carriers for various biomedical applications and can be modified with various ligands for efficient targeting and cell selectivity while lipid-based nanoparticles have been extensively used in the development of both precision and colloidal nanovehicles. Nanomicelles and polymeric nanoparticles can also serve as nanocarriers and may be modified so that responsiveness of the nanoparticles and release of the loads are linked to specific stimuli. These nanoparticles are discussed here in the context of the treatment of central nervous system infections due to pathogenic amoebae. It is anticipated that these novel strategies can be utilized in tandem with novel drug leads currently in the pipeline and yield in the development of much needed treatments against these devastating parasites.
  10. Mungroo MR, Shahbaz MS, Anwar A, Saad SM, Khan KM, Khan NA, et al.
    ACS Chem Neurosci, 2020 08 19;11(16):2438-2449.
    PMID: 31961126 DOI: 10.1021/acschemneuro.9b00596
    Naegleria fowleri and Balamuthia mandrillaris are protist pathogens that infect the central nervous system, causing primary amoebic meningoencephalitis and granulomatous amoebic encephalitis with mortality rates of over 95%. Quinazolinones and their derivatives possess a wide spectrum of biological properties, but their antiamoebic effects against brain-eating amoebae have never been tested before. In this study, we synthesized a variety of 34 novel arylquinazolinones derivatives (Q1-Q34) by altering both quinazolinone core and aryl substituents. To study the antiamoebic activity of these synthetic arylquinazolinones, amoebicidal and amoebistatic assays were performed against N. fowleri and B. mandrillaris. Moreover, amoebae-mediated host cells cytotopathogenicity and cytotoxicity assays were performed against human keratinocytes cells in vitro. The results revealed that selected arylquinazolinones derivatives decreased the viability of B. mandrillaris and N. fowleri significantly (P < 0.05) and reduced cytopathogenicity of both parasites. Furthermore, these compounds were also found to be least cytotoxic against HaCat cells. Considering that nanoparticle-based materials possess potent in vitro activity against brain-eating amoebae, we conjugated quinazolinones derivatives with silver nanoparticles and showed that activities of the drugs were enhanced successfully after conjugation. The current study suggests that quinazolinones alone as well as conjugated with silver nanoparticles may serve as potent therapeutics against brain-eating amoebae.
  11. Mungroo MR, Anwar A, Khan NA, Siddiqui R
    Mini Rev Med Chem, 2019;19(12):980-987.
    PMID: 30868950 DOI: 10.2174/1389557519666190313161854
    Pathogenic free-living amoeba are known to cause a devastating infection of the central nervous system and are often referred to as "brain-eating amoebae". The mortality rate of more than 90% and free-living nature of these amoebae is a cause for concern. It is distressing that the mortality rate has remained the same over the past few decades, highlighting the lack of interest by the pharmaceutical industry. With the threat of global warming and increased outdoor activities of public, there is a need for renewed interest in identifying potential anti-amoebic compounds for successful prognosis. Here, we discuss the available chemotherapeutic options and opportunities for potential strategies in the treatment and diagnosis of these life-threatening infections.
  12. Mungroo MR, Anwar A, Khan NA, Siddiqui R
    ACS Omega, 2020 Jun 02;5(21):12467-12475.
    PMID: 32548431 DOI: 10.1021/acsomega.0c01305
    Balamuthia mandrillaris and Naegleria fowleri are free-living amoebae that cause infection of the central nervous system, granulomatous amoebic encephalitis (GAE) and primary amoebic meningoencephalitis (PAM), respectively. The fact that mortality rates for cases of GAE and PAM are more than 95% indicates the need for new therapeutic agents against those amoebae. Considering that curcumin exhibits a wide range of biological properties and has shown efficacy against Acanthamoeba castellanii, we evaluated the amoebicidal properties of curcumin against N. fowleri and B. mandrillaris. Curcumin showed significant amoebicidal activities with an AC50 of 172 and 74 μM against B. mandrillaris and N. fowleri, respectively. Moreover, these compounds were also conjugated with gold nanoparticles to further increase their amoebicidal activities. After conjugation with gold nanoparticles, amoebicidal activities of the drugs were increased by up to 56 and 37% against B. mandrillaris and N. fowleri, respectively. These findings are remarkable and suggest that clinically available curcumin and our gold-conjugated curcumin nanoparticles hold promise in the improved treatment of fatal infections caused by brain-eating amoebae and should serve as a model in the rationale development of therapeutic interventions against other infections.
  13. Mungroo MR, Tong T, Khan NA, Anuar TS, Maciver SK, Siddiqui R
    Int Microbiol, 2021 Aug;24(3):363-371.
    PMID: 33754231 DOI: 10.1007/s10123-021-00171-3
    Acanthamoeba keratitis is a sight-endangering eye infection, and causative organism Acanthamoeba presents a significant concern to public health, given escalation of contact lens wearers. Contemporary therapy is burdensome, necessitating prompt diagnosis and aggressive treatment. None of the contact lens disinfectants (local and international) can eradicate Acanthamoeba effectively. Using a range of compounds targeting cellulose, ion channels, and biochemical pathways, we employed bioassay-guided testing to determine their anti-amoebic effects. The results indicated that acarbose, indaziflam, terbuthylazine, glimepiride, inositol, vildagliptin and repaglinide showed anti-amoebic effects. Compounds showed minimal toxicity on human cells. Therefore, effects of the evaluated compounds after conjugation with nanoparticles should certainly be the subject of future studies and will likely lead to promising leads for potential applications.
  14. Ong TYY, Khan NA, Siddiqui R
    J Clin Microbiol, 2017 07;55(7):1989-1997.
    PMID: 28404683 DOI: 10.1128/JCM.02300-16
    Acanthamoeba spp. and Balamuthia mandrillaris are causative agents of granulomatous amoebic encephalitis (GAE), while Naegleria fowleri causes primary amoebic meningoencephalitis (PAM). PAM is an acute infection that lasts a few days, while GAE is a chronic to subacute infection that can last up to several months. Here, we present a literature review of 86 case reports from 1968 to 2016, in order to explore the affinity of these amoebae for particular sites of the brain, diagnostic modalities, treatment options, and disease outcomes in a comparative manner.
  15. Rajendran K, Anwar A, Khan NA, Aslam Z, Raza Shah M, Siddiqui R
    ACS Chem Neurosci, 2020 08 19;11(16):2431-2437.
    PMID: 31347828 DOI: 10.1021/acschemneuro.9b00289
    Naegleria fowleri (N. fowleri) causes primary amoebic meningoencephalitis (PAM) which almost always results in death. N. fowleri is also known as "brain-eating amoeba" due to its literal infestation of the brain leading to an inflammatory response in the brain tissues. Currently, there is no single drug that is available to treat PAM, and most treatments are combinations of antifungal, anticancer, and anti-inflammatory drugs. Recently nanotechnology has gained attention in chemotherapeutic research converging on drug delivery, while oleic acid (OA) has shown positive effects on the human immune system and inflammatory processes. In continuation of our recent research in which we reported the effects of oleic acid conjugated with silver nanoparticles (OA-AgNPs) against free-living amoeba Acanthamoeba castellanii, in this report, we show their antiamoebic effects against N. fowleri. OA alone and its nanoconjugates were tested against the amoeba by using amoebicidal and host cell cytopathogenicity assays. Trypan blue exclusion assay was used to determine cell viability. The results revealed that OA-AgNPs exhibited significantly enhanced antiamoebic effects (P < 0.05) against N. fowleri as compared to OA alone. Evidently, lactate dehydrogenase release shows reduced N. fowleri-mediated host cell cytotoxicity. Based on our study, we anticipate that further studies on OA-AgNPs could potentially provide an alternative treatment of PAM.
  16. Rajendran K, Anwar A, Khan NA, Shah MR, Siddiqui R
    ACS Chem Neurosci, 2019 06 19;10(6):2692-2696.
    PMID: 30970208 DOI: 10.1021/acschemneuro.9b00111
    Primary amoebic meningoencephalitis (PAM), a deadly brain infection, is caused by brain-eating amoeba Naegleria fowleri. The current first line of treatment against PAM is a mixture of amphotericin B, rifampin, and miltefosine. Since, no single effective drug has been developed so far, the mortality rate is above 95%. Moreover, severe adverse side effects are associated with these drugs. Nanotechnology has provided several advances in biomedical applications especially in drug delivery and diagnosis. Herein, for the first time we report antiamoebic properties of cinnamic acid (CA) and gold nanoparticles conjugated with CA (CA-AuNPs) against N. fowleri. CA-AuNPs were successfully synthesized by sodium borohydride reduction of tetrachloroauric acid. Size and morphology were determined by atomic force microscopy (AFM) while the surface plasmon resonance band was analyzed by ultraviolet-visible (UV-vis) spectrophotometry for the characterization of the nanoparticles. Amoebicidal and cytopathogenicity (host cell cytotoxicity) assays revealed that both CA and CA-AuNPs displayed significant anti- N. fowleri properties ( P < 0.05), whereas nanoparticles conjugation further enhanced the anti- N. fowleri effects of CA. This study established a potential drug lead, while CA-AuNPs appear to be promising candidate for drug discovery against PAM.
  17. Rajendran K, Anwar A, Khan NA, Siddiqui R
    ACS Chem Neurosci, 2017 12 20;8(12):2626-2630.
    PMID: 29206032 DOI: 10.1021/acschemneuro.7b00430
    The overall aim of this study was to determine whether conjugation with silver nanoparticles enhances effects of available drugs against primary amoebic meningoencephalitis due to Naegleria fowleri. Amphotericin B, Nystatin, and Fluconazole were conjugated with silver nanoparticles, and synthesis was confirmed using UV-visible spectrophotometry. Atomic force microscopy determined their size in range of 20-100 nm. To determine amoebicidal effects, N. fowleri were incubated with drugs-conjugated silver nanoparticles, silver nanoparticles alone, and drugs alone. The findings revealed that silver nanoparticles conjugation significantly enhanced antiamoebic effects of Nystatin and Amphotericin B but not Fluconazole at micromolar concentrations, compared with the drugs alone. For the first time, our findings showed that silver nanoparticle conjugation enhances efficacy of antiamoebic drugs against N. fowleri. Given the rarity of the disease and challenges in developing new drugs, it is hoped that modifying existing drugs to enhance their antiamoebic effects is a useful avenue that holds promise in improving the treatment of brain-eating amoebae infection due to N. fowleri.
  18. Rajendran K, Ahmed U, Meunier AC, Shaikh MF, Siddiqui R, Anwar A
    ACS Chem Neurosci, 2023 Dec 06;14(23):4105-4114.
    PMID: 37983556 DOI: 10.1021/acschemneuro.3c00258
    Naegleria fowleri is one of the free-living amoebae and is a causative agent of a lethal and rare central nervous system infection called primary amoebic meningoencephalitis. Despite the advancement in antimicrobial chemotherapy, the fatality rate in the reported cases is more than 95%. Most of the treatment drugs used against N. fowleri infection are repurposed drugs. Therefore, a large number of compounds have been tested against N. fowleri in vitro, but most of the compounds showed high toxicity. To overcome this, we evaluated the effectiveness of naturally occurring terpene compounds against N. fowleri. In this study, we evaluated the antiamoebic potential of natural compounds including Thymol, Borneol, Andrographolide, and Forskolin againstN. fowleri. Thymol showed the highest amoebicidal activity with IC50/24 h at 153.601 ± 19.6 μM. Two combinations of compounds Forskolin + Thymol and Forskolin + Borneol showed a higher effect on the viability of trophozoites as compared to compounds alone and hence showed a synergistic effect. The IC50 reported for Forskolin + Thymol was 81.30 ± 6.86 μM. Borneol showed maximum cysticidal activity with IC50/24 h at 192.605 ± 3.01 μM. Importantly, lactate dehydrogenase release testing revealed that all compounds displayed minimal cytotoxicity to human HaCaT, HeLa, and SH-SY5Y cell lines. The cytopathogenicity assay showed that Thymol and Borneol also significantly reduced the host cell cytotoxicity of pretreated amoeba toward the human HaCaT cell line. So, these terpene compounds hold potential as therapeutic agents against infections caused by N. fowleri and are potentially a step forward in drug development against this deadly pathogen as these compounds have also been reported to cross the blood-brain barrier. Therefore, an in vivo study using animal models is necessary to assess the efficacy of these compounds and the need for further research into the intranasal route of delivery for the treatment of these life-threatening infections.
  19. Rajendran K, Ahmed U, Meunier AC, Shaikh MF, Siddiqui R, Anwar A
    ACS Omega, 2024 Mar 12;9(10):11597-11607.
    PMID: 38497026 DOI: 10.1021/acsomega.3c08844
    Pathogenic Naegleria fowleri (N. fowleri) are opportunistic free-living amoebae and are the causative agents of a very rare but severe brain infection called primary amoebic meningoencephalitis (PAM). The fatality rate of PAM in reported cases is more than 95%. Most of the drugs used againstN. fowleri infections are repurposed drugs. Therefore, a large number of compounds have been tested againstN. fowleri in vitro, but most of the tested compounds showed high toxicity and an inability to cross the blood-brain barrier. Andrographolide, forskolin, and borneol are important natural compounds that have shown various valuable biological properties. In the present study, the nanoconjugates (AND-AgNPs, BOR-AgNPs, and FOR-AgNPs) of these compounds were synthesized and assessed against both stages (trophozoite and cyst) ofN. fowleri for their antiamoebic and cysticidal potential in vitro. In addition, cytotoxicity and host cell pathogenicity were also evaluated in vitro. FOR-AgNPs were the most potent nanoconjugate and showed potent antiamoebic activity againstN. fowleriwith an IC50 of 26.35 μM. Nanoconjugates FOR-AgNPs, BOR-AgNPs, and AND-AgNPs also significantly inhibit the viability of N. fowleri cysts. Cytotoxicity assessment showed that these nanoconjugates caused minimum damage to human keratinocyte cells (HaCaT cells) at 100 μg/mL, while also effectively reducing the cytopathogenicity of N. fowleri trophozoites to the HaCaT cells. The outcomes of our experiments have unveiled substantial potential for AND-AgNPs, BOR-AgNPs, and FOR-AgNPs in the realm of developing innovative alternative therapeutic agents to combat infections caused by N. fowleri. This study represents a significant step forward in the pursuit of advanced strategies for managing such amoebic infections, laying the foundation for the development of novel and more effective therapeutic modalities in the fight against free-living amoebae.
  20. Rao K, Abdullah M, Ahmed U, Wehelie HI, Shah MR, Siddiqui R, et al.
    Arch Microbiol, 2024 Mar 04;206(4):134.
    PMID: 38433145 DOI: 10.1007/s00203-024-03854-3
    Acanthamoeba castellanii are opportunistic pathogens known to cause infection of the central nervous system termed: granulomatous amoebic encephalitis, that mostly effects immunocompromised individuals, and a sight threatening keratitis, known as Acanthamoeba keratitis, which mostly affects contact lens wearers. The current treatment available is problematic, and is toxic. Herein, an amphiphilic star polymer with AB2 miktoarms [A = hydrophobic poly(ℇ-Caprolacton) and B = hydrophilic poly (ethylene glycol)] was synthesized by ring opening polymerization and CuI catalyzed azide-alkyne cycloaddition. Characterization by 1H and 13C NMR spectroscopy, size-exclusion chromatography and fluorescence spectroscopy was accomplished. The hydrophobic drug itraconazole (ITZ) was incorporated in self-assembled micellar structure of AB2 miktoarms through co-solvent evaporation. The properties of ITZ loaded (ITZ-PCL-PEG2) and blank micelles (PCL-PEG2) were investigated through zeta sizer, scanning electron microscopy and Fourier-transform infrared spectroscopy. Itraconazole alone (ITZ), polymer (DPB-PCL), empty polymeric micelles (PCL-PEG2) alone, and itraconazole loaded in polymeric micelles (ITZ-PCL-PEG2) were tested for anti-amoebic potential against Acanthamoeba, and the cytotoxicity on human cells were determined. The polymer was able to self-assemble in aqueous conditions and exhibited low value for critical micelle concentration (CMC) 0.05-0.06 µg/mL. The maximum entrapment efficiency of ITZ was 68%. Of note, ITZ, DPB, PCL-PEG2 and ITZ-PCL-PEG2 inhibited amoebae trophozoites by 37.34%, 36.30%, 35.77%, and 68.24%, respectively, as compared to controls. Moreover, ITZ-PCL-PEG2 revealed limited cytotoxicity against human keratinocyte cells. These results are indicative that ITZ-PCL-PEG2 micelle show significantly better anti-amoebic effects as compared to ITZ alone and thus should be investigated further in vivo to determine its clinical potential.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links