Displaying publications 61 - 80 of 617 in total

Abstract:
Sort:
  1. Mukhlisin M, Saputra A
    ScientificWorldJournal, 2013;2013:421762.
    PMID: 24282382 DOI: 10.1155/2013/421762
    In recent years many models have been proposed for measuring soil water content (θ) based on the permittivity (ε) value. Permittivity is one of the properties used to determine θ in measurements using the electromagnetic method. This method is widely used due to quite substantial differences in values of ε for air, soil, and water, as it allows the θ value to be measured accurately. The performance of six proposed models with one parameter (i.e., permittivity) and five proposed models with two or more parameters (i.e., permittivity, porosity, and dry bulk density of soil) is discussed and evaluated. Secondary data obtained from previous studies are used for comparison to calibrate and evaluate the models. The results show that the models with one parameter proposed by Roth et al. (1992) and Topp et al. (1980) have the greatest R² data errors, while for the model with two parameters, the model proposed by Malicki et al. (1996) agrees very well with the data compared with other models.
    Matched MeSH terms: Agriculture/methods
  2. Muhamad H, Ismail BS, Sameni M, Mat N
    Environ Monit Assess, 2011 May;176(1-4):43-50.
    PMID: 20582739 DOI: 10.1007/s10661-010-1565-6
    The adsorption equilibrium time and effects of pH and concentration of (14)C-labeled paraquat (1,1(')-dimethyl-4,4(')-bipyridylium dichloride) in two types of Malaysian soil were investigated. The soils used in the study were clay loam and clay soils from rice fields. Equilibrium studies of paraquat in a soil and pesticide solution were conducted. Adsorption equilibrium time was achieved within 2 h for both soil types. The amount of (14)C-labeled paraquat adsorbed onto glass surfaces increased with increasing shaking time and remained constant after 10 h. It was found that paraquat adsorbed by the two soils was very similar: 51.73 (clay loam) and 51.59 μ g g(-1) (clay) at 1 μ g/ml. The adsorption of paraquat onto both types of soil was higher at high pH, and adsorption decreased with decreasing pH. At pH 11, the amounts of (14)C-labeled paraquat adsorbed onto the clay loam and clay soil samples were 4.08 and 4.05 μ g g(-1), respectively, whereas at pH 2, the amounts adsorbed were 3.72 and 3.57 μ g g(-1), respectively. Results also suggested that paraquat sorption by soil is concentration dependent.
    Matched MeSH terms: Agriculture*
  3. Richards T
    Br Med J (Clin Res Ed), 1986 Sep 20;293(6549):714.
    PMID: 3094623
    Matched MeSH terms: Agriculture*
  4. Goh CS, Ahl A, Woo WT
    Trends Biotechnol, 2021 01;39(1):1-4.
    PMID: 32546309 DOI: 10.1016/j.tibtech.2020.05.010
    Biotechnology will play a key role in transforming current land-use systems alongside the digital revolution by using five strategies: enhancing productivity at the farm or plantation level, replenishing degraded land, enabling landscape management for resilience, upgrading and diversifying downstream activities, and creating new value propositions.
    Matched MeSH terms: Agriculture/economics
  5. Balamurugan S, Muthu BA, Peng SL, Wahab MHA
    Big Data, 2020 10;8(5):450-451.
    PMID: 33090023 DOI: 10.1089/big.2020.29038.cfp
    Matched MeSH terms: Agriculture*
  6. Shevade VS, Loboda TV
    PLoS One, 2019;14(2):e0210628.
    PMID: 30785883 DOI: 10.1371/journal.pone.0210628
    Agricultural expansion is one of the leading causes of deforestation in the tropics and in Southeast Asia it is predominantly driven by large-scale production for international trade. Peninsular Malaysia has a long history of plantation agriculture and has been a predominantly resource-based economy where expanding plantations like those of oil palm continue to replace natural forests. Habitat loss from deforestation and expanding plantations threatens Malaysian biodiversity. Expanding industrial plantations have also been responsible for drainage and conversions of peatland forests resulting in release of large amounts of carbon dioxide. The demand for palm oil is expected to increase further and result in greater pressures on tropical forests. Given Malaysia's high biophysical suitability for oil palm cultivation, it is important to understand patterns of oil palm expansion to better predict forest areas that are vulnerable to future expansion. We study natural forest conversion to industrial oil palm in Peninsular Malaysia between 1988 and 2012 to identify determinants of recent oil palm expansion using logistic regression and hierarchical partitioning. Using maps of recent conversions and remaining forests, we characterize agro-environmental suitability and accessibility for the past and future conversions. We find that accessibility to previously existing plantations is the strongest determinant of oil palm expansion and is significant throughout the study period. Almost all (> 99%) of the forest loss between 1988 and 2012 that has been converted to industrial oil palm plantations is within 1 km from oil palm plantations that have been established earlier. Although most forest conversions to industrial oil palm have been in areas of high biophysical suitability, there has been an increase in converted area in regions with low oil palm suitability since 2006. We find that reduced suitability does not necessarily restrict conversions to industrial oil palm in the region; however, lack of access to established plantations does.
    Matched MeSH terms: Agriculture*
  7. Taniushkina D, Lukashevich A, Shevchenko V, Belalov IS, Sotiriadi N, Narozhnaia V, et al.
    Sci Rep, 2024 Jul 12;14(1):16150.
    PMID: 38997290 DOI: 10.1038/s41598-024-65140-y
    Agriculture, a cornerstone of human civilization, faces rising challenges from climate change, resource limitations, and stagnating yields. Precise crop production forecasts are crucial for shaping trade policies, development strategies, and humanitarian initiatives. This study introduces a comprehensive machine learning framework designed to predict crop production. We leverage CMIP5 climate projections under a moderate carbon emission scenario to evaluate the future suitability of agricultural lands and incorporate climatic data, historical agricultural trends, and fertilizer usage to project yield changes. Our integrated approach forecasts significant regional variations in crop production across Southeast Asia by 2028, identifying potential cropland utilization. Specifically, the cropland area in Indonesia, Malaysia, Philippines, and Viet Nam is projected to decline by more than 10% if no action is taken, and there is potential to mitigate that loss. Moreover, rice production is projected to decline by 19% in Viet Nam and 7% in Thailand, while the Philippines may see a 5% increase compared to 2021 levels. Our findings underscore the critical impacts of climate change and human activities on agricultural productivity, offering essential insights for policy-making and fostering international cooperation.
    Matched MeSH terms: Agriculture*
  8. Yeong TJ, Pin Jern K, Yao LK, Hannan MA, Hoon STG
    Molecules, 2019 May 27;24(10).
    PMID: 31137897 DOI: 10.3390/molecules24102025
    The agricultural industry has made a tremendous contribution to the foundations of civilization. Basic essentials such as food, beverages, clothes and domestic materials are enriched by the agricultural industry. However, the traditional method in agriculture cultivation is labor-intensive and inadequate to meet the accelerating nature of human demands. This scenario raises the need to explore state-of-the-art crop cultivation and harvesting technologies. In this regard, optics and photonics technologies have proven to be effective solutions. This paper aims to present a comprehensive review of three photonic techniques, namely imaging, spectroscopy and spectral imaging, in a comparative manner for agriculture applications. Essentially, the spectral imaging technique is a robust solution which combines the benefits of both imaging and spectroscopy but faces the risk of underutilization. This review also comprehends the practicality of all three techniques by presenting existing examples in agricultural applications. Furthermore, the potential of these techniques is reviewed and critiqued by looking into agricultural activities involving palm oil, rubber, and agro-food crops. All the possible issues and challenges in implementing the photonic techniques in agriculture are given prominence with a few selective recommendations. The highlighted insights in this review will hopefully lead to an increased effort in the development of photonics applications for the future agricultural industry.
    Matched MeSH terms: Agriculture*
  9. Tahir R, Samra, Afzal F, Liang J, Yang S
    Fish Shellfish Immunol, 2024 Mar;146:109418.
    PMID: 38301811 DOI: 10.1016/j.fsi.2024.109418
    The rice fish system represents an innovative and sustainable approach to integrated farming, combining rice cultivation with fish rearing in the same ecosystem. However, one of the major challenges in this system is the pesticidal pollution resulting from various sources, which poses risks to fish health and overall ecosystem balance. In recent years, dietary polyphenols have emerged as promising bioactive compounds with potential chemo-preventive and therapeutic properties. These polyphenols, derived from various plant sources, have shown great potential in reducing the toxicity of pesticides and improving the health of fish within the rice fish system. This review aims to explore the novel aspects of using dietary polyphenols to mitigate pesticidal toxicity and enhance fish health in the rice fish system. It provides comprehensive insights into the mechanisms of action of dietary polyphenols and their beneficial effects on fish health, including antioxidant, anti-inflammatory, and detoxification properties. Furthermore, the review discusses the potential application methods of dietary polyphenols, such as direct supplementation in fish diets or through incorporation into the rice fields. By understanding the interplay between dietary polyphenols and pesticides in the rice fish system, researchers can develop innovative and sustainable strategies to promote fish health, minimize pesticide impacts, and ensure the long-term viability of this integrated farming approach. The information presented in this review will be valuable for scientists, aqua-culturists, and policymakers aiming to implement eco-friendly and health-enhancing practices in the rice fish system.
    Matched MeSH terms: Agriculture/methods
  10. Ng ZY, Ajeng AA, Cheah WY, Ng EP, Abdullah R, Ling TC
    J Environ Manage, 2024 Jan 01;349:119445.
    PMID: 37890301 DOI: 10.1016/j.jenvman.2023.119445
    Biofertilizers encompass microorganisms that can be applied to plants, subsequently establishing themselves within the plant's rhizosphere or internal structures. This colonization stimulates plant development by enhancing nutrient absorption from the host. While there is growing literature documenting the applications of microalgae-based and bacterial-based biofertilizers, the research focusing on the effectiveness of consortia formed by these microorganisms as short-term plant biofertilizers is notably insufficient. This study seeks to assess the effectiveness of microalgae-bacterial biofertilizers in promoting plant growth and their potential contribution to the circular economy. The review sheds light on the impact of microalgae-bacterial biofertilizers on plant growth parameters, delving into factors influencing their efficiency, microalgae-bacteria interactions, and effects on soil health. The insights from this review are poised to offer valuable guidance to stakeholders in agriculture, including farmers, environmental technologists, and businesses. These insights will aid in the development and investment in more efficient and sustainable methods for enhancing crop yields, aligning with the Sustainable Development Goals and principles of the circular economy.
    Matched MeSH terms: Agriculture/methods
  11. Gao J, Al Mamun A, Yang Q, Rahman MK, Masud MM
    Sci Rep, 2024 Jan 18;14(1):1592.
    PMID: 38238468 DOI: 10.1038/s41598-024-52064-w
    The objective of this study was to examine the relationships among environmental and health values, ecological worldview, perception of consequences, the ascription of responsibility, and personal norms in the context of the value-belief-norm (VBN) model and how compatibility influences the intentions and behaviors of Chinese youth regarding the use of hydroponic farming technology. The study employed a survey questionnaire to collect data from the target population. The sample size was determined through a power analysis to ensure sufficient statistical power for the analysis. A total of 727 potential respondents' responses were analyzed using SmartPLS (4.0) to perform structural equation modeling. The results confirmed that environmental, emotional, and health values significantly associated with individuals' ecological worldviews. There was an interconnection between ecological worldview, awareness of consequences, and ascription of responsibility, and all three significantly influenced personal norms. The key determinants of the intentions and behaviors to adopt hydroponic farming technology are personal norms and technology compatibility. Therefore, to promote and motivate the interest and intention to use hydroponics among unemployed youth, government agencies, and related companies should focus on providing technology-related and pro-environmental information and training. This is expected to increase the acceptance and awareness of hydroponics among this group, thus increasing the adoption rate of hydroponics.
    Matched MeSH terms: Agriculture*
  12. Golicz K, Cheak SC, Jacobs S, Große-Stoltenberg A, Safaei M, Bellingrath-Kimura S, et al.
    Environ Monit Assess, 2024 Dec 21;197(1):86.
    PMID: 39708179 DOI: 10.1007/s10661-024-13540-y
    Soil conditions of croplands are a frequent topic of scientific research. In contrast, less is known about large-scale commercial plantations of perennial crops such as oil palm. Oil palm is a globally important tropical commodity crop which contributes to both food and energy security due to its exceptional productivity. However, oil palm crops are associated with short lifecycles and high nutrient demands, which may disproportionately affect soil health. With the goal of exploring baseline soil properties in commercial oil palm plantations, we evaluated data from two large-scale soil surveys carried out in 2014/2015 and 2018/2019 across more than 400 fields located throughout Peninsular Malaysia. We examined variation in field-measured soil quality indicators with a focus on soil organic carbon content at three depths (0-15 cm, 15-30 cm, 30-45 cm) and investigated links with spatial covariates, including plantation age. We found SOC contents to be low (1.6-2%) across the sampled locations with limited correlation with spatial predictors employed in soil organic carbon modelling. Furthermore, we found that immature and young mature plantations, which consisted of fields that were re-planted as part of a 20-year-long oil palm rotation, were characterised by significantly lower soil organic carbon content than the mature plantations. This suggests that management practices should target younger oil palm plantations for soil organic conservation measures to increase the overall baseline SOC content, which will subsequently accumulate over the plantation's lifespan. We further provide recommendations for future soil sampling efforts, which could increase the robustness of collected data and facilitate their use for soil monitoring through modelling approaches involving, for example, digital soil mapping.
    Matched MeSH terms: Agriculture*; Crops, Agricultural/growth & development
  13. Zhou J, Johnson VC, Shi J, Tan ML, Zhang F
    PLoS One, 2025;20(1):e0316255.
    PMID: 39854555 DOI: 10.1371/journal.pone.0316255
    Influenced by urban expansion, population growth, and various socio-economic activities, land use in the Yangtze River Delta (YRD) area has undergone prominent changes. Modifications in land use have resulted in adjustments to ecological structures, leading to subsequent fluctuations in carbon storage. This study focuses on YRD region and analyzes the characteristics of land use changes in the area using land use data from 2000 to 2020, with a 10-year interval. Utilizing InVEST Model's Carbon Storage module in combination with PLUS model (patch-generating land use simulation), we simulated and projected future land use patterns and carbon storage across YRD region under five scenarios including natural development (ND), urban development (UD), ecological protection (EP), cropland protection (CP), and balanced development (BD). Upon comparing carbon storage levels predicted for 2030 under the five scenarios with those in 2020, carbon stocks decrease in the initial four scenarios and then increase in the fifth scenario. In the initial four declining scenarios, CP scenario had the least reduction in carbon storage, followed by EP scenario. The implementation of policies aimed at safeguarding cropland and preserving ecological integrity can efficaciously curtail the expansion of developed land into woodland and cropland, enhance the structure of land use, and mitigate the loss of carbon storage.
    Matched MeSH terms: Agriculture/methods
  14. Uddin MK, Juraimi AS
    ScientificWorldJournal, 2013;2013:409413.
    PMID: 24222734 DOI: 10.1155/2013/409413
    Land and water resources are becoming scarce and are insufficient to sustain the burgeoning population. Salinity is one of the most important abiotic stresses affecting agricultural productions across the world. Cultivation of salt-tolerant turfgrass species may be promising option under such conditions where poor quality water can also be used for these crops. Coastal lands in developing countries can be used to grow such crops, and seawater can be used for irrigation of purposes. These plants can be grown using land and water unsuitable for conventional crops and can provide food, fuel, fodder, fibber, resin, essential oils, and pharmaceutical products and can be used for landscape reintegration. There are a number of potential turfgrass species that may be appropriate at various salinity levels of seawater. The goal of this review is to create greater awareness of salt-tolerant turfgrasses, their current and potential uses, and their potential use in developing countries. The future for irrigating turf may rely on the use of moderate- to high-salinity water and, in order to ensure that the turf system is sustainable, will rely on the use of salt-tolerant grasses and an improved knowledge of the effects of salinity on turfgrasses.
    Matched MeSH terms: Agriculture/economics; Agriculture/methods; Agriculture/trends
  15. Ng YG, Shamsul Bahri MT, Irwan Syah MY, Mori I, Hashim Z
    J Occup Health, 2014;55(5):405-14.
    PMID: 23892641
    OBJECTIVES: Production agriculture is commonly associated with high prevalence of ergonomic injuries, particularly during intensive manual labor and during harvesting. This paper intends to briefly describe an overview of oil palm plantation management highlighting the ergonomics problem each of the breakdown task analysis.

    METHODS: Although cross-sectional field visits were conducted in the current study, insight into past and present occupational safety and health concerns particularly regarding the ergonomics of oil palm plantations was further exploited. Besides discussion, video recordings were extensively used for ergonomics analysis.

    RESULTS: The unique commodity of oil palm plantations presents significantly different ergonomics risk factors for fresh fruit bunch (FFB) cutters during different stages of harvesting. Although the ergonomics risk factors remain the same for FFB collectors, the intensity of manual lifting increases significantly with the age of the oil palm trees-weight of FFB.

    CONCLUSIONS: There is urgent need to establish surveillance in order to determine the current prevalence of ergonomic injuries. Thereafter, ergonomics interventions that are holistic and comprehensive should be conducted and evaluated for their efficacy using approaches that are integrated, participatory and cost-effective.

    Matched MeSH terms: Agriculture/methods; Agriculture/organization & administration*; Agriculture/standards
  16. Gay H
    Ambix, 2012 Jul;59(2):88-108.
    PMID: 23057183
    The use of chemical pesticides increased considerably after World War II, and ecological damage was noticeable by the late 1940s. This paper outlines some ecological problems experienced during the post-war period in the UK, and in parts of what is now Malaysia. Also discussed is the government's response. Although Rachel Carson's book, Silent Spring (1962), was important in bringing the problems to a wider public, she was not alone in sounding the alarm. Pressure from the public and from British scientists led, among other things, to the founding of the Natural Environment Research Council in 1965. By the 1970s, environmentalism was an important movement, and funding for ecological and environmental research was forthcoming even during the economic recession. Some of the recipients were ecologists working at Imperial College London. Moved by the political climate, and by the evidence of ecological damage, they carried out research on the biological control of insect pests.
    Matched MeSH terms: Agriculture/history; Agriculture/instrumentation; Agriculture/methods
  17. Wang WY, Foster WA
    Ecol Evol, 2015 Aug;5(15):3159-70.
    PMID: 26356831 DOI: 10.1002/ece3.1592
    Beta diversity - the variation in species composition among spatially discrete communities - and sampling grain - the size of samples being compared - may alter our perspectives of diversity within and between landscapes before and after agricultural conversion. Such assumptions are usually based on point comparisons, which do not accurately capture actual differences in total diversity. Beta diversity is often not rigorously examined. We investigated the beta diversity of ground-foraging ant communities in fragmented oil palm and forest landscapes in Sabah, Malaysia, using diversity metrics transformed from Hill number equivalents to remove dependences on alpha diversity. We compared the beta diversities of oil palm and forest, across three hierarchically nested sampling grains. We found that oil palm and forest communities had a greater percentage of total shared species when larger samples were compared. Across all grains and disregarding relative abundances, there was higher beta diversity of all species among forest communities. However, there were higher beta diversities of common and very abundant (dominant) species in oil palm as compared to forests. Differences in beta diversities between oil palm and forest were greatest at the largest sampling grain. Larger sampling grains in oil palm may generate bigger species pools, increasing the probability of shared species with forest samples. Greater beta diversity of all species in forest may be attributed to rare species. Oil palm communities may be more heterogeneous in common and dominant species because of variable community assembly events. Rare and also common species are better captured at larger grains, boosting differences in beta diversity between larger samples of forest and oil palm communities. Although agricultural landscapes support a lower total diversity than natural forests, diversity especially of abundant species is still important for maintaining ecosystem stability. Diversity in agricultural landscapes may be greater than expected when beta diversity is accounted for at large spatial scales.
    Matched MeSH terms: Agriculture
  18. Sasson A
    Australas Biotechnol, 1994 Nov-Dec;4(6):333-6.
    PMID: 7765827
    Matched MeSH terms: Agriculture/economics; Agriculture/trends; Agriculture/statistics & numerical data*
  19. Khounani Z, Hosseinzadeh-Bandbafha H, Nazemi F, Shaeifi M, Karimi K, Tabatabaei M, et al.
    J Environ Manage, 2021 Feb 01;279:111822.
    PMID: 33348185 DOI: 10.1016/j.jenvman.2020.111822
    The huge amount of agro-wastes generated due to expanding agricultural activities can potentially cause serious environmental and human health problems. Using the biorefinery concept, all parts of agricultural plants can be converted into multiple value-added bioproducts while reducing waste generation. This approach can be viewed as an effective strategy in developing and realizing a circular bioeconomy by accomplishing the dual goals of waste mitigation and energy recovery. However, the sustainability issue of biorefineries should still be thoroughly scrutinized using comprehensive resource accounting methods such as exergy-based approaches. In light of that, this study aims to conduct a detailed exergy analysis of whole-crop safflower biorefinery consisting of six units, i.e., straw handling, biomass pretreatment, bioethanol production, wastewater treatment, oil extraction, and biodiesel production. The analysis is carried out to find the major exergy sink in the developed biorefinery and discover the bottlenecks for further performance improvements. Overall, the wastewater treatment unit exhibits to be the major exergy sink, amounting to over 70% of the total thermodynamic irreversibility of the process. The biomass pretreatment and bioethanol production units account for 12.4 and 10.3% of the total thermodynamic inefficiencies of the process, respectively. The exergy rates associated with bioethanol, biodiesel, lignin, biogas, liquid digestate, seed cake, sodium sulfate, and glycerol are determined to be 5918.5, 16516.8, 10778.9, 1741.4, 6271.5, 15755.8, 3.4, and 823.5 kW, respectively. The overall exergetic efficiency of the system stands at 72.7%, demonstrating the adequacy of the developed biorefinery from the thermodynamic perspective.
    Matched MeSH terms: Agriculture
  20. Xia C, Lam SS, Sonne C
    Science, 2020 Oct 30;370(6516):539.
    PMID: 33122375 DOI: 10.1126/science.abf0461
    Matched MeSH terms: Agriculture
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links