Displaying publications 61 - 80 of 136 in total

Abstract:
Sort:
  1. Zepeda Mendoza ML, Roggenbuck M, Manzano Vargas K, Hansen LH, Brunak S, Gilbert MTP, et al.
    Acta Vet Scand, 2018 Oct 11;60(1):61.
    PMID: 30309375 DOI: 10.1186/s13028-018-0415-3
    BACKGROUND: Vultures have adapted the remarkable ability to feed on carcasses that may contain microorganisms that would be pathogenic to most other animals. The holobiont concept suggests that the genetic basis of such adaptation may not only lie within their genomes, but additionally in their associated microbes. To explore this, we generated shotgun DNA sequencing datasets of the facial skin and large intestine microbiomes of the black vulture (Coragyps atratus) and the turkey vulture (Cathartes aura). We characterized the functional potential and taxonomic diversity of their microbiomes, the potential pathogenic challenges confronted by vultures, and the microbial taxa and genes that could play a protective role on the facial skin and in the gut.

    RESULTS: We found microbial taxa and genes involved in diseases, such as dermatitis and pneumonia (more abundant on the facial skin), and gas gangrene and food poisoning (more abundant in the gut). Interestingly, we found taxa and functions with potential for playing beneficial roles, such as antilisterial bacteria in the gut, and genes for the production of antiparasitics and insecticides on the facial skin. Based on the identified phages, we suggest that phages aid in the control and possibly elimination, as in phage therapy, of microbes reported as pathogenic to a variety of species. Interestingly, we identified Adineta vaga in the gut, an invertebrate that feeds on dead bacteria and protozoans, suggesting a defensive predatory mechanism. Finally, we suggest a colonization resistance role through biofilm formation played by Fusobacteria and Clostridia in the gut.

    CONCLUSIONS: Our results highlight the importance of complementing genomic analyses with metagenomics in order to obtain a clearer understanding of the host-microbial alliance and show the importance of microbiome-mediated health protection for adaptation to extreme diets, such as scavenging.

    Matched MeSH terms: Animals, Wild/microbiology
  2. Qiu B, Fang S, Ikhwanuddin M, Wong L, Ma H
    Mol Biol Rep, 2020 Apr;47(4):3011-3017.
    PMID: 32124169 DOI: 10.1007/s11033-020-05348-z
    In this study, we first conducted a genome survey assay for Sillago sihama by Illumina sequencing platform, and then developed 15 polymorphic microsatellite loci in a wild population. A total of 129.46 Gb raw data were obtained, of which 115.07 Gb were clean data, with a sequencing depth of 179.3-folds. This genome was estimated to be 522.6 Mb in size, with the heterozygosity, repeat content and GC content being 0.63%, 21% and 44%. A total of 630,028 microsatellites were identified from the genome, of which, dinucleotide repeat was the most abundant (56.80%), followed by mononucleotide repeat (30.23%). Furthermore, 60 pairs of primers were designed and synthesized based on microsatellite sequences, of which 15 were polymorphic in a wild population. A total of 91 alleles were found, with an average of 6.07 per locus. Number of alleles, observed and expected heterozygosity per locus ranged from two to 13, from 0.250 to 0.862, and from 0.396 to 0.901, respectively. Twelve loci were highly informative (PIC > 0.5), and the others were medium informative (0.25 
    Matched MeSH terms: Animals, Wild/genetics
  3. Hamdan A, Ab Latip MQ, Abu Hassim H, Mohd Noor MH, Tengku Azizan TRP, Mohamed Mustapha N, et al.
    Sci Rep, 2020 08 24;10(1):14105.
    PMID: 32839483 DOI: 10.1038/s41598-020-71047-1
    Mirror-induced behaviour has been described as a cognitive ability of an animal to self-direct their image in front of the mirror. Most animals when exposed to a mirror responded with a social interactive behaviour such as aggressiveness, exploratory and repetitive behaviour. The objective of this study is to determine the mirror-induced self-directed behaviour on wildlife at the Royal Belum Rainforest, Malaysia. Wildlife species at the Royal Belum Rainforest were identified using a camera traps from pre-determined natural saltlick locations. Acrylic mirrors with steel frame were placed facing the two saltlicks (Sira Batu and Sira Tanah) and the camera traps with motion-detecting infrared sensor were placed at strategically hidden spot. The behavioural data of the animal response to the mirror were analysed using an ethogram procedure. Results showed that barking deer was the species showing the highest interaction in front of the mirror. Elephants displayed self-directed response through inspecting behaviour via usage of their trunk and legs while interacting to the mirror. Interestingly, the Malayan tapir showed startled behaviour during their interaction with the mirror. However, the absence of interactive behaviour of the Malayan tiger signalled a likelihood of a decreased social response behaviour. These results suggested that the ability to self-directed in front of the mirror is most likely related to the new approach to study the neural mechanism and its level of stimulus response in wildlife. In conclusion, research on mirror-induced self-directed behaviour in wildlife will have profound implications in understanding the cognitive ability of wildlife as an effort to enhance the management strategies and conservation.
    Matched MeSH terms: Animals, Wild/psychology
  4. Takenaka A, Ueda S, Terao K, Takenaka O
    Mol Biol Evol, 1991 May;8(3):320-6.
    PMID: 2072861
    Alpha-globin genes in crab-eating macaques were found to be triplicated at high frequencies according to restriction-enzyme comparisons. The frequencies of triplicated alpha-globin genes in macaques originally from Malaysia and Indonesia were 0.432 and 0.275, respectively, while no triplication was found in individuals from either the Philippines or northern and central Thailand. Quadruplicated alpha-globin genes were also observed, at frequencies of 0.045 (Malaysia), 0.075 (Indonesia), and 0.021 (the Philippines). A single locus was detected in only one of 40 chromosomes from Indonesia (frequency 0.025).
    Matched MeSH terms: Animals, Wild/genetics
  5. Hayakawa T, Nathan SKSS, Stark DJ, Saldivar DAR, Sipangkui R, Goossens B, et al.
    Environ Microbiol Rep, 2018 12;10(6):655-662.
    PMID: 29992728 DOI: 10.1111/1758-2229.12677
    Foregut fermentation is well known to occur in a wide range of mammalian species and in a single bird species. Yet, the foregut microbial community of free-ranging, foregut-fermenting monkeys, that is, colobines, has not been investigated so far. We analysed the foregut microbiomes in four free-ranging proboscis monkeys (Nasalis larvatus) from two different tropical habitats with varying plant diversity (mangrove and riverine forests), in an individual from a semi-free-ranging setting with supplemental feeding, and in an individual from captivity, using high-throughput sequencing based on 16S ribosomal RNA genes. We found a decrease in foregut microbial diversity from a diverse natural habitat (riverine forest) to a low diverse natural habitat (mangrove forest), to human-related environments. Of a total of 2700 bacterial operational taxonomic units (OTUs) detected in all environments, only 153 OTUs were shared across all individuals, suggesting that they were not influenced by diet or habitat. These OTUs were dominated by Firmicutes and Proteobacteria. The relative abundance of the habitat-specific microbial communities showed a wide range of differences among living environments, although such bacterial communities appeared to be dominated by Firmicutes and Bacteroidetes, suggesting that those phyla are key to understanding the adaptive strategy in proboscis monkeys living in different habitats.
    Matched MeSH terms: Animals, Wild/microbiology
  6. Bahaman AR, Ibrahim AL
    Vet Res Commun, 1988;12(2-3):179-89.
    PMID: 3055663 DOI: 10.1007/BF00362799
    This paper reviews the literature on leptospirosis in Malaysia from its first description in 1928 until the present day. Most of the early reports were on investigations of leptospirosis in wildlife and man and up-to-date, thirty-seven leptospiral serovars from thirteen serogroups have been bacteriologically identified. The thirteen serogroups are: Australis, Autumnalis Bataviae, Canicola, Celledoni, Grippotyphosa, Hebdomadis, Icterohaemorrhagiae, Javanica, Pomona, Pyrogenes, Sejroe and Tarassovi. Rats have been ascribed as the principal maintenance host of leptospires in Malaysia. However, serovars from the Pomona, Pyrogenes and Sejroe serogroups have yet to be isolated from rats. It is considered that the majority of leptospirosis cases in man were due to association of man with an environment where rats were plentiful. Recent investigations on domestic animals disclosed a high prevalence of infection in cattle and pigs and they were suspected as being the maintenance host for serovar hardjo and pomona respectively. There is ample scope for research in leptospirosis, particularly in the epidemiology and control of the disease in domestic animals. The strategy to control the infection in domestic animals and man in Malaysia is bound to be different from that of the temperate countries, basically due to the presence of a large number of leptospiral serovars in wildlife, further confounded by geographical and financial constraints.
    Matched MeSH terms: Animals, Wild/microbiology*
  7. Watanabe M, Sadiq MB, Mulop NIA, Mohammed K, Rani PAM, Fong LS, et al.
    Korean J Parasitol, 2020 Oct;58(5):487-492.
    PMID: 33202500 DOI: 10.3347/kjp.2020.58.5.487
    Toxoplasmosis is caused by an obligate intracellular protozoan parasite; Toxoplasma gondii, which is one of the most important zoonotic parasite worldwide. In dogs, the sexual reproductive cycle of T. gondii is lacking, and the animals are not widely consumed as food, but they are vital in the mechanical transmission of the parasite. However, there is no present data on the exposure of stray dogs to T. gondii in Malaysia. The objective of this serological survey was to determine the prevalence of T. gondii antibodies (IgG) and associated factors in stray dogs in East and West Malaysia. Antibodies to T. gondii were determined in serum samples from 222 stray dogs from 6 different states in East and West Malaysia (Peninsular Malaysia) using an Indirect ELISA. The seroprevalence for T. gondii was 23.4% (Confidence interval: CI 17.8-29.2%). Stray dogs from Selangor and Kuala Lumpur had the highest seroprevalence (32.4%; CI 13.2-45.5%) and lowest in those from Penang and Kedah (12.5%; CI 1.3-23.5%). Gender and breed were not associated with T. gondii seropositivity. However, adult dogs were more likely to be seropositive for T. gondii (OR=2.89; CI 1.1-7.7) compared with younger dogs. These results revealed that T. gondii is prevalent in stray dogs in the studied areas in Malaysia, and indicative of the level of environmental contamination of this parasite especially in urban areas.
    Matched MeSH terms: Animals, Wild*
  8. Hii JL, Chew M, Vun YS, Nasir M, Chang MS
    PMID: 3238482
    Two separate observations from recent electrophoretic studies of the systematics and population genetics of laboratory-reared populations which had a long history of colonization in various laboratories, were found to be inconsistent with the present study which used wild-caught populations from East Malaysia. Reanalysis of the two data sets generally indicated a low amount of genetic variation in laboratory colonies. The latter is characterized by higher frequency of monomorphic loci, low average heterozygosity values and, in one extreme case, no variability at two loci. However, natural populations of An. balabacensis and An. leucosphyrus showed more protein variability by the use of polyacrylamide gel electrophoresis. Since laboratory-maintained mosquitoes are genetically and phenotypically different from those in the field, results of laboratory studies on the systematics and population genetics of Anopheles species complexes may be biased.
    Matched MeSH terms: Animals, Wild/genetics*
  9. Imai N, Samejima H, Langner A, Ong RC, Kita S, Titin J, et al.
    PLoS One, 2009;4(12):e8267.
    PMID: 20011516 DOI: 10.1371/journal.pone.0008267
    Sustainable forest management (SFM), which has been recently introduced to tropical natural production forests, is beneficial in maintaining timber resources, but information about the co-benefits for biodiversity conservation and carbon sequestration is currently lacking.
    Matched MeSH terms: Animals, Wild
  10. Palombit RA
    Folia Primatol., 1997;68(6):321-37.
    PMID: 9375367
    Studies of the siamang (Hylobates syndactylus continentis) and the lar gibbon (Hylobates lar lar) where they co-occur in mainland Asia have demonstrated interspecific dietary segregation based on body size and have suggested that observed levels of frugivory represent metabolically based maxima for these species. I studied sympatric groups of siamang (H. s. syndactylus) and lar gibbons (H. l. vestitus) at Ketambe in northern Sumatra (Indonesia) in order to assess the magnitude of within- and between-species variation in diets. The insular subspecies are considerably more frugivorous (60-70% of feeding time) than mainland conspecifics (35-50%). This is primarily because Sumatran hylobatids spend about twice as much time (approx. 45% of feeding) eating fig fruits (Ficus spp., Moraceae). A higher density of figs at Ketambe (compared to Kuala Lompat) may account for this behavioral difference. Enhanced frugivory has been achieved at the expense of folivory, which is much reduced in Sumatra--especially in H. lar (4% of diet)- and is limited almost entirely to immature foliage. The expected decline in protein intake resulting from diminished folivory in Sumatra may be counterbalanced by observed increases in insectivory, which is especially pronounced in lar gibbons. Interspecific dietary segregation emerges most clearly in how individuals of each species supplement their similarly fig-dominated diets. Siamang rely more on immature foliage--primarily from lianas, which generate young leaves more reliably and abundantly than trees do. Conversely, lar gibbons exploit the pulpy fruit of trees and lianas more heavily than siamang do. This general pattern occurs where the two species coexist in Malaysia, thereby suggesting a substantive interspecific difference that is somewhat greater in the insular populations.
    Matched MeSH terms: Animals, Wild
  11. Md-Zain BM, Abdul-Aziz A, Aifat NR, Mohd-Yusof NS, Zulkifli NA, Japning JRR, et al.
    Data Brief, 2019 Jun;24:103532.
    PMID: 31193484 DOI: 10.1016/j.dib.2018.11.117
    This article contains data of the sequence variation in the mitochondrial DNA D-loop region of the Malayan gaur (Bos gaurus hubbacki), locally known as the seladang, from two captive centers. Thirty fecal samples of Malayan gaur were collected from Jenderak Selatan Wildlife Conservation Center (Pahang) and the Sungkai Wildlife Reserve (Perak) for DNA extraction and amplification with polymerase chain reactions. DNA sequences were then analyzed using neighbor joining (NJ) and maximum parsimony (MP) methods. Based on the 652 base pairs obtained, we found seven variable characters with a value of 1%. The genetic distance between the two captive centers was 0.001. Haplotype analyses detected only four haplotypes between these two captive centers. Both NJ and MP trees demonstrate that all individuals in the Jenderak and Sungkai captive centers are in the same clade. Genetic variation of the Malayan gaur in these centers is considered low, possibly because individuals share the same common parent. This sequence variation data are of paramount importance for designing a proper breeding and management program of the Malayan gaur in the future.
    Matched MeSH terms: Animals, Wild
  12. Masello JF, Martínez J, Calderón L, Wink M, Quillfeldt P, Sanz V, et al.
    Parasit Vectors, 2018 Jun 19;11(1):357.
    PMID: 29921331 DOI: 10.1186/s13071-018-2940-3
    BACKGROUND: Parasites can exert selection pressure on their hosts through effects on survival, on reproductive success, on sexually selected ornament, with important ecological and evolutionary consequences, such as changes in population viability. Consequently, hemoparasites have become the focus of recent avian studies. Infection varies significantly among taxa. Various factors might explain the differences in infection among taxa, including habitat, climate, host density, the presence of vectors, life history and immune defence. Feeding behaviour can also be relevant both through increased exposure to vectors and consumption of secondary metabolites with preventative or therapeutic effects that can reduce parasite load. However, the latter has been little investigated. Psittaciformes (parrots and cockatoos) are a good model to investigate these topics, as they are known to use biological control against ectoparasites and to feed on toxic food. We investigated the presence of avian malaria parasites (Plasmodium), intracellular haemosporidians (Haemoproteus, Leucocytozoon), unicellular flagellate protozoans (Trypanosoma) and microfilariae in 19 Psittaciformes species from a range of habitats in the Indo-Malayan, Australasian and Neotropical regions. We gathered additional data on hemoparasites in wild Psittaciformes from the literature. We considered factors that may control the presence of hemoparasites in the Psittaciformes, compiling information on diet, habitat, and climate. Furthermore, we investigated the role of diet in providing antiparasitic secondary metabolites that could be used as self-medication to reduce parasite load.

    RESULTS: We found hemoparasites in only two of 19 species sampled. Among them, all species that consume at least one food item known for its secondary metabolites with antimalarial, trypanocidal or general antiparasitic properties, were free from hemoparasites. In contrast, the infected parrots do not consume food items with antimalarial or even general antiparasitic properties. We found that the two infected species in this study consumed omnivorous diets. When we combined our data with data from studies previously investigating blood parasites in wild parrots, the positive relationship between omnivorous diets and hemoparasite infestation was confirmed. Individuals from open habitats were less infected than those from forests.

    CONCLUSIONS: The consumption of food items known for their secondary metabolites with antimalarial, trypanocidal or general antiparasitic properties, as well as the higher proportion of infected species among omnivorous parrots, could explain the low prevalence of hemoparasites reported in many vertebrates.

    Matched MeSH terms: Animals, Wild/blood; Animals, Wild/metabolism; Animals, Wild/parasitology
  13. Omar S, Jalaludin FA, Yee JM, Kamarudin Z, Jayaseelan K, Khlubi ANM, et al.
    J Vet Med Sci, 2020 Aug 28;82(8):1236-1242.
    PMID: 32641623 DOI: 10.1292/jvms.20-0229
    It is important to provide a baseline of fungal composition in the captive wildlife environment to better understand their role in overall wildlife health. The objectives were to identify species of fungi existing within wildlife animal enclosures and their environment at the National Wildlife Rescue Centre (NWRC) and the National Zoo, Malaysia and to describe their medical and veterinary importance. Samples of air, wall or floor swab, enrichment swab and soil were taken from the animal enclosures, exercise yard and enrichments at NWRC and National Zoo respectively. All samples including those pre-treated samples were plated onto Sabouraud's Dextrose Agar (SDA). Numerous fungi were grown on all sampling SDA plates regardless by either single or multiple growth. Samples of air in both NWRC and National Zoo had the highest growth of Penicillium spp. with a prevalence of 31.2% and 83.7% respectively. Samples of swab from the wall, floor and enrichments were predominantly by Candida spp. (42.6%) in NWRC and Penicillium spp. (41.6%) in the National Zoo. Prevalence of multiple fungi isolated from the soil samples in NWRC were 57.9% and yeast species was the most common in National Zoo with a prevalence of 88.9%. Overall, 29 and 8 isolates were found in both samples from the NWRC and National Zoo with a predominant species of potential zoonotic fungi have been identified in both premises. The expected fungus Aspergillus spp. was not isolated in all samples in NWRC. Prevalent fungal species found in this study are known to cause disease in animals and humans as primary pathogen and also as opportunistic pathogens that may also cause infection. Thus, health safety precautions should be considered particularly in dealing with conservation of endangered wildlife species, along with personnel and public involvements.
    Matched MeSH terms: Animals, Wild
  14. Balasubramaniam KN, Marty PR, Samartino S, Sobrino A, Gill T, Ismail M, et al.
    Sci Rep, 2020 12 15;10(1):21991.
    PMID: 33319843 DOI: 10.1038/s41598-020-78881-3
    Despite increasing conflict at human-wildlife interfaces, there exists little research on how the attributes and behavior of individual wild animals may influence human-wildlife interactions. Adopting a comparative approach, we examined the impact of animals' life-history and social attributes on interactions between humans and (peri)urban macaques in Asia. For 10 groups of rhesus, long-tailed, and bonnet macaques, we collected social behavior, spatial data, and human-interaction data for 11-20 months on pre-identified individuals. Mixed-model analysis revealed that, across all species, males and spatially peripheral individuals interacted with humans the most, and that high-ranking individuals initiated more interactions with humans than low-rankers. Among bonnet macaques, but not rhesus or long-tailed macaques, individuals who were more well-connected in their grooming network interacted more frequently with humans than less well-connected individuals. From an evolutionary perspective, our results suggest that individuals incurring lower costs related to their life-history (males) and resource-access (high rank; strong social connections within a socially tolerant macaque species), but also higher costs on account of compromising the advantages of being in the core of their group (spatial periphery), are the most likely to take risks by interacting with humans in anthropogenic environments. From a conservation perspective, evaluating individual behavior will better inform efforts to minimize conflict-related costs and zoonotic-risk.
    Matched MeSH terms: Animals, Wild
  15. Lekko YM, Ooi PT, Omar S, Mazlan M, Ramanoon SZ, Jasni S, et al.
    Vet World, 2020 Sep;13(9):1822-1836.
    PMID: 33132593 DOI: 10.14202/vetworld.2020.1822-1836
    Tuberculosis (TB) is a chronic inflammatory and zoonotic disease caused by Mycobacterium tuberculosis complex (MTBC) members, which affects various domestic animals, wildlife, and humans. Some wild animals serve as reservoir hosts in the transmission and epidemiology of the disease. Therefore, the monitoring and surveillance of both wild and domestic hosts are critical for prevention and control strategies. For TB diagnosis, the single intradermal tuberculin test or the single comparative intradermal tuberculin test, and the gamma-interferon test, which is regarded as an ancillary test, are used. Postmortem examination can identify granulomatous lesions compatible with a diagnosis of TB. In contrast, smears of the lesions can be stained for acid-fast bacilli, and samples of the affected organs can be subjected to histopathological analyses. Culture is the gold standard test for isolating mycobacterial bacilli because it has high sensitivity and specificity compared with other methods. Serology for antibody detection allows the testing of many samples simply, rapidly, and inexpensively, and the protocol can be standardized in different laboratories. Molecular biological analyses are also applicable to trace the epidemiology of the disease. In conclusion, reviewing the various techniques used in MTBC diagnosis can help establish guidelines for researchers when choosing a particular diagnostic method depending on the situation at hand, be it disease outbreaks in wildlife or for epidemiological studies. This is because a good understanding of various diagnostic techniques will aid in monitoring and managing emerging pandemic threats of infectious diseases from wildlife and also preventing the potential spread of zoonotic TB to livestock and humans. This review aimed to provide up-to-date information on different techniques used for diagnosing TB at the interfaces between wildlife, livestock, and humans.
    Matched MeSH terms: Animals, Wild
  16. Ten DCY, Jani R, Hashim NH, Saaban S, Abu Hashim AK, Abdullah MT
    Animals (Basel), 2021 Apr 06;11(4).
    PMID: 33917373 DOI: 10.3390/ani11041032
    The critically endangered Malayan tiger (Panthera tigris jacksoni), with an estimated population of less than 200 individuals left in isolated rainforest habitats in Malaysia, is in an intermediate population crash leading to extinction in the next decade. The population has decreased significantly by illegal poaching, environmental perturbation, roadkill, and being captured during human-wildlife conflicts. Forty-five or more individuals were extracted from the wild (four animals captured due to conflict, one death due to canine distemper, one roadkilled, and 39 poached) in the 12 years between 2008-2019. The Malayan tigers are the first wildlife species to test positive for COVID-19 and are subject to the Canine Distemper Virus. These anthropogenic disturbances (poaching and human-tiger conflict) and environmental perturbation (decreasing habitat coverage and quality) have long been identified as impending extinction factors. Roadkill and infectious diseases have emerged recently as new confounding factors threatening Malayan tiger extinction in the near future. Peninsular Malaysia has an existing Malayan tiger conservation management plan; however, to enhance the protection and conservation of Malayan tigers from potential extinction, the authority should reassess the existing legislation, regulation, and management plan and realign them to prevent further population decline, and to better enable preparedness and readiness for the ongoing pandemic and future threats.
    Matched MeSH terms: Animals, Wild
  17. Unwin S, Commitante R, Moss A, Bridges E, Farmer KH, Jaya RL, et al.
    Am J Primatol, 2021 May 21.
    PMID: 34018623 DOI: 10.1002/ajp.23273
    One Health is increasingly being used as a tool in ecosystem protection. The Orangutan Veterinary Advisory Group (OVAG) is working to address One Health concerns in Pongo spp. (orangutan) welfare and conservation. Orangutans are vital contributors to the ecosystem health of their range areas. Strengthening national capacity is crucial to make a lasting difference in the currently bleak outlook for orangutan species survival. OVAG is a capacity strengthening and expertise network that brings together all those working with orangutans, in- and ex-situ, to share knowledge, skills, and to collectively learn. Using the One Health paradigm embedded to enhance professional development, the OVAG network is successfully supporting conservation outcomes and impact. As part of our adaptive management approach, and to assess individual and organizational change attributable to the capacity strengthening work of OVAG, we evaluated technical skill test data, program satisfaction data, and asked participants to complete a self-reflective survey. This pilot study of our work demonstrates statistically significant improvements in conservation medicine (t = 5.481, p 
    Matched MeSH terms: Animals, Wild
  18. Mohamed-Hassan SN, Bahaman AR, Mutalib AR, Khairani-Bejo S
    Trop Biomed, 2010 Apr;27(1):30-2.
    PMID: 20562810 MyJurnal
    One hundred and sixty eight rats were trapped from the National Service Training Centres (NSTC) in Kelantan and Terengganu from October 2008 to May 2009. Microscopic agglutination test (MAT) was performed to detect the presence of agglutinating antibodies to Leptospira among the rats caught. All the MAT positive rats were identified as Rattus tiomanicus. In Kelantan, 17.3 % (14/81) of the rats had leptospiral antibodies to serovars Icterohaemorrhagiae (12.3%), Canicola (2.5%), Ballum (1.2%), and Pyrogenes (1.2%). In Terengganu, 18.4% (16/87) of the rats had antibodies to serovars Icterohaemorrhagiae (15%), Canicola (1.1%), Pyrogenes (1.1%) and Hebdomadis (1.1%). This study indicated that Leptospira serovars were prevalent in the rat population in the study areas and could be a source of infection to humans. Therefore, control of the rat population in all NSTC is critical to prevent outbreaks of leptospirosis amongst the NSTC trainees.
    Matched MeSH terms: Animals, Wild
  19. Assi MA, Hezmee MN, Haron AW, Sabri MY, Rajion MA
    Vet World, 2016 Jun;9(6):660-71.
    PMID: 27397992 DOI: 10.14202/vetworld.2016.660-671
    Lead, a chemical element in the carbon group with symbol Pb (from Latin: Plumbum, meaning "the liquid silver") and has an atomic number 82 in the periodic table. It was the first element that was characterized by its kind of toxicity. In animal systems, lead (Pb) has been incriminated in a wide spectrum of toxic effects and it is considered one of the persistent ubiquitous heavy metals. Being exposed to this metal could lead to the change of testicular functions in human beings as well as in the wildlife. The lead poising is a real threat to the public health, especially in the developing countries. Accordingly, great efforts on the part of the occupational and public health have been taken to curb the dangers of this metal. Hematopoietic, renal, reproductive, and central nervous system are among the parts of the human body and systems that are vulnerable toward the dangers following exposure to high level of Pb. In this review, we discussed the massive harmful impact that leads acetate toxicity has on the animals and the worrying fact that this harmful toxicant can be found quite easily in the environment and abundance. Highlighting its (Pb) effects on various organs in the biological systems, its economic, as well as scientific importance, with the view to educate the public/professionals who work in this area. In this study, we focus on the current studies and research related to lead toxicity in animals and also to a certain extent toward human as well.
    Matched MeSH terms: Animals, Wild
  20. Chong, Lee Kim
    MyJurnal
    Animal species identification is one of the important fields in forensic science. Unlike human forensics which makes use of DNA fingerprinting techniques to identify individuals of the same species - humans, animal forensic species identification is much more complicated as it involves the ability to identify and distinguish between hundreds to thousands of species when the material evidence is only a trace of animal tissue without the presence of any visual physical morphology. It is even more difficult when the specimen is an unknown and no reference material is available. Animal species identification is not only important for the prevention of wildlife crimes for the purpose of wildlife protection and conservation but it is also becoming more and more significant in food safety issues especially for the meat industry. Owing to the demand and the necessity of providing such services for regulation and enforcement in the context of environmental protection, food safety and biosafety, the Department of Chemistry (DOC)
    Malaysia has initiated the use of DNA techniques employing the most widely used genetic markers as part of its scientific solution for animal species identification.
    Matched MeSH terms: Animals, Wild
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links