Displaying publications 61 - 80 of 129 in total

Abstract:
Sort:
  1. Zarkasi KZ, Taylor RS, Glencross BD, Abell GCJ, Tamplin ML, Bowman JP
    Res. Microbiol., 2017 Oct;168(8):751-759.
    PMID: 28728852 DOI: 10.1016/j.resmic.2017.07.003
    In this study, microbial community dynamics were assessed within a simple in vitro model system in order to understand those changes influenced by diet. The abundance and diversity of bacteria were monitored within different treatment slurries inoculated with salmon faecal samples in order to mimic the effects of dietary variables. A total of five complete diets and two ingredients (plant meal) were tested. The total viable counts (TVCs) and sequencing data revealed that there was very clear separation between the complete diets and the plant meal treatments, suggesting a dynamic response by the allochthonous bacteria to the treatments. Automated ribosomal intergenic spacer analysis (ARISA) results showed that different diet formulations produced different patterns of fragments, with no separation between the complete diets. However, plant-based protein ingredients were clearly separated from the other treatments. 16S rRNA Illumina-based sequencing analysis showed that members of the genera Aliivibrio, Vibrio and Photobacterium became predominant for all complete diets treatments. The plant-based protein ingredient treatments only sustained weak growth of the genus Sphingomonas. In vitro based testing of diets could be a useful strategy to determine the potential impact of either complete feeds or ingredients on major fish gastrointestinal tract microbiome members.
    Matched MeSH terms: Bacteria/genetics
  2. Hayakawa T, Nathan SKSS, Stark DJ, Saldivar DAR, Sipangkui R, Goossens B, et al.
    Environ Microbiol Rep, 2018 12;10(6):655-662.
    PMID: 29992728 DOI: 10.1111/1758-2229.12677
    Foregut fermentation is well known to occur in a wide range of mammalian species and in a single bird species. Yet, the foregut microbial community of free-ranging, foregut-fermenting monkeys, that is, colobines, has not been investigated so far. We analysed the foregut microbiomes in four free-ranging proboscis monkeys (Nasalis larvatus) from two different tropical habitats with varying plant diversity (mangrove and riverine forests), in an individual from a semi-free-ranging setting with supplemental feeding, and in an individual from captivity, using high-throughput sequencing based on 16S ribosomal RNA genes. We found a decrease in foregut microbial diversity from a diverse natural habitat (riverine forest) to a low diverse natural habitat (mangrove forest), to human-related environments. Of a total of 2700 bacterial operational taxonomic units (OTUs) detected in all environments, only 153 OTUs were shared across all individuals, suggesting that they were not influenced by diet or habitat. These OTUs were dominated by Firmicutes and Proteobacteria. The relative abundance of the habitat-specific microbial communities showed a wide range of differences among living environments, although such bacterial communities appeared to be dominated by Firmicutes and Bacteroidetes, suggesting that those phyla are key to understanding the adaptive strategy in proboscis monkeys living in different habitats.
    Matched MeSH terms: Bacteria/genetics
  3. Lau ASY, Mitsuyama E, Odamaki T, Xiao JZ, Liong MT
    J Med Food, 2019 Mar;22(3):230-240.
    PMID: 30183458 DOI: 10.1089/jmf.2018.4276
    Changes in weather often trigger a myriad of negative impacts on the environment, which eventually affect human health. During the early months of 2016, Malaysia experienced El Niño, with an extremely dry season of almost zero rainfall. At the same time, an increase of more than twofold in fecal secretary immunoglobulin-A (SIgA) levels of healthy preschool children aged 2-6 years was observed, accompanied by an increase in phylum Bacteroidetes, predominantly attributed to genus Bacteroides and Odoribacter, which also positively correlated with fecal SIgA levels. Here, we present evidence to illustrate the detrimental effects of weather change on a microscopic "environment," the human gut ecosystem. We also discuss the protective effects of probiotic against dysbiosis as induced by weather change. The increase in Bacteroidetes was at an expense of decreased genus Faecalibacterium and Veillonella (phylum Firmicutes), whereas children consuming probiotic had a decrease in genus Collinsella, Atopobium, and Eggerthella (phylum Actinobacteria) instead.
    Matched MeSH terms: Bacteria/genetics
  4. Butt FI, Muhammad N, Hamid A, Moniruzzaman M, Sharif F
    Int J Biol Macromol, 2018 Dec;120(Pt A):1294-1305.
    PMID: 30189278 DOI: 10.1016/j.ijbiomac.2018.09.002
    PHAs (polyhydroxyalkanoates) have emerged as biodegradable plastics more strongly in the 20th century. A wide range of bacterial species along with fungi, plants, oilseed crops and carbon sources have been used extensively to synthesize PHA on large scales. Alteration of PHA monomers in their structures and composition has led to the development of biodegradable and biocompatible polymers with highly specific mechanical properties. This leads to the incorporation of PHA in numerous biomedical applications within the previous decade. PHAs have been fabricated in various forms to perform tissue engineering to repair liver, bone, cartilage, heart tissues, cardiovascular tissues, bone marrow, and to act as drug delivery system and nerve conduits. A large number of animal trials have been carried out to assess the biomedical properties of PHA monomers, which also confirms the high compatibility of PHA family for this field. This review summarizes the synthesis of PHA from different sources, and biosynthetic pathways and biomedical applications of biosynthesized polyhydroxyalkanoates.
    Matched MeSH terms: Bacteria/genetics
  5. Mienda BS, Salihu R, Adamu A, Idris S
    Future Microbiol, 2018 03;13:455-467.
    PMID: 29469596 DOI: 10.2217/fmb-2017-0195
    The growing number of multidrug-resistant pathogenic bacteria is becoming a world leading challenge for the scientific community and for public health. However, advances in high-throughput technologies and whole-genome sequencing of bacterial pathogens make the construction of bacterial genome-scale metabolic models (GEMs) increasingly realistic. The use of GEMs as an alternative platforms will expedite identification of novel unconditionally essential genes and enzymes of target organisms with existing and forthcoming GEMs. This approach will follow the existing protocol for construction of high-quality GEMs, which could ultimately reduce the time, cost and labor-intensive processes involved in identification of novel antimicrobial drug targets in drug discovery pipelines. We discuss the current impact of existing GEMs of selected multidrug-resistant pathogenic bacteria for identification of novel antimicrobial drug targets and the challenges of closing the gap between genome-scale metabolic modeling and conventional experimental trial-and-error approaches in drug discovery pipelines.
    Matched MeSH terms: Bacteria/genetics*
  6. Rizan N, Yew CY, Niknam MR, Krishnasamy J, Bhassu S, Hong GZ, et al.
    Sci Rep, 2018 01 17;8(1):896.
    PMID: 29343758 DOI: 10.1038/s41598-017-18825-6
    The exciting discovery of the semiconducting-like properties of deoxyribonucleic acid (DNA) and its potential applications in molecular genetics and diagnostics in recent times has resulted in a paradigm shift in biophysics research. Recent studies in our laboratory provide a platform towards detecting charge transfer mechanism and understanding the electronic properties of DNA based on the sequence-specific electronic response, which can be applied as an alternative to identify or detect DNA. In this study, we demonstrate a novel method for identification of DNA from different shrimp viruses and bacteria using electronic properties of DNA obtained from both negative and positive bias regions in current-voltage (I-V) profiles. Characteristic electronic properties were calculated and used for quantification and further understanding in the identification process. Aquaculture in shrimp industry is a fast-growing food sector throughout the world. However, shrimp culture in many Asian countries faced a huge economic loss due to disease outbreaks. Scientists have been using specific established methods for detecting shrimp infection, but those methods do have their significant drawbacks due to many inherent factors. As such, we believe that this simple, rapid, sensitive and cost-effective tool can be used for detection and identification of DNA from different shrimp viruses and bacteria.
    Matched MeSH terms: Bacteria/genetics
  7. Miyashita NT, Iwanaga H, Charles S, Diway B, Sabang J, Chong L
    Genes Genet Syst, 2013;88(2):93-103.
    PMID: 23832301
    Bacterial community structure was investigated in five tropical rainforests in Sarawak, Malaysia and one temperate forest in Kyoto, Japan. A hierarchical sampling approach was employed, in which soil samples were collected from five sampling-sites within each forest. Pyrosequencing was performed to analyze a total of 493,790 16S rRNA amplicons. Despite differences in aboveground conditions, the composition of bacterial groups was similar across all sampling-sites and forests, with Acidobacteria, Proteobacteria, Verrucomicrobia, Planctomycetes and Bacteroidetes accounting for 90% of all Phyla detected. At higher taxonomic levels, the same taxa were predominant, although there was significant heterogeneity in relative abundance of specific taxa across sampling-sites within one forest or across different forests. In all forests, the level of bacterial diversity, estimated using the Chao1 index, was on the order of 1,000, suggesting that tropical rainforests did not necessarily have a large soil bacterial diversity. The average number of reads per species (OTUs) per sampling-site was 8.0, and more than 40-50% of species were singletons, indicating that most bacterial species occurred infrequently and that few bacterial species achieved high predominance. Approximately 30% of species were specific to one sampling-site within a forest, and 40-60% of species were uniquely detected in one of the six forests studied here. Only 0.2% of species were detected in all forests, while on average 32.1% of species were detected in all sampling-sites within a forest. The results suggested that bacterial communities adapted to specific micro- and macro-environments, but macro-environmental diversity made a larger contribution to total bacterial diversity in forest soil.
    Matched MeSH terms: Bacteria/genetics*
  8. John DV, Aryalakshmi B, Deora H, Purushottam M, Raju R, Mahadevan A, et al.
    Trop Biomed, 2022 Dec 01;39(4):489-498.
    PMID: 36602206 DOI: 10.47665/tb.39.4.002
    Despite clinical suspicion of an infection, brain abscess samples are often culture-negative in routine microbiological testing. Direct PCR of such samples enables the identification of microbes that may be fastidious, non-viable, or unculturable. Brain abscess samples (n = 217) from neurosurgical patients were subjected to broad range 16S rRNA gene PCR and sequencing for bacteria. All these samples and seven formalin-fixed paraffin-embedded tissue (FFPE) samples were subjected to species-specific 18S rRNA PCR for neurotropic free-living amoeba that harbour pathogenic bacteria. The concordance between smear and/or culture and PCR was 69%. One-third of the samples were smear- and culture-negative for bacterial agents. However, 88% of these culture-negative samples showed the presence of bacterial 16S rRNA by PCR. Sanger sequencing of 27 selected samples showed anaerobic/fastidious gram negative bacteria (GNB, 38%), facultative Streptococci (35%), and aerobic GNB (27%). Targeted metagenomics sequencing of three samples showed multiple bacterial species, including anaerobic and non-culturable bacteria. One FFPE tissue revealed the presence of Acanthamoeba 18S rRNA. None of the frozen brain abscess samples tested was positive for 18S rRNA of Acanthamoeba or Balamuthia mandrillaris. The microbial 16/18S rRNA PCR and sequencing outperformed culture in detecting anaerobes, facultative Streptococci and FLA in brain abscess samples. Genetic analyses of 16S/18S sequences, either through Sanger or metagenomic sequencing, will be an essential diagnostic technology to be included for diagnosing culture-negative brain abscess samples. Characterizing the microbiome of culture-negative brain abscess samples by molecular methods could enable detection and/or treatment of the source of infection.
    Matched MeSH terms: Bacteria/genetics
  9. Lim L, Ab Majid AH
    Sci Rep, 2021 Apr 19;11(1):8465.
    PMID: 33875727 DOI: 10.1038/s41598-021-87946-w
    With the development of new metagenomic techniques, the microbial community structure of common bed bugs, Cimex lectularius, is well-studied, while information regarding the constituents of the bacterial communities associated with tropical bed bugs, Cimex hemipterus, is lacking. In this study, the bacteria communities in the blood-fed and starved tropical bed bugs were analysed and characterized by amplifying the v3-v4 hypervariable region of the 16S rRNA gene region, followed by MiSeq Illumina sequencing. Across all samples, Proteobacteria made up more than 99% of the microbial community. An alpha-proteobacterium Wolbachia and gamma-proteobacterium, including Dickeya chrysanthemi and Pseudomonas, were the dominant OTUs at the genus level. Although the dominant OTUs of bacterial communities of blood-fed and starved bed bugs were the same, bacterial genera present in lower numbers were varied. The bacteria load in starved bed bugs was also higher than blood-fed bed bugs.
    Matched MeSH terms: Bacteria/genetics
  10. Siew SW, Musa SM, Sabri N', Farida Asras MF, Ahmad HF
    Environ Res, 2023 Feb 15;219:115139.
    PMID: 36565841 DOI: 10.1016/j.envres.2022.115139
    The disposal of healthcare waste without prior elimination of pathogens and hazardous contaminants has negative effects on the environment and public health. This study aimed to profile the complete microbial community and correlate it with the antibiotic compounds identified in microwave pre-treated healthcare wastes collected from three different waste operators in Peninsular Malaysia. The bacterial and fungal compositions were determined via amplicon sequencing by targeting the full-length 16S rRNA gene and partial 18S with full-length ITS1-ITS2 regions, respectively. The antibiotic compounds were characterized using high-throughput spectrometry. There was significant variation in bacterial and fungal composition in three groups of samples, with alpha- (p-value = 0.04) and beta-diversity (p-values <0.006 and bacteria Proteus mirabilis, Enterococcus faecium, and Enterococcus faecalis were found in modest quantities. A total of 19 antibiotic compounds were discovered and linked with the microbial abundance detected in the healthcare waste samples. The principal component analysis demonstrated a positive antibiotic-bacteria correlation for genera Pseudomonas, Aerococcus, Comamonas, and Vagococcus, while the other bacteria were negatively linked with antibiotics. Nevertheless, deep bioinformatic analysis confirmed the presence of blaTEM-1 and penP which are associated with the production of class A beta-lactamase and beta-lactam resistance pathways. Microorganisms and contaminants, which serve as putative indicators in healthcare waste treatment evaluation revealed the ineffectiveness of microbial inactivation using the microwave sterilization method. Our findings suggested that the occurrence of clinically relevant microorganisms, antibiotic contaminants, and associated antibiotic resistance genes (ARGs) represent environmental and human health hazards when released into landfills via ARGs transmission.
    Matched MeSH terms: Bacteria/genetics
  11. Kardi SN, Ibrahim N, Rashid NA, Darzi GN
    Environ Sci Pollut Res Int, 2016 Feb;23(4):3358-64.
    PMID: 26490910 DOI: 10.1007/s11356-015-5538-8
    Microbial fuel cells (MFCs) represent one of the most attractive and eco-friendly technologies that convert chemical bond energy derived from organic matter into electrical power by microbial catabolic activity. This paper presents the use of a H-type MFC involving a novel NAR-2 bacterial consortium consisting of Citrobacter sp. A1, Enterobacter sp. L17 and Enterococcus sp. C1 to produce electricity whilst simultaneously decolourising acid red 27 (AR27) as a model dye, which is also known as amaranth. In this setup, the dye AR27 is mixed with modified P5 medium (2.5 g/L glucose and 5.0 g/L nutrient broth) in the anode compartment, whilst phosphate buffer solution (PBS) pH 7 serves as a catholyte in the cathode compartment. After several electrochemical analyses, the open circuit voltage (OCV) for 0.3 g/L AR27 with 24-h retention time at 30 °C was recorded as 0.950 V, whereas (93%) decolourisation was achieved in 220-min operation. The maximum power density was reached after 48 h of operation with an external load of 300 Ω. Scanning electron microscopy (SEM) analysis revealed the surface morphology of the anode and the bacterial adhesion onto the electrode surface. The results of this study indicate that the decolourisation of AR27 dye and electrical power generation was successfully achieved in a MFC operated by a bacterial consortium. The consortium of bacteria was able to utilise AR27 in a short retention time as an electron acceptor and to shuttle the electrons to the anode surface for bioelectricity generation.
    Matched MeSH terms: Bacteria/genetics
  12. Nik Zuraina NMN, Mohamad S, Hasan H, Goni MD, Suraiya S
    Pathog Glob Health, 2023 Feb;117(1):63-75.
    PMID: 35331083 DOI: 10.1080/20477724.2022.2028378
    Respiratory tract infections (RTIs), including pneumonia and pulmonary tuberculosis, are among the leading causes of death worldwide. The use of accurate diagnostic tests is crucial to initiate proper treatment and therapy to reduce the mortality rates for RTIs. A PCR assay for simultaneous detection of six respiratory bacteria: Haemophilus influenzae, Klebsiella pneumoniae, Mycobacterium tuberculosis, Pseudomonas aeruginosa, Staphylococcus aureus and Streptococcus pneumoniae, was developed in our lab. The current study aimed to evaluate the performance of this assay along with the retrospective surveillance of respiratory pathogens at a teaching hospital in Kelantan, Malaysia. Leftover sputa (n = 200) from clinical laboratories were collected and undergone DNA template preparation for PCR analysis. Sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) of the PCR assay were determined in comparison with the gold standard sputum culture. Overall, the accuracy performance of this assay was 94.67% (95% CI: 90.87% to 97.21%) with sensitivity, specificity, PPV and NPV of 100%, 91.67%, 87.1% and 100%, respectively. Based on the organisms detected from sputa, K. pneumoniae ranked as the top isolate (n = 48), followed by P. aeruginosa (n = 13) and H. influenzae (n = 10). Surveillance among the patients showed that the associations of bacterial positive with gender and means of acquisition were found significant (p values = 0.049 and 0.001, respectively). Besides the promising performance of this ready-to-use molecular-based assay for the rapid detection of selected bacteria pathogens, this study also highlighted significant spread of K. pneumoniae RTIs in the community.
    Matched MeSH terms: Bacteria/genetics
  13. Chénard C, Wijaya W, Vaulot D, Lopes Dos Santos A, Martin P, Kaur A, et al.
    Sci Rep, 2019 Nov 08;9(1):16390.
    PMID: 31704973 DOI: 10.1038/s41598-019-52648-x
    Singapore, an equatorial island in South East Asia, is influenced by a bi-annual reversal of wind directions which defines two monsoon seasons. We characterized the dynamics of the microbial communities of Singapore coastal waters by collecting monthly samples between February 2017 and July 2018 at four sites located across two straits with different trophic status, and sequencing the V6-V8 region of the small sub-unit ribosomal RNA gene (rRNA gene) of Bacteria, Archaea, and Eukaryota. Johor Strait, which is subjected to wider environmental fluctuations from anthropogenic activities, presented a higher abundance of copiotrophic microbes, including Cellvibrionales and Rhodobacterales. The mesotrophic Singapore Strait, where the seasonal variability is caused by changes in the oceanographic conditions, harboured a higher proportion of typically marine microbe groups such as Synechococcales, Nitrosupumilales, SAR11, SAR86, Marine Group II Archaea and Radiolaria. In addition, we observed seasonal variability of the microbial communities in the Singapore Strait, which was possibly influenced by the alternating monsoon regime, while no seasonal pattern was detected in the Johor Strait.
    Matched MeSH terms: Bacteria/genetics
  14. Jamil FN, Hashim AM, Yusof MT, Saidi NB
    Sci Rep, 2022 Jan 19;12(1):999.
    PMID: 35046475 DOI: 10.1038/s41598-022-04886-9
    Fusarium wilt (FW) caused by Fusarium oxysporum f. sp. cubense Tropical Race 4 (TR4) is a soil-borne disease that infects bananas, causing severe economic losses worldwide. To reveal the relationship between bacterial populations and FW, the bacterial communities of healthy and TR4-infected rhizosphere and bulk soils were compared using 16S rRNA gene sequencing. Soil physicochemical properties associated with FW were also analyzed. We found the community structure of bacteria in the healthy and TR4 infected rhizosphere was significantly different compared to bulk soil within the same farm. The rhizosphere soils of infected plants exhibited higher richness and diversity than healthy plant with significant abundance of Proteobacteria. In the healthy rhizosphere soil, beneficial bacteria such as Burkholderia and Streptomyces spp. were more abundant. Compared to the infected rhizosphere soil, healthy rhizosphere soil was associated with RNA metabolism and transporters pathways and a high level of magnesium and cation exchange capacity. Overall, we reported changes in the key taxa of rhizospheric bacterial communities and soil physicochemical properties of healthy and FW-infected plants, suggesting their potential role as indicators for plant health.
    Matched MeSH terms: Bacteria/genetics
  15. Kasan NA, Ghazali NA, Ikhwanuddin M, Ibrahim Z
    Pak J Biol Sci, 2017;20(6):306-313.
    PMID: 29023055 DOI: 10.3923/pjbs.2017.306.313
    BACKGROUND AND OBJECTIVE: A new green technology to reduce environmental damages while optimizing production of Pacific Whiteleg shrimp, Litopenaeus vannamei was developed known as "Biofloc technology". Microbial communities in biofloc aggregates are responsible in eliminating water exchange and producing microbial proteins that can be used as supplemented feed for L. vannamei. This study aimed to isolate and identify potential bioflocculant-producing bacteria to be used as inoculum for rapid formation of biofloc.

    MATERIALS AND METHODS: For the purpose of this study, bacterial communities during 0, 30 and 70 days of culture (DOC) of L. vannamei grow-out ponds were isolated and identified through phenotypic and 16S rDNA sequences analysis. Phylogenetic relationships between isolated bacteria were then evaluated through phylogenetic tree analysis. One-way analysis of variance (ANOVA) was used to compare the differences of microbial communities at each DOC.

    RESULTS: Out of 125 bacterial isolates, nine species of bacteria from biofloc were identified successfully. Those bacteria species were identified as Halomonas venusta, H. aquamarina, Vibrio parahaemolyticus, Bacillus infantis, B. cereus, B. safensis, Providencia vermicola, Nitratireductor aquimarinus and Pseudoalteromonas sp., respectively. Through phylogenetic analysis, these isolates belong to Proteobacteria and Firmicutes families under the genera of Halomonas sp., Vibrio sp., Bacillus sp., Providencia sp., Nitratireductor sp. and Pseudoalteromonas sp.

    CONCLUSION: In this study, bioflocculant-producing bacteria were successfully identified which are perfect candidates in forming biofloc to reduce water pollution towards a sustainable aquaculture industry. Presence of Halomonas sp. and Bacillus sp. in all stages of biofloc formation reinforces the need for new development regarding the ability of these species to be used as inoculum in forming biofloc rapidly.

    Matched MeSH terms: Bacteria/genetics
  16. Shashkova T, Popenko A, Tyakht A, Peskov K, Kosinsky Y, Bogolubsky L, et al.
    PLoS One, 2016;11(2):e0148386.
    PMID: 26894828 DOI: 10.1371/journal.pone.0148386
    BACKGROUND: Intestinal microbiota plays an important role in the human health. It is involved in the digestion and protects the host against external pathogens. Examination of the intestinal microbiome interactions is required for understanding of the community influence on host health. Studies of the microbiome can provide insight on methods of improving health, including specific clinical procedures for individual microbial community composition modification and microbiota correction by colonizing with new bacterial species or dietary changes.

    METHODOLOGY/PRINCIPAL FINDINGS: In this work we report an agent-based model of interactions between two bacterial species and between species and the gut. The model is based on reactions describing bacterial fermentation of polysaccharides to acetate and propionate and fermentation of acetate to butyrate. Antibiotic treatment was chosen as disturbance factor and used to investigate stability of the system. System recovery after antibiotic treatment was analyzed as dependence on quantity of feedback interactions inside the community, therapy duration and amount of antibiotics. Bacterial species are known to mutate and acquire resistance to the antibiotics. The ability to mutate was considered to be a stochastic process, under this suggestion ratio of sensitive to resistant bacteria was calculated during antibiotic therapy and recovery.

    CONCLUSION/SIGNIFICANCE: The model confirms a hypothesis of feedbacks mechanisms necessity for providing functionality and stability of the system after disturbance. High fraction of bacterial community was shown to mutate during antibiotic treatment, though sensitive strains could become dominating after recovery. The recovery of sensitive strains is explained by fitness cost of the resistance. The model demonstrates not only quantitative dynamics of bacterial species, but also gives an ability to observe the emergent spatial structure and its alteration, depending on various feedback mechanisms. Visual version of the model shows that spatial structure is a key factor, which helps bacteria to survive and to adapt to changed environmental conditions.

    Matched MeSH terms: Bacteria/genetics
  17. Liang Z, Shi J, Wang C, Li J, Liang D, Yong EL, et al.
    Appl Environ Microbiol, 2020 11 10;86(23).
    PMID: 32948522 DOI: 10.1128/AEM.01920-20
    Pretreatment of waste-activated sludge (WAS) is an effective way to destabilize sludge floc structure and release organic matter for improving sludge digestion efficiency. Nonetheless, information on the impact of WAS pretreatment on digestion sludge microbiomes, as well as mechanistic insights into how sludge pretreatment improves digestion performance, remains elusive. In this study, a genome-centric metagenomic approach was employed to investigate the digestion sludge microbiome in four sludge digesters with different types of feeding sludge: WAS pretreated with 0.25 mol/liter alkaline/acid (APAD), WAS pretreated with 0.8 mol/liter alkaline/acid (HS-APAD), thermally pretreated WAS (thermal-AD), and fresh WAS (control-AD). We retrieved 254 metagenome-assembled genomes (MAGs) to identify the key functional populations involved in the methanogenic digestion process. These MAGs span 28 phyla, including 69 yet-to-be-cultivated lineages, and 30 novel lineages were characterized with metabolic potential associated with hydrolysis and fermentation. Interestingly, functional populations involving carbohydrate digestion were enriched in APAD and HS-APAD, while lineages related to protein and lipid fermentation were enriched in thermal-AD, corroborating the idea that different substrates are released from alkaline/acid and thermal pretreatments. Among the major functional populations (i.e., fermenters, syntrophic acetogens, and methanogens), significant correlations between genome sizes and abundance of the fermenters were observed, particularly in APAD and HS-APAD, which had improved digestion performance.IMPORTANCE Wastewater treatment generates large amounts of waste-activated sludge (WAS), which consists mainly of recalcitrant microbial cells and particulate organic matter. Though WAS pretreatment is an effective way to release sludge organic matter for subsequent digestion, detailed information on the impact of the sludge pretreatment on the digestion sludge microbiome remains scarce. Our study provides unprecedented genome-centric metagenomic insights into how WAS pretreatments change the digestion sludge microbiomes, as well as their metabolic networks. Moreover, digestion sludge microbiomes could be a unique source for exploring microbial dark matter. These results may inform future optimization of methanogenic sludge digestion and resource recovery.
    Matched MeSH terms: Bacteria/genetics*
  18. Hossain MS, Rahman NN, Balakrishnan V, Puvanesuaran VR, Sarker MZ, Kadir MO
    Int J Environ Res Public Health, 2013 Jan 31;10(2):556-67.
    PMID: 23435587 DOI: 10.3390/ijerph10020556
    The present study was undertaken to determine the bacterial agents present in various clinical solid wastes, general waste and clinical sharp waste. The waste was collected from different wards/units in a healthcare facility in Penang Island, Malaysia. The presence of bacterial agents in clinical and general waste was determined using the conventional bacteria identification methods. Several pathogenic bacteria including opportunistic bacterial agent such as Pseudomonas aeruginosa, Salmonella spp., Klebsiella pneumoniae, Serratia marcescens, Acinetobacter baumannii, Staphylococcus aureus, Staphylococcus epidermidis, Enterococcus faecalis, Streptococcus pyogenes were detected in clinical solid wastes. The presence of specific pathogenic bacterial strains in clinical sharp waste was determined using 16s rDNA analysis. In this study, several nosocomial pathogenic bacteria strains of Escherichia coli, Klebsiella pneumoniae, Proteus mirabilis, Lysinibacillus sphaericus, Serratia marcescens, and Staphylococcus aureus were detected in clinical sharp waste. The present study suggests that waste generated from healthcare facilities should be sterilized at the point of generation in order to eliminate nosocomial infections from the general waste or either of the clinical wastes.
    Matched MeSH terms: Bacteria/genetics
  19. Md Lasim A, Mohd Ngesom AM, Nathan S, Abdul Razak F, Abdul Halim M, Mohd-Saleh W, et al.
    PeerJ, 2024;12:e17096.
    PMID: 38699181 DOI: 10.7717/peerj.17096
    BACKGROUND: Leptospirosis is a water-related zoonotic disease. The disease is primarily transmitted from animals to humans through pathogenic Leptospira bacteria in contaminated water and soil. Rivers have a critical role in Leptospira transmissions, while co-infection potentials with other waterborne bacteria might increase the severity and death risk of the disease.

    METHODS: The water samples evaluated in this study were collected from four recreational forest rivers, Sungai Congkak, Sungai Lopo, Hulu Perdik, and Gunung Nuang. The samples were subjected to next-generation sequencing (NGS) for the 16S rRNA and in-depth metagenomic analysis of the bacterial communities.

    RESULTS: The water samples recorded various bacterial diversity. The samples from the Hulu Perdik and Sungai Lopo downstream sampling sites had a more significant diversity, followed by Sungai Congkak. Conversely, the upstream samples from Gunung Nuang exhibited the lowest bacterial diversity. Proteobacteria, Firmicutes, and Acidobacteria were the dominant phyla detected in downstream areas. Potential pathogenic bacteria belonging to the genera Burkholderiales and Serratia were also identified, raising concerns about co-infection possibilities. Nevertheless, Leptospira pathogenic bacteria were absent from all sites, which is attributable to its limited persistence. The bacteria might also be washed to other locations, contributing to the reduced environmental bacterial load.

    CONCLUSION: The present study established the presence of pathogenic bacteria in the river ecosystems assessed. The findings offer valuable insights for designing strategies for preventing pathogenic bacteria environmental contamination and managing leptospirosis co-infections with other human diseases. Furthermore, closely monitoring water sample compositions with diverse approaches, including sentinel programs, wastewater-based epidemiology, and clinical surveillance, enables disease transmission and outbreak early detections. The data also provides valuable information for suitable treatments and long-term strategies for combating infectious diseases.

    Matched MeSH terms: Bacteria/genetics
  20. Moset V, Poulsen M, Wahid R, Højberg O, Møller HB
    Microb Biotechnol, 2015 Sep;8(5):787-800.
    PMID: 25737010 DOI: 10.1111/1751-7915.12271
    In this study, productivity and physicochemical and microbiological (454 sequencing) parameters, as well as environmental criteria, were investigated in anaerobic reactors to contribute to the ongoing debate about the optimal temperature range for treating animal manure, and expand the general knowledge on the relation between microbiological and physicochemical process indicators. For this purpose, two reactor sizes were used (10 m(3) and 16 l), in which two temperature conditions (35°C and 50°C) were tested. In addition, the effect of the hydraulic retention time was evaluated (16 versus 20 days). Thermophilic anaerobic digestion showed higher organic matter degradation (especially fiber), higher pH and higher methane (CH₄) yield, as well as better percentage of ultimate CH₄ yield retrieved and lower residual CH₄ emission, when compared with mesophilic conditions. In addition, lower microbial diversity was found in the thermophilic reactors, especially for Bacteria, where a clear intensification towards Clostridia class members was evident. Independent of temperature, some similarities were found in digestates when comparing with animal manure, including low volatile fatty acids concentrations and a high fraction of Euryarchaeota in the total microbial community, in which members of Methanosarcinales dominated for both temperature conditions; these indicators could be considered a sign of process stability.
    Matched MeSH terms: Bacteria/genetics
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links