MATERIALS AND METHODS: For the purpose of this study, bacterial communities during 0, 30 and 70 days of culture (DOC) of L. vannamei grow-out ponds were isolated and identified through phenotypic and 16S rDNA sequences analysis. Phylogenetic relationships between isolated bacteria were then evaluated through phylogenetic tree analysis. One-way analysis of variance (ANOVA) was used to compare the differences of microbial communities at each DOC.
RESULTS: Out of 125 bacterial isolates, nine species of bacteria from biofloc were identified successfully. Those bacteria species were identified as Halomonas venusta, H. aquamarina, Vibrio parahaemolyticus, Bacillus infantis, B. cereus, B. safensis, Providencia vermicola, Nitratireductor aquimarinus and Pseudoalteromonas sp., respectively. Through phylogenetic analysis, these isolates belong to Proteobacteria and Firmicutes families under the genera of Halomonas sp., Vibrio sp., Bacillus sp., Providencia sp., Nitratireductor sp. and Pseudoalteromonas sp.
CONCLUSION: In this study, bioflocculant-producing bacteria were successfully identified which are perfect candidates in forming biofloc to reduce water pollution towards a sustainable aquaculture industry. Presence of Halomonas sp. and Bacillus sp. in all stages of biofloc formation reinforces the need for new development regarding the ability of these species to be used as inoculum in forming biofloc rapidly.
METHODOLOGY/PRINCIPAL FINDINGS: In this work we report an agent-based model of interactions between two bacterial species and between species and the gut. The model is based on reactions describing bacterial fermentation of polysaccharides to acetate and propionate and fermentation of acetate to butyrate. Antibiotic treatment was chosen as disturbance factor and used to investigate stability of the system. System recovery after antibiotic treatment was analyzed as dependence on quantity of feedback interactions inside the community, therapy duration and amount of antibiotics. Bacterial species are known to mutate and acquire resistance to the antibiotics. The ability to mutate was considered to be a stochastic process, under this suggestion ratio of sensitive to resistant bacteria was calculated during antibiotic therapy and recovery.
CONCLUSION/SIGNIFICANCE: The model confirms a hypothesis of feedbacks mechanisms necessity for providing functionality and stability of the system after disturbance. High fraction of bacterial community was shown to mutate during antibiotic treatment, though sensitive strains could become dominating after recovery. The recovery of sensitive strains is explained by fitness cost of the resistance. The model demonstrates not only quantitative dynamics of bacterial species, but also gives an ability to observe the emergent spatial structure and its alteration, depending on various feedback mechanisms. Visual version of the model shows that spatial structure is a key factor, which helps bacteria to survive and to adapt to changed environmental conditions.
METHODS: The water samples evaluated in this study were collected from four recreational forest rivers, Sungai Congkak, Sungai Lopo, Hulu Perdik, and Gunung Nuang. The samples were subjected to next-generation sequencing (NGS) for the 16S rRNA and in-depth metagenomic analysis of the bacterial communities.
RESULTS: The water samples recorded various bacterial diversity. The samples from the Hulu Perdik and Sungai Lopo downstream sampling sites had a more significant diversity, followed by Sungai Congkak. Conversely, the upstream samples from Gunung Nuang exhibited the lowest bacterial diversity. Proteobacteria, Firmicutes, and Acidobacteria were the dominant phyla detected in downstream areas. Potential pathogenic bacteria belonging to the genera Burkholderiales and Serratia were also identified, raising concerns about co-infection possibilities. Nevertheless, Leptospira pathogenic bacteria were absent from all sites, which is attributable to its limited persistence. The bacteria might also be washed to other locations, contributing to the reduced environmental bacterial load.
CONCLUSION: The present study established the presence of pathogenic bacteria in the river ecosystems assessed. The findings offer valuable insights for designing strategies for preventing pathogenic bacteria environmental contamination and managing leptospirosis co-infections with other human diseases. Furthermore, closely monitoring water sample compositions with diverse approaches, including sentinel programs, wastewater-based epidemiology, and clinical surveillance, enables disease transmission and outbreak early detections. The data also provides valuable information for suitable treatments and long-term strategies for combating infectious diseases.