Displaying publications 61 - 80 of 394 in total

Abstract:
Sort:
  1. Jusoh WFA, Ballantyne L, Chan SH, Wong TW, Yeo D, Nada B, et al.
    Animals (Basel), 2021 Mar 04;11(3).
    PMID: 33806564 DOI: 10.3390/ani11030687
    The firefly genus Luciola sensu McDermott contains 282 species that are distributed across major parts of Asia, Europe, Africa, Australia, and the Pacific islands. Due to phenotypic similarities, species identification using external morphological characters can be unreliable for this group. Consequently, decades of piecemeal taxonomic treatments have resulted in numerous erroneous and contentious classifications. Furthermore, our understanding of the group's evolutionary history is limited due to the lack of a robust phylogenetic framework that has also impeded efforts to stabilize its taxonomy. Here, we constructed molecular phylogenies of Luciola and its allies based on combined mitogenomes and Cytochrome c oxidase subunit 1 (COX1) sequences including a newly sequenced mitogenome of an unidentified taxon from Singapore. Our results showed that this taxon represents a distinct and hitherto undescribed evolutionary lineage that forms a clade with L. filiformis from Japan and L. curtithorax from China. Additionally, the Singaporean lineage can be differentiated from other congeners through several external and internal diagnostic morphological characters, and is thus described herein as a new species. Our phylogeny also strongly supported the paraphyly of Luciola with regard to L. cruciata and L. owadai, which were inferred to be more closely related to the genus Aquatica as opposed to other members of Luciola sensu stricto. The genus Hotaria was inferred as a derived clade within Luciola (sister to L. italica), supporting its status as a subgenus of Luciola instead of a distinct genus. This is the first time since 1909 that a new species of luminous firefly has been discovered in Singapore, highlighting the need for continued biodiversity research, even in small, well-studied and highly developed countries, such as Singapore.
    Matched MeSH terms: Biodiversity
  2. Cely-Gómez MA, Castillo-Figueroa D, Pérez-Torres J
    Trop Life Sci Res, 2021 Mar;32(1):47-61.
    PMID: 33936550 DOI: 10.21315/tlsr2021.32.1.3
    The surge of oil palm production in the Neotropics has become a major concern about the potential impacts on biodiversity. In the Colombian Orinoquia, which has shown a massive landscape transformation due to the growth of oil palm plantations, the effects of oil palm agriculture on bats in this region have not been studied up to date. To understand the impact of habitat conversion on bat diversity, we characterised bat assemblages in secondary forest and palm plantations in the Colombian Llanos foothills (Meta, Colombia). We captured 393 individuals (forest = 81, plantation = 312) of 18 species and 3 families. The forest cover presented three exclusive species while the plantation had five. Species diversity (q1) and evenness (J') were higher in the forest compared to the plantation. These differences derived from the increase in abundances of generalist species (Artibeus sp., Carollia spp.) in the plantation. Despite the habitat simplification caused by oil palm plantations, this monoculture provides a cover that is used by some bats, decreasing their risk of predation and allowing movement between patches of forest habitat as steppingstones. Maintaining forest cover in agricultural landscapes favours diversity by generating a "spillover effect" of the forest towards plantations, which in the case of some bats contributes to the reduction of species isolation and the maintenance of ecosystem services provided by them. It is important to improve management practices of oil palm plantations to minimise negative impacts on biodiversity, considering the expansion of this productive system and the scarcity of protected areas in this region.
    Matched MeSH terms: Biodiversity
  3. Salleh WMNHW, Abed SA, Taher M, Kassim H, Tawang A
    J Pharm Pharmacol, 2021 Mar 01;73(1):1-21.
    PMID: 33791809 DOI: 10.1093/jpp/rgaa034
    OBJECTIVES: The genus Ferulago belonging to the family Apiaceae is a flora widely distributed in Central Asia and the Mediterranean and used in folk medicine. It is administered as a sedative, tonic, digestive, aphrodisiac, also as a treatment for intestinal worms and haemorrhoids. Herein, we reported a review on phytochemistry and its biological activities reported from 1990 up to early 2020. All the information and reported studies concerning Ferulago plants were summarized from the library and digital databases (e.g. Scopus, Medline, Scielo, ScienceDirect, SciFinder and Google Scholar).

    KEY FINDINGS: The phytochemical investigations of Ferulago species revealed the presence of coumarins as the main bioactive compounds, including daucane derivatives, sesquiterpenes aryl esters, phenol derivatives, flavonoids and essential oils. Moreover, the therapeutic potentials of the pure compounds isolated from the genus Ferulago possess promising properties namely anticholinesterase, antimicrobial, anticoagulant, antileishmanial, antioxidant, antibacterial and antiproliferative.

    SUMMARY: Today, significant advances in phytochemical and biological activity studies of different Ferulago species have been revealed. The traditional uses and reported biological results could be correlated via the chemical characterization of these plants. All these data will support the biologists in the elucidation of the biological mechanisms of these plants.

    Matched MeSH terms: Biodiversity
  4. Ng CK, Payne J, Oram F
    Ambio, 2021 Mar;50(3):601-614.
    PMID: 32915445 DOI: 10.1007/s13280-020-01384-y
    We present herein our perspective of a novel Small Habitats Matrix (SHM) concept showing how small habitats on private lands are untapped but can be valuable for mitigating ecological degradation. Grounded by the realities in Sabah, Malaysian Borneo, we model a discontinuous "stepping stones" linkage that includes both terrestrial and aquatic habitats to illustrate exactly how the SHM can be deployed. Taken together, the SHM is expected to optimize the meta-population vitality in monoculture landscapes for aerial, arboreal, terrestrial and aquatic wildlife communities. We also provide the tangible cost estimates and discuss how such a concept is both economically affordable and plausible to complement global conservation initiatives. By proposing a practical approach to conservation in the rapidly developing tropics, we present a perspective from "ground zero" that reaches out to fellow scientists, funders, activists and pro-environmental land owners who often ask, "What more can we do?"
    Matched MeSH terms: Biodiversity
  5. Edwards FA, Edwards DP, Hamer KC, Fayle TM
    Oecologia, 2021 Mar;195(3):705-717.
    PMID: 33559003 DOI: 10.1007/s00442-020-04829-z
    Tropical rainforest disturbance and conversion are critical drivers of biodiversity loss. A key knowledge gap is understanding the impacts of habitat modification on mechanisms of community assembly, which are predicted to respond differently between taxa and across spatial scales. We use a null model approach to detect trait assembly of species at local- and landscape-scales, and then subdivide communities with different habitat associations and foraging guilds to investigate whether the detection of assembly mechanisms varies between groups. We focus on two indicator taxa, dung beetles and birds, across a disturbance gradient of primary rainforest, selectively logged rainforest, and oil palm plantations in Borneo, Southeast Asia. Random community assembly was predominant for dung beetles across habitats, whereas trait convergence, indicative of environmental filtering, occurred across the disturbance gradient for birds. Assembly patterns at the two spatial scales were similar. Subdividing for habitat association and foraging guild revealed patterns hidden when focusing on the overall community. Dung beetle forest specialists and habitat generalists showed opposing assembly mechanisms in primary forest, community assembly of habitat generalists for both taxa differed with disturbance intensity, and insectivorous birds strongly influenced overall community assembly relative to other guilds. Our study reveals the sensitivity of community assembly mechanisms to anthropogenic disturbance via a shift in the relative contribution of stochastic and deterministic processes. This highlights the need for greater understanding of how habitat modification alters species interactions and the importance of incorporating species' traits within assessments.
    Matched MeSH terms: Biodiversity
  6. Thompson CW, Phelps KL, Allard MW, Cook JA, Dunnum JL, Ferguson AW, et al.
    mBio, 2021 Jan 12;12(1).
    PMID: 33436435 DOI: 10.1128/mBio.02698-20
    Despite being nearly 10 months into the COVID-19 (coronavirus disease 2019) pandemic, the definitive animal host for SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2), the causal agent of COVID-19, remains unknown. Unfortunately, similar problems exist for other betacoronaviruses, and no vouchered specimens exist to corroborate host species identification for most of these pathogens. This most basic information is critical to the full understanding and mitigation of emerging zoonotic diseases. To overcome this hurdle, we recommend that host-pathogen researchers adopt vouchering practices and collaborate with natural history collections to permanently archive microbiological samples and host specimens. Vouchered specimens and associated samples provide both repeatability and extension to host-pathogen studies, and using them mobilizes a large workforce (i.e., biodiversity scientists) to assist in pandemic preparedness. We review several well-known examples that successfully integrate host-pathogen research with natural history collections (e.g., yellow fever, hantaviruses, helminths). However, vouchering remains an underutilized practice in such studies. Using an online survey, we assessed vouchering practices used by microbiologists (e.g., bacteriologists, parasitologists, virologists) in host-pathogen research. A much greater number of respondents permanently archive microbiological samples than archive host specimens, and less than half of respondents voucher host specimens from which microbiological samples were lethally collected. To foster collaborations between microbiologists and natural history collections, we provide recommendations for integrating vouchering techniques and archiving of microbiological samples into host-pathogen studies. This integrative approach exemplifies the premise underlying One Health initiatives, providing critical infrastructure for addressing related issues ranging from public health to global climate change and the biodiversity crisis.
    Matched MeSH terms: Biodiversity
  7. Ramos-Madrigal J, Sinding MS, Carøe C, Mak SST, Niemann J, Samaniego Castruita JA, et al.
    Curr Biol, 2021 01 11;31(1):198-206.e8.
    PMID: 33125870 DOI: 10.1016/j.cub.2020.10.002
    Extant Canis lupus genetic diversity can be grouped into three phylogenetically distinct clades: Eurasian and American wolves and domestic dogs.1 Genetic studies have suggested these groups trace their origins to a wolf population that expanded during the last glacial maximum (LGM)1-3 and replaced local wolf populations.4 Moreover, ancient genomes from the Yana basin and the Taimyr peninsula provided evidence of at least one extinct wolf lineage that dwelled in Siberia during the Pleistocene.35 Previous studies have suggested that Pleistocene Siberian canids can be classified into two groups based on cranial morphology. Wolves in the first group are most similar to present-day populations, although those in the second group possess intermediate features between dogs and wolves.67 However, whether this morphological classification represents distinct genetic groups remains unknown. To investigate this question and the relationships between Pleistocene canids, present-day wolves, and dogs, we resequenced the genomes of four Pleistocene canids from Northeast Siberia dated between >50 and 14 ka old, including samples from the two morphological categories. We found these specimens cluster with the two previously sequenced Pleistocene wolves, which are genetically more similar to Eurasian wolves. Our results show that, though the four specimens represent extinct wolf lineages, they do not form a monophyletic group. Instead, each Pleistocene Siberian canid branched off the lineage that gave rise to present-day wolves and dogs. Finally, our results suggest the two previously described morphological groups could represent independent lineages similarly related to present-day wolves and dogs.
    Matched MeSH terms: Biodiversity
  8. Wilkinson CL, Chua KWJ, Fiala R, Liew JH, Kemp V, Hadi Fikri A, et al.
    Ecology, 2021 01;102(1):e03199.
    PMID: 32969053 DOI: 10.1002/ecy.3199
    In Southeast Asia, biodiversity-rich forests are being extensively logged and converted to oil palm monocultures. Although the impacts of these changes on biodiversity are largely well documented, we know addition to samples we collected in 201 little about how these large-scale impacts affect freshwater trophic ecology. We used stable isotope analyses (SIA) to determine the impacts of land-use changes on the relative contribution of allochthonous and autochthonous basal resources in 19 stream food webs. We also applied compound-specific SIA and bulk-SIA to determine the trophic position of fish apex predators and meso-predators (invertivores and omnivores). There was no difference in the contribution of autochthonous resources in either consumer group (70-82%) among streams with different land-use type. There was no change in trophic position for meso-predators, but trophic position decreased significantly for apex predators in oil palm plantation streams compared to forest streams. This change in maximum food chain length was due to turnover in identity of the apex predator among land-use types. Disruption of aquatic trophic ecology, through reduction in food chain length and shift in basal resources, may cause significant changes in biodiversity as well as ecosystem functions and services. Understanding this change can help develop more focused priorities for mediating the negative impacts of human activities on freshwater ecosystems.
    Matched MeSH terms: Biodiversity
  9. Chua CY, Wong CMVL
    Can J Microbiol, 2021 Jan;67(1):64-74.
    PMID: 33084348 DOI: 10.1139/cjm-2019-0461
    The effects of global warming are increasingly evident, where global surface temperatures and atmospheric concentration of carbon dioxide have increased in past decades. Given the role of terrestrial bacteria in various ecological functions, it is important to understand how terrestrial bacteria would respond towards higher environmental temperatures. This study aims to determine soil bacterial diversity in the tropics and their response towards in situ warming using an open-top chamber (OTC). OTCs were set up in areas exposed to sunlight throughout the year in the tropical region in Malaysia. Soil samples were collected every 3 months to monitor changes in bacterial diversity using V3-V4 16S rDNA amplicon sequencing inside the OTCs (treatment plots) and outside the OTCs (control plots). After 12 months of simulated warming, an average increase of 0.81 to 1.15 °C was recorded in treatment plots. Significant changes in the relative abundance of bacterial phyla such as Bacteroidetes and Chloroflexi were reported. Increases in the relative abundance of Actinobacteria were also observed in treatment plots after 12 months. Substantial changes were observed at the genus level, where most bacterial genera decreased in relative abundance after 12 months. This study demonstrated that warming can alter soil bacteria in tropical soils from Kota Kinabalu.
    Matched MeSH terms: Biodiversity
  10. Forcina G, Camacho-Sanchez M, Tuh FYY, Moreno S, Leonard JA
    Heliyon, 2021 Jan;7(1):e05583.
    PMID: 33437884 DOI: 10.1016/j.heliyon.2020.e05583
    Background and aims: Wildlife conservation has focused primarily on species for the last decades. Recently, popular perception and laws have begun to recognize the central importance of genetic diversity in the conservation of biodiversity. How to incorporate genetic diversity in ongoing monitoring and management of wildlife is still an open question.

    Methods: We tested a panel of multiplexed, high-throughput sequenced introns in the small mammal communities of two UNESCO World Heritage Sites on different continents to assess their viability for large-scale monitoring of genetic variability in a spectrum of diverse species. To enhance applicability across other systems, the bioinformatic pipeline for primer design was outlined.

    Results: The number of loci amplified and amplification evenness decreased as phylogenetic distance increased from the reference taxa, yet several loci were still variable across multiple mammal orders.

    Conclusions: Genetic variability found is informative for population genetic analyses and for addressing phylogeographic and phylogenetic questions, illustrated by small mammal examples here.

    Matched MeSH terms: Biodiversity
  11. Rasool A, Imran Mir M, Zulfajri M, Hanafiah MM, Azeem Unnisa S, Mahboob M
    Microb Pathog, 2021 Jan;150:104734.
    PMID: 33429050 DOI: 10.1016/j.micpath.2021.104734
    Saffron (Crocus sativus L.) is an important plant in medicine. The Kashmir Valley (J&K, India) is one of the world's largest and finest saffron producing regions. However, over the past decade, there has been a strong declining trend in saffron production in this area. Plant Growth Promoting Rhizobacteria (PGPR) are free living soil bacteria that have ability to colonize the surfaces of the roots and ability to boost plant growth and development either directly or indirectly. Using the efficient PGPR as a bio-inoculant is another sustainable agricultural practice to improve soil health, grain yield quality, and biodiversity conservation. In the present study, a total of 13 bacterial strains were isolated from rhizospheric soil of saffron during the flowering stage of the tubers and were evaluated for various plant growth promoting characteristics under in vitro conditions such as the solubilization of phosphate, production of indole acetic acid, siderophore, hydrocyanic acid, and ammonia production and antagonism by dual culture test against Sclerotium rolfsii and Fusarium oxysporum. All the isolates were further tested for the production of hydrolytic enzymes such as protease, lipase, amylase, cellulase, and chitinase. The maximum proportions of bacterial isolates were gram-negative bacilli. About 77% of the bacterial isolates showed IAA production, 46% exhibited phosphate solubilization, 46% siderophore, 61% HCN, 100% ammonia production, 69% isolates showed protease activity, 62% lipase, 46% amylase, 85% cellulase, and 39% showed chitinase activity. Three isolates viz., AIS-3, AIS-8 and AIS-10 were found to have the most plant growth properties and effectively control the growth of Sclerotium rolfsii and Fusarium oxysporum. The bacterial isolates were identified as Brevibacterium frigoritolerans (AIS-3), Alcaligenes faecalis subsp. Phenolicus (AIS-8) and Bacillus aryabhattai (AIS-10) respectively by 16S rRNA sequence analysis. Therefore, these isolated rhizobacterial strains could be a promising source of plant growth stimulants to increase cormlets growth and increase saffron production.
    Matched MeSH terms: Biodiversity
  12. Fahim Abbas M, Batool S, Khaliq S, Mubeen S, Azziz-Ud-Din, Ullah N, et al.
    PLoS One, 2021;16(10):e0257951.
    PMID: 34648523 DOI: 10.1371/journal.pone.0257951
    Loquat [Eriobotrya japonica (Thunb.) Lindl.] is an important fruit crop in Pakistan; however, a constant decline in its production is noted due biotic and abiotic stresses, particularly disease infestation. Fungal pathogens are the major disease-causing agents; therefore, their identification is necessary for devising management options. This study explored Taxila, Wah-Cantt, Tret, Chatar, Murree, Kalar-Kahar, Choa-Saidan-Shah and Khan-Pur districts in the Punjab and Khyber Paktoon Khawa (KPK) provinces of Pakistan to explore the diversity of fungal pathogens associated with loquat. The samples were collected from these districts and their microscopic characterizations were accomplished for reliable identification. Alternaria alternata, Curvularia lunata, Lasiodiplodia theobromae, Aspergilus flavis, Botrytis cinerea, Chaetomium globosum, Pestalotiopsis mangiferae and Phomopsis sp. were the fungal pathogens infesting loquat in the study area. The isolates of A. alternata and C. lunata were isolated from leaf spots and fruit rot, while the isolates of L. theobromae were associated with twig dieback. The remaining pathogens were allied with fruit rot. The nucleotide evidence of internal transcribed spacer (ITS) regions (ITS1, 5.8S, and ITS2) were computed from all the pathogens and submitted in the database of National Center for Biotechnology Information (NCBI). For multigene analysis, beta-tubulin (BT) gene and glyceraldehyde 3-phosphate dehydrogenase (GAPDH) regions were explored for A. alternata and C. lunata isolates, respectively. The virulence scales of leaf spots, fruit rot, and twig dieback diseases of loquat were developed for the first time through this study. It is the first comprehensive study with morpho-molecular identification, and newly developed virulence scales of the fungal pathogens associated with loquat, which improves the understanding of these destructive diseases.
    Matched MeSH terms: Biodiversity*
  13. Lau JD
    Conserv Biol, 2020 12;34(6):1589-1591.
    PMID: 32104932 DOI: 10.1111/cobi.13487
    Amid a growing global agenda, biodiversity conservation has embraced gender equity as a pillar of equitable and effective practice. Gender equity has become enshrined in the global environment and development agenda through global commitments, policy and funding. However, for various reasons, conservation biodiversity often takes a simplistic view of gender as synonymous with women or as a dualism between women and men. This narrow view risks promoting inequitable processes and ineffective outcomes. Deeper engagement with feminist theory, and feminist political ecology in particular, could help advance biodiversity conservation's approach to how gender is understood, framed and integrated. Engaging with lessons from feminist political ecology can help advance gender equity in conservation through attention to power dynamics, intersectionality, and subjectivity.
    Matched MeSH terms: Biodiversity
  14. Madrid RS, Sychra O, Benedick S, Edwards DP, Efeykin BD, Fandrem M, et al.
    Int J Parasitol Parasites Wildl, 2020 Dec;13:231-247.
    PMID: 33294362 DOI: 10.1016/j.ijppaw.2020.10.011
    The tropical rainforests of Sundaland are a global biodiversity hotspot increasingly threatened by human activities. While parasitic insects are an important component of the ecosystem, their diversity and parasite-host relations are poorly understood in the tropics. We investigated parasites of passerine birds, the chewing lice of the speciose genus MyrsideaWaterston, 1915 (Phthiraptera: Menoponidae) in a natural rainforest community of Malaysian Borneo. Based on morphology, we registered 10 species of lice from 14 bird species of six different host families. This indicated a high degree of host specificity and that the complexity of the system could be underestimated with the potential for cryptic lineages/species to be present. We tested the species boundaries by combining morphological, genetic and host speciation diversity. The phylogenetic relationships of lice were investigated by analyzing the partial mitochondrial cytochrome oxidase I (COI) and the nuclear elongation factor alpha (EF-1α) genes sequences of the species. This revealed a monophyletic group of Myrsidea lineages from seven hosts of the avian family Pycnonotidae, one host of Timaliidae and one host of Pellorneidae. However, species delimitation methods supported the species boundaries hypothesized by morphological studies and confirmed that four species of Myrsidea are not single host specific. Cophylogenetic analysis by both distance-based test ParaFit and event-based method Jane confirmed overall congruence between the phylogenies of Myrsidea and their hosts. In total we recorded three cospeciation events for 14 host-parasite associations. However only one host-parasite link (M. carmenae and their hosts Terpsiphone affinis and Hypothymis azurea) was significant after the multiple testing correction in ParaFit. Four new species are described: Myrsidea carmenaesp.n. ex Hypothymis azurea and Terpsiphone affinis, Myrsidea franciscaesp.n. ex Rhipidura javanica, Myrsidea ramonisp.n. ex Copsychus malabaricus stricklandii, and Myrsidea victoriaesp.n. ex. Turdinus sepiarius.
    Matched MeSH terms: Biodiversity
  15. Meijaard E, Brooks TM, Carlson KM, Slade EM, Garcia-Ulloa J, Gaveau DLA, et al.
    Nat Plants, 2020 12;6(12):1418-1426.
    PMID: 33299148 DOI: 10.1038/s41477-020-00813-w
    Delivering the Sustainable Development Goals (SDGs) requires balancing demands on land between agriculture (SDG 2) and biodiversity (SDG 15). The production of vegetable oils and, in particular, palm oil, illustrates these competing demands and trade-offs. Palm oil accounts for ~40% of the current global annual demand for vegetable oil as food, animal feed and fuel (210 Mt), but planted oil palm covers less than 5-5.5% of the total global oil crop area (approximately 425 Mha) due to oil palm's relatively high yields. Recent oil palm expansion in forested regions of Borneo, Sumatra and the Malay Peninsula, where >90% of global palm oil is produced, has led to substantial concern around oil palm's role in deforestation. Oil palm expansion's direct contribution to regional tropical deforestation varies widely, ranging from an estimated 3% in West Africa to 50% in Malaysian Borneo. Oil palm is also implicated in peatland draining and burning in Southeast Asia. Documented negative environmental impacts from such expansion include biodiversity declines, greenhouse gas emissions and air pollution. However, oil palm generally produces more oil per area than other oil crops, is often economically viable in sites unsuitable for most other crops and generates considerable wealth for at least some actors. Global demand for vegetable oils is projected to increase by 46% by 2050. Meeting this demand through additional expansion of oil palm versus other vegetable oil crops will lead to substantial differential effects on biodiversity, food security, climate change, land degradation and livelihoods. Our Review highlights that although substantial gaps remain in our understanding of the relationship between the environmental, socio-cultural and economic impacts of oil palm, and the scope, stringency and effectiveness of initiatives to address these, there has been little research into the impacts and trade-offs of other vegetable oil crops. Greater research attention needs to be given to investigating the impacts of palm oil production compared to alternatives for the trade-offs to be assessed at a global scale.
    Matched MeSH terms: Biodiversity*
  16. Costello C, Cao L, Gelcich S, Cisneros-Mata MÁ, Free CM, Froehlich HE, et al.
    Nature, 2020 12;588(7836):95-100.
    PMID: 32814903 DOI: 10.1038/s41586-020-2616-y
    Global food demand is rising, and serious questions remain about whether supply can increase sustainably1. Land-based expansion is possible but may exacerbate climate change and biodiversity loss, and compromise the delivery of other ecosystem services2-6. As food from the sea represents only 17% of the current production of edible meat, we ask how much food we can expect the ocean to sustainably produce by 2050. Here we examine the main food-producing sectors in the ocean-wild fisheries, finfish mariculture and bivalve mariculture-to estimate 'sustainable supply curves' that account for ecological, economic, regulatory and technological constraints. We overlay these supply curves with demand scenarios to estimate future seafood production. We find that under our estimated demand shifts and supply scenarios (which account for policy reform and technology improvements), edible food from the sea could increase by 21-44 million tonnes by 2050, a 36-74% increase compared to current yields. This represents 12-25% of the estimated increase in all meat needed to feed 9.8 billion people by 2050. Increases in all three sectors are likely, but are most pronounced for mariculture. Whether these production potentials are realized sustainably will depend on factors such as policy reforms, technological innovation and the extent of future shifts in demand.
    Matched MeSH terms: Biodiversity
  17. Deere NJ, Guillera-Arroita G, Swinfield T, Milodowski DT, Coomes DA, Bernard H, et al.
    Proc Natl Acad Sci U S A, 2020 10 20;117(42):26254-26262.
    PMID: 32989143 DOI: 10.1073/pnas.2001823117
    Tropical forest ecosystems are facing unprecedented levels of degradation, severely compromising habitat suitability for wildlife. Despite the fundamental role biodiversity plays in forest regeneration, identifying and prioritizing degraded forests for restoration or conservation, based on their wildlife value, remains a significant challenge. Efforts to characterize habitat selection are also weakened by simple classifications of human-modified tropical forests as intact vs. degraded, which ignore the influence that three-dimensional (3D) forest structure may have on species distributions. Here, we develop a framework to identify conservation and restoration opportunities across logged forests in Borneo. We couple high-resolution airborne light detection and ranging (LiDAR) and camera trap data to characterize the response of a tropical mammal community to changes in 3D forest structure across a degradation gradient. Mammals were most responsive to covariates that accounted explicitly for the vertical and horizontal characteristics of the forest and actively selected structurally complex environments comprising tall canopies, increased plant area index throughout the vertical column, and the availability of a greater diversity of niches. We show that mammals are sensitive to structural simplification through disturbance, emphasizing the importance of maintaining and enhancing structurally intact forests. By calculating occurrence thresholds of species in response to forest structural change, we identify areas of degraded forest that would provide maximum benefit for multiple high-conservation value species if restored. The study demonstrates the advantages of using LiDAR to map forest structure, rather than relying on overly simplistic classifications of human-modified tropical forests, for prioritizing regions for restoration.
    Matched MeSH terms: Biodiversity
  18. Saba AO, Ismail A, Zulkifli SZ, Halim MRA, Wahid NAA, Amal MNA
    Sci Rep, 2020 10 14;10(1):17205.
    PMID: 33057156 DOI: 10.1038/s41598-020-74168-9
    The ornamental fish trade has been considered as one of the most important routes of invasive alien fish introduction into native freshwater ecosystems. Therefore, the species composition and invasion risks of fish species from 60 freshwater fish pet stores in Klang Valley, Malaysia were studied. A checklist of taxa belonging to 18 orders, 53 families, and 251 species of alien fishes was documented. Fish Invasiveness Screening Test (FIST) showed that seven (30.43%), eight (34.78%) and eight (34.78%) species were considered to be high, medium and low invasion risks, respectively. After the calibration of the Fish Invasiveness Screening Kit (FISK) v2 using the Receiver Operating Characteristics, a threshold value of 17 for distinguishing between invasive and non-invasive fishes was identified. As a result, nine species (39.13%) were of high invasion risk. In this study, we found that non-native fishes dominated (85.66%) the freshwater ornamental trade in Klang Valley, while FISK is a more robust tool in assessing the risk of invasion, and for the most part, its outcome was commensurate with FIST. This study, for the first time, revealed the number of high-risk ornamental fish species that give an awareness of possible future invasion if unmonitored in Klang Valley, Malaysia.
    Matched MeSH terms: Biodiversity
  19. Messina S, Edwards DP, AbdElgawad H, Beemster GTS, Tomassi S, Benedick S, et al.
    J Anim Ecol, 2020 10;89(10):2222-2234.
    PMID: 32535926 DOI: 10.1111/1365-2656.13280
    Selective logging is the dominant form of human disturbance in tropical forests, driving changes in the abundance of vertebrate and invertebrate populations relative to undisturbed old-growth forests. A key unresolved question is understanding which physiological mechanisms underlie different responses of species and functional groups to selective logging. Regulation of oxidative status is thought to be one major physiological mechanism underlying the capability of species to cope with environmental changes. Using a correlational cross-sectional approach, we compared a number of oxidative status markers among 15 understorey bird species in unlogged and selectively logged forest in Borneo in relation to their feeding guild. We then tested how variation of markers between forest types was associated with that in population abundance. Birds living in logged forests had a higher activity of the antioxidant enzyme superoxide dismutase and a different regulation of the glutathione cycle compared to conspecific birds in unlogged forest. However, neither oxidative damage nor oxidized glutathione differed between forest types. We also found that omnivores and insectivores differed significantly in all markers related to the key cellular antioxidant glutathione irrespective of the forest type. Species with higher levels of certain antioxidant markers in a given type of forest were less abundant in that forest type compared to the other. Our results suggest that there was little long-term effect of logging (last logging rotation occurred ~15 years prior to the study) on the oxidative status of understorey bird species. However, it is unclear if this was owing to plasticity or evolutionary change. Our correlative results also point to a potential negative association between some antioxidants and population abundance irrespective of the forest type.
    Matched MeSH terms: Biodiversity*
  20. Maxwell SL, Cazalis V, Dudley N, Hoffmann M, Rodrigues ASL, Stolton S, et al.
    Nature, 2020 10;586(7828):217-227.
    PMID: 33028996 DOI: 10.1038/s41586-020-2773-z
    Humanity will soon define a new era for nature-one that seeks to transform decades of underwhelming responses to the global biodiversity crisis. Area-based conservation efforts, which include both protected areas and other effective area-based conservation measures, are likely to extend and diversify. However, persistent shortfalls in ecological representation and management effectiveness diminish the potential role of area-based conservation in stemming biodiversity loss. Here we show how the expansion of protected areas by national governments since 2010 has had limited success in increasing the coverage across different elements of biodiversity (ecoregions, 12,056 threatened species, 'Key Biodiversity Areas' and wilderness areas) and ecosystem services (productive fisheries, and carbon services on land and sea). To be more successful after 2020, area-based conservation must contribute more effectively to meeting global biodiversity goals-ranging from preventing extinctions to retaining the most-intact ecosystems-and must better collaborate with the many Indigenous peoples, community groups and private initiatives that are central to the successful conservation of biodiversity. The long-term success of area-based conservation requires parties to the Convention on Biological Diversity to secure adequate financing, plan for climate change and make biodiversity conservation a far stronger part of land, water and sea management policies.
    Matched MeSH terms: Biodiversity
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links