Displaying publications 61 - 80 of 249 in total

Abstract:
Sort:
  1. Sheykhi-Dolagh R, Saeedi H, Farahmand B, Kamyab M, Kamali M, Gholizadeh H, et al.
    Prosthet Orthot Int, 2015 Jun;39(3):190-6.
    PMID: 24604086 DOI: 10.1177/0309364614521652
    BACKGROUND: Flexible flat foot is described as a reduction in the height of the medial longitudinal arch and may occur from abnormal foot pronation. A foot orthosis is thought to modify and control excessive pronation and improve arch height.
    OBJECTIVE: To compare the immediate effect of three types of orthoses on foot mobility and the arch height index in subjects with flexible flat feet.
    STUDY DESIGN: A quasi-experimental study.
    METHOD: The dorsal arch height, midfoot width, foot mobility and arch height index were assessed in 20 participants with flexible flat feet (mean age = 23.2 ± 3 years) for three different foot orthosis conditions: soft, semi-rigid and rigid University of California Biomechanics Laboratory (UCBL).
    RESULTS: Maximum midfoot width at 90% with arch mobility in the coronal plane was shown in the semi-rigid orthosis condition. The semi-rigid orthosis resulted in the highest mean foot mobility in 90% of weight bearing, and the rigid orthosis (UCBL) had the lowest mean foot mobility. The soft orthosis resulted in foot mobility between that of the rigid and the semi-rigid orthosis. UCBL orthosis showed the highest arch height index, and the semi-rigid orthosis showed the lowest mean arch height index.
    CONCLUSION: Due to its rigid structure and long medial-lateral walls, the UCBL orthosis appears to limit foot mobility. Therefore, it is necessary to make an orthosis that facilitates foot mobility in the normal range of the foot arch. Future studies should address the dynamic mobility of the foot with using various types of foot orthoses.
    CLINICAL RELEVANCE: Although there are many studies focussed on flat foot and the use of foot orthoses, the mechanism of action is still unclear. This study explored foot mobility and the influence of foot orthoses and showed that a more rigid foot orthosis should be selected based on foot mobility.
    KEYWORDS: Foot orthosis; arch height index; foot mobility magnitude
    Matched MeSH terms: Biomechanical Phenomena/physiology
  2. Braz GP, Russold MF, Fornusek C, Hamzaid NA, Smith RM, Davis GM
    Med Eng Phys, 2016 11;38(11):1223-1231.
    PMID: 27346492 DOI: 10.1016/j.medengphy.2016.06.007
    This pilot study reports the development of a novel closed-loop (CL) FES-gait control system, which employed a finite-state controller that processed kinematic feedback from four miniaturized motion sensors. This strategy automated the control of knee extension via quadriceps and gluteus stimulation during the stance phase of gait on the supporting leg, and managed the stimulation delivered to the common peroneal nerve (CPN) during swing-phase on the contra-lateral limb. The control system was assessed against a traditional open-loop (OL) system on two sensorimotor 'complete' paraplegic subjects. A biomechanical analysis revealed that the closed-loop control of leg swing was efficient, but without major advantages compared to OL. CL automated the control of knee extension during the stance phase of gait and for this reason was the method of preference by the subjects. For the first time, a feedback control system with a simplified configuration of four miniaturized sensors allowed the addition of instruments to collect the data of multiple physiological and biomechanical variables during FES-evoked gait. In this pilot study of two sensorimotor complete paraplegic individuals, CL ameliorated certain drawbacks of current OL systems - it required less user intervention and accounted for the inter-subject differences in their stimulation requirements.
    Matched MeSH terms: Biomechanical Phenomena
  3. Ibitoye MO, Hamzaid NA, Hasnan N, Abdul Wahab AK, Islam MA, Kean VS, et al.
    Med Eng Phys, 2016 Aug;38(8):767-75.
    PMID: 27289541 DOI: 10.1016/j.medengphy.2016.05.012
    The interaction between muscle contractions and joint loading produces torques necessary for movements during activities of daily living. However, during neuromuscular electrical stimulation (NMES)-evoked contractions in persons with spinal cord injury (SCI), a simple and reliable proxy of torque at the muscle level has been minimally investigated. Thus, the purpose of this study was to investigate the relationships between muscle mechanomyographic (MMG) characteristics and NMES-evoked isometric quadriceps torques in persons with motor complete SCI. Six SCI participants with lesion levels below C4 [(mean (SD) age, 39.2 (7.9) year; stature, 1.71 (0.05) m; and body mass, 69.3 (12.9) kg)] performed randomly ordered NMES-evoked isometric leg muscle contractions at 30°, 60° and 90° knee flexion angles on an isokinetic dynamometer. MMG signals were detected by an accelerometer-based vibromyographic sensor placed over the belly of rectus femoris muscle. The relationship between MMG root mean square (MMG-RMS) and NMES-evoked torque revealed a very high association (R(2)=0.91 at 30°; R(2)=0.98 at 60°; and R(2)=0.97 at 90° knee angles; P<0.001). MMG peak-to-peak (MMG-PTP) and stimulation intensity were less well related (R(2)=0.63 at 30°; R(2)=0.67 at 60°; and R(2)=0.45 at 90° knee angles), although were still significantly associated (P≤0.006). Test-retest interclass correlation coefficients (ICC) for the dependent variables ranged from 0.82 to 0.97 for NMES-evoked torque, between 0.65 and 0.79 for MMG-RMS, and from 0.67 to 0.73 for MMG-PTP. Their standard error of measurements (SEM) ranged between 10.1% and 31.6% (of mean values) for torque, MMG-RMS and MMG-PTP. The MMG peak frequency (MMG-PF) of 30Hz approximated the stimulation frequency, indicating NMES-evoked motor unit firing rate. The results demonstrated knee angle differences in the MMG-RMS versus NMES-isometric torque relationship, but a similar torque related pattern for MMG-PF. These findings suggested that MMG was well associated with torque production, reliably tracking the motor unit recruitment pattern during NMES-evoked muscle contractions. The strong positive relationship between MMG signal and NMES-evoked torque production suggested that the MMG might be deployed as a direct proxy for muscle torque or fatigue measurement during leg exercise and functional movements in the SCI population.
    Matched MeSH terms: Biomechanical Phenomena
  4. Yong CZ, Odolinski R, Zaminpardaz S, Moore M, Rubinov E, Er J, et al.
    Sensors (Basel), 2021 Dec 13;21(24).
    PMID: 34960412 DOI: 10.3390/s21248318
    The recent development of the smartphone Global Navigation Satellite System (GNSS) chipsets, such as Broadcom BCM47755 and Qualcomm Snapdragon 855 embedded, makes instantaneous and cm level real-time kinematic (RTK) positioning possible with Android-based smartphones. In this contribution we investigate the instantaneous single-baseline RTK performance of Samsung Galaxy S20 and Google Pixel 4 (GP4) smartphones with such chipsets, while making use of dual-frequency L1 + L5 Global Positioning System (GPS), E1 + E5a Galileo, L1 + L5 Quasi-Zenith Satellite System (QZSS) and B1 BeiDou Navigation Satellite System (BDS) code and phase observations in Dunedin, New Zealand. The effects of locating the smartphones in an upright and lying down position were evaluated, and we show that the choice of smartphone configuration can affect the positioning performance even in a zero-baseline setup. In particular, we found non-zero mean and linear trends in the double-differenced carrier-phase residuals for one of the smartphone models when lying down, which become absent when in an upright position. This implies that the two assessed smartphones have different antenna gain pattern and antenna sensitivity to interferences. Finally, we demonstrate, for the first time, a near hundred percent (98.7% to 99.9%) instantaneous RTK integer least-squares success rate for one of the smartphone models and cm level positioning precision while using short-baseline experiments with internal and external antennas, respectively.
    Matched MeSH terms: Biomechanical Phenomena
  5. Robinson MA, Sharir R, Rafeeuddin R, Vanrenterghem J, Donnelly CJ
    Sports Biomech, 2023 Jan;22(1):80-90.
    PMID: 33947315 DOI: 10.1080/14763141.2021.1903981
    Multi-planar forces and moments are known to injure the anterior cruciate ligament (ACL). In ACL injury risk studies, however, the uni-planar frontal plane external knee abduction moment is frequently studied in isolation. This study aimed to determine if the frontal plane knee moment (KM-Y) could classify all individuals crossing a risk threshold compared to those classified by a multi-planar non-sagittal knee moment vector (KM-YZ). Recreationally active females completed three sports tasks-drop vertical jumps, single-leg drop vertical jumps and planned sidesteps. Peak knee abduction moments and peak non-sagittal resultant knee moments were obtained for each task, and a risk threshold of the sample mean plus 1.6 standard deviations was used for classification. A sensitivity analysis of the threshold from 1-2 standard deviations was also conducted. KM-Y did not identify all participants who crossed the risk threshold as the non-sagittal moment identified unique individuals. This result was consistent across tasks and threshold sensitivities. Analysing the peak uni-planar knee abduction moment alone is therefore likely overly reductionist, as this study demonstrates that a KM-YZ threshold identifies 'at risk' individuals that a KM-Y threshold does not. Multi-planar moment metrics such as KM-YZ may help facilitate the development of screening protocols across multiple tasks.
    Matched MeSH terms: Biomechanical Phenomena
  6. Katijjahbe MA, Denehy L, Granger CL, Royse A, Royse C, Bates R, et al.
    Trials, 2017 06 23;18(1):290.
    PMID: 28645301 DOI: 10.1186/s13063-017-1974-8
    BACKGROUND: The routine implementation of sternal precautions to prevent sternal complications that restrict the use of the upper limbs is currently worldwide practice following a median sternotomy. However, evidence is limited and drawn primarily from cadaver studies and orthopaedic research. Sternal precautions may delay recovery, prolong hospital discharge and be overly restrictive. Recent research has shown that upper limb exercise reduces post-operative sternal pain and results in minimal micromotion between the sternal edges as measured by ultrasound. The aims of this study are to evaluate the effects of modified sternal precautions on physical function, pain, recovery and health-related quality of life after cardiac surgery.

    METHODS/DESIGN: This study is a phase II, double-blind, randomised controlled trial with concealed allocation, blinding of patients and assessors, and intention-to-treat analysis. Patients (n = 72) will be recruited following cardiac surgery via a median sternotomy. Sample size calculations were based on the minimal important difference (two points) for the primary outcome: Short Physical Performance Battery. Thirty-six participants are required per group to counter dropout (20%). All participants will be randomised to receive either standard or modified sternal precautions. The intervention group will receive guidelines encouraging the safe use of the upper limbs. Secondary outcomes are upper limb function, pain, kinesiophobia and health-related quality of life. Descriptive statistics will be used to summarise data. The primary hypothesis will be examined by repeated-measures analysis of variance to evaluate the changes from baseline to 4 weeks post-operatively in the intervention arm compared with the usual-care arm. In all tests to be conducted, a p value <0.05 (two-tailed) will be considered statistically significant, and confidence intervals will be reported.

    DISCUSSION: The Sternal Management Accelerated Recovery Trial (S.M.A.R.T.) is a two-centre randomised controlled trial powered and designed to investigate whether the effects of modifying sternal precautions to include the safe use of the upper limbs and trunk impact patients' physical function and recovery following cardiac surgery via median sternotomy.

    TRIAL REGISTRATION: Australian and New Zealand Clinical Trials Registry identifier: ACTRN12615000968572 . Registered on 16 September 2015 (prospectively registered).

    Matched MeSH terms: Biomechanical Phenomena
  7. Mixon A, Savage A, Bahar-Moni AS, Adouni M, Faisal T
    Sci Rep, 2021 07 13;11(1):14409.
    PMID: 34257325 DOI: 10.1038/s41598-021-93744-1
    Matrix metalloproteinases (MMPs) play a crucial role in enzymatically digesting cartilage extracellular matrix (ECM) components, resulting in degraded cartilage with altered mechanical loading capacity. Overexpression of MMPs is often caused by trauma, physiologic conditions and by disease. To understand the synergistic impact MMPs have on cartilage biomechanical properties, MMPs from two subfamilies: collagenase (MMP-1) and gelatinase (MMP-9) were investigated in this study. Three different ratios of MMP-1 (c) and MMP-9 (g), c1:g1, c3:g1 and c1:g3 were considered to develop a degradation model. Thirty samples, harvested from bovine femoral condyles, were treated in groups of 10 with one concentration of enzyme mixture. Each sample was tested in a healthy state prior to introducing degradative enzymes to establish a baseline. Samples were subjected to indentation loading up to 20% bulk strain. Both control and treated samples were mechanically and histologically assessed to determine the impact of degradation. Young's modulus and peak load of the tissue under indentation were compared between the control and degraded cartilage explants. Cartilage degraded with the c3:g1 enzyme concentration resulted in maximum 33% reduction in stiffness and peak load compared to the other two concentrations. The abundance of collagenase is more responsible for cartilage degradation and reduced mechanical integrity.
    Matched MeSH terms: Biomechanical Phenomena
  8. Darmawati MY, Ismarul N, Fuad Y, Fazan F
    Med J Malaysia, 2004 May;59 Suppl B:27-8.
    PMID: 15468802
    Linear polymers have been commonly used as dental composite. However the aim of this work is to use hyperbranched polymer in an attempt to produce dental composite. The reason is because the dendritic molecules have shown low viscosity at higher molecular weight compared to the linear counterparts. Therefore, this work attempts to substitute the linear polymer with as much of hyperbranched polymer in the dental composite that would pass the required ISO 4049:1998(E) "Dentistry - Resin-based filling material". Several formulations of dental composites were used, i.e. combinations of linear-linear and linear-hyperbranched polymers for comparison. Following this, physical and mechanical characterisation were conducted based on the ISO standards such as water sorption and water solubility. Other characterisation such as polymerisation shrinkage and Vickers hardness were also evaluated. It was found that different types of resins give different physical and mechanical properties. The maximum achievable hyperbranched polymer, which passes the required ISO standard, that can be incorporated in the linear polymer to form dental composite is 43% wt.
    Matched MeSH terms: Biomechanical Phenomena
  9. Moo EK, Herzog W, Han SK, Abu Osman NA, Pingguan-Murphy B, Federico S
    Biomech Model Mechanobiol, 2012 Sep;11(7):983-93.
    PMID: 22234779 DOI: 10.1007/s10237-011-0367-2
    Experimental findings indicate that in-situ chondrocytes die readily following impact loading, but remain essentially unaffected at low (non-impact) strain rates. This study was aimed at identifying possible causes for cell death in impact loading by quantifying chondrocyte mechanics when cartilage was subjected to a 5% nominal tissue strain at different strain rates. Multi-scale modelling techniques were used to simulate cartilage tissue and the corresponding chondrocytes residing in the tissue. Chondrocytes were modelled by accounting for the cell membrane, pericellular matrix and pericellular capsule. The results suggest that cell deformations, cell fluid pressures and fluid flow velocity through cells are highest at the highest (impact) strain rate, but they do not reach damaging levels. Tangential strain rates of the cell membrane were highest at the highest strain rate and were observed primarily in superficial tissue cells. Since cell death following impact loading occurs primarily in superficial zone cells, we speculate that cell death in impact loading is caused by the high tangential strain rates in the membrane of superficial zone cells causing membrane rupture and loss of cell content and integrity.
    Matched MeSH terms: Biomechanical Phenomena
  10. Yu L, Mei Q, Mohamad NI, Gu Y, Fernandez J
    Comput Biol Med, 2021 05;132:104302.
    PMID: 33677166 DOI: 10.1016/j.compbiomed.2021.104302
    Anterior knee pain is a commonly documented musculoskeletal disorder among badminton players. However, current biomechanical studies of badminton lunges mainly report kinetic profiles in the lower extremity with few investigations of in-vivo loadings. The objective of this study was to evaluate tissue loadings in the patellofemoral joint via musculoskeletal modelling and Finite Element simulation. The collected marker trajectories, ground reaction force and muscle activation data were used for musculoskeletal modelling to compute knee joint angles and quadricep muscle forces. These parameters were then set as boundary conditions and loads for a quasistatic simulation using the Abaqus Explicit solver. Simulations revealed that the left-forward (LF) and backward lunges showed greater contact pressure (14.98-29.61%) and von Mises stress (14.17-32.02%) than the right-forward and backward lunges; while, loadings in the left-backward lunge were greater than the left-forward lunge by 13-14%. Specifically, the stress in the chondral layer was greater than the contact interface, particularly in the patellar cartilage. These findings suggest that right-side dominant badminton players load higher in the right patellofemoral joint during left-side (backhand) lunges. Knowledge of these tissue loadings may provide implications for the training of badminton footwork, such as musculature development, to reduce cartilage loading accumulation, and prevent anterior knee pain.
    Matched MeSH terms: Biomechanical Phenomena
  11. Aisha MD, Nor-Ashikin MN, Sharaniza AB, Nawawi H, Froemming GR
    Exp Cell Res, 2015 Sep 10;337(1):87-93.
    PMID: 26163894 DOI: 10.1016/j.yexcr.2015.07.002
    Prolonged disuse of the musculoskeletal system is associated with reduced mechanical loading and lack of anabolic stimulus. As a form of mechanical signal, the multidirectional orbital fluid shear stress transmits anabolic signal to bone forming cells in promoting cell differentiation, metabolism and proliferation. Signals are channeled through the cytoskeleton framework, directly modifying gene and protein expression. For that reason, we aimed to study the organization of Normal Human Osteoblast (NHOst) cytoskeleton with regards to orbital fluid shear (OFS) stress. Of special interest were the consequences of cytoskeletal reorganization on NHOst metabolism, proliferation, and osteogenic functional markers. Cells stimulated at 250 RPM in a shaking incubator resulted in the rearrangement of actin and tubulin fibers after 72 h. Orbital shear stress increased NHOst mitochondrial metabolism and proliferation, simultaneously preventing apoptosis. The ratio of RANKL/OPG was reduced, suggesting that orbital shear stress has the potential to inhibit osteoclastogenesis and osteoclast activity. Increase in ALP activity and OCN protein production suggests that stimulation retained osteoblast function. Shear stress possibly generated through actin seemed to hold an anabolic response as osteoblast metabolism and functional markers were enhanced. We hypothesize that by applying orbital shear stress with suitable magnitude and duration as a non-drug anabolic treatment can help improve bone regeneration in prolonged disuse cases.
    Matched MeSH terms: Biomechanical Phenomena
  12. Vanrenterghem, Jos, Zulezwan A. Malik, G. Burniston, Jatin
    MyJurnal
    Journal of Sports Science and Physical Education 5(2): 9-14, 2016 - Jump squat tests can be
    used to investigate the differences in the force - velocity (f-v) profile in movement that is
    more a sport-specific than isolated exercises such as open chain leg extension. However,
    squat jumps involve multi-joint movement, making it questionable which muscle is the main
    contributor for the movement. The main aim of this study is to develop a test of isolated knee
    extension that encompasses the entire range of human f-v relationship and to investigate the
    correlation between linear encoder and kinematic measurement of angular velocity using a
    camera system during unloaded kicking. One healthy male subject volunteered to participate
    in the study and performed 10 unloaded kicks (knee extension). A cuff was strapped around
    the lower leg, approximately 2 cm above the medial malleoli and connected to a linear
    velocity encoder (MuscleLab Ergotest version 4010, Norway). During the test sessions, threedimensional
    motion analysis was performed with an Oqus Motion Capture System (Qualisys,
    Sweden). Data were transferred to Windows-based data acquisition software (Qualisys Track
    Manager). There was a positive linear relationship (r = 0.94). The unloaded kicking test to
    determine maximum angular velocity at knee extension measured using the QTM showed
    that the mean angular velocity was 362˚.s-1, with the highest value being 528˚.s-1. This
    preliminary study suggests isokinetic dynamometry (IKD) can be used to investigate the
    entire range of velocities (i.e isometric – velocity maximum) of knee extension in normal
    human subjects. Further studies can examine the use of IKD in measuring higher velocities.
    Matched MeSH terms: Biomechanical Phenomena
  13. A Hamid MS, Mohamed Ali MR, Yusof A, George J
    BMC Musculoskelet Disord, 2012 Aug 06;13:138.
    PMID: 22866670 DOI: 10.1186/1471-2474-13-138
    BACKGROUND: Muscle injuries are one of the commonest injuries affecting athletes. It often leads to significant pain and disability causing loss of training and competition time. With current treatment, the duration to return-to-play ranges form six weeks to never, depending on injury severity. Recent researches have suggested that autologous platelet-rich plasma (PRP) injection into the injured site may hasten soft tissues healing. To-date, there has been no randomised clinical trials to evaluate the effects of PRP on muscle healing. The aim of this study is to examine the effects of autologous PRP on duration to return-to-play after muscle injury.

    METHODS AND DESIGN: A randomised, single blind controlled trial will be conducted. Twenty-eight patients aged 18 years and above with a recent grade-2 hamstring injury will be invited to take part. Participants will be randomised to receive either autologous PRP injection with rehabilitation programme, or rehabilitation programme only. Participants will be followed up at day three of study and then weekly for 16 weeks. At each follow up visit, participants will be assessed on readiness to return-to-play using a set of criteria. The primary end-point is when participants have fulfilled the return-to-play criteria or end of 16 weeks.The main outcome measure of this study is the duration to return-to-play after injury.

    CONCLUSION: This study protocol proposes a rigorous and potential significant evaluation of PRP use for grade-2 hamstring injury. If proven effective such findings could be of great benefit for patients with similar injuries.

    TRIAL REGISTRATION: Current Controlled Trials ISCRTN66528592.

    Matched MeSH terms: Biomechanical Phenomena
  14. Akinfalabi SI, Rashid U, Arbi Nehdi I, Yaw Choong TS, Sbihi HM, Gewik MM
    R Soc Open Sci, 2020 Jan;7(1):191592.
    PMID: 32218977 DOI: 10.1098/rsos.191592
    The optimum conditions to produce palm fatty acid distillate (PFAD)-derived-methyl esters via esterification have been demonstrated with the aid of the response surface methodology (RSM) with central composite rotatable design in the presence of heterogeneous acid catalyst. The effect of four reaction variables, reaction time (30-110 min), reaction temperature (30-70°C), catalyst concentration (1-3 wt.%) and methanol : PFAD molar ratio (3 : 1-11 : 1), were investigated. The reaction time had the most influence on the yield response, while the interaction between the reaction time and the catalyst concentration, with an F-value of 95.61, contributed the most to the esterification reaction. The model had an R2-value of 0.9855, suggesting a fit model, which gave a maximum yield of 95%. The fuel properties of produced PFAD methyl ester were appraised based on the acid value, iodine value, cloud and pour points, flash point, kinematic viscosity, density, ash and water contents and were compared with biodiesel EN 14214 and ASTM D-6751 standard limits. The PFAD methyl ester was further blended with petro-diesel from B0, B3, B5, B10, B20 and B100, on a volumetric basis. The blends were characterized by TGA, DTG and FTIR. With an acid value of 0.42 (mg KOH g-1), iodine value of 63 (g.I2/100 g), kinematic viscosity of 4.31 (mm2 s-1), the PFAD methyl ester has shown good fuel potential, as all of its fuel properties were within the permissible international standards for biodiesel.
    Matched MeSH terms: Biomechanical Phenomena
  15. Reza SM, Ahmad N, Choudhury IA, Ghazilla RA
    Sensors (Basel), 2014 Mar 04;14(3):4342-63.
    PMID: 24599193 DOI: 10.3390/s140304342
    Human motion is a daily and rhythmic activity. The exoskeleton concept is a very positive scientific approach for human rehabilitation in case of lower limb impairment. Although the exoskeleton shows potential, it is not yet applied extensively in clinical rehabilitation. In this research, a fuzzy based control algorithm is proposed for lower limb exoskeletons during sit-to-stand and stand-to-sit movements. Surface electromyograms (EMGs) are acquired from the vastus lateralis muscle using a wearable EMG sensor. The resultant acceleration angle along the z-axis is determined from a kinematics sensor. Twenty volunteers were chosen to perform the experiments. The whole experiment was accomplished in two phases. In the first phase, acceleration angles and EMG data were acquired from the volunteers during both sit-to-stand and stand-to-sit motions. During sit-to-stand movements, the average acceleration angle at activation was 11°-48° and the EMG varied from -0.19 mV to +0.19 mV. On the other hand, during stand-to-sit movements, the average acceleration angle was found to be 57.5°-108° at the activation point and the EMG varied from -0.32 mV to +0.32 mV. In the second phase, a fuzzy controller was designed from the experimental data. The controller was tested and validated with both offline and real time data using LabVIEW.
    Matched MeSH terms: Biomechanical Phenomena
  16. Abd Razak NA, Abu Osman NA, Kamyab M, Wan Abas WA, Gholizadeh H
    Am J Phys Med Rehabil, 2014 May;93(5):437-44.
    PMID: 24429510 DOI: 10.1097/PHM.0b013e3182a51fc2
    This report compares wrist supination and pronation and flexion and extension movements with the common body-powered prosthesis and a new biomechatronics prosthesis with regard to patient satisfaction and problems experienced with the prosthesis. Fifteen subjects with traumatic transradial amputation who used both prosthetic systems participated in this study. Each subject completed two questionnaires to evaluate their satisfaction and problems experienced with the two prosthetic systems. Satisfaction and problems with the prosthetic's wrist movements were analyzed in terms of the following: supination and pronation; flexion and extension; appearance; sweating; wounds; pain; irritation; pistoning; smell; sound; durability; and the abilities to open a door, hold a cup, and pick up or place objects. This study revealed that the respondents were more satisfied with the biomechatronics wrist prosthesis with regard to supination and pronation, flexion and extension, pain, and the ability to open a door. However, satisfaction with the prosthesis showed no significant differences in terms of sweating, wounds, irritation, pistoning, smell, sound, and durability. The abilities to hold a cup and pick up or place an object were significantly better with the body-powered prosthesis. The results of the survey suggest that satisfaction and problems with wrist movements in persons with transradial amputation can be improved with a biomechatronics wrist prosthesis compared with the common body-powered prosthesis.
    Matched MeSH terms: Biomechanical Phenomena
  17. Mehdizadeh S, Glazier PS
    J Biomech, 2018 05 17;73:243-248.
    PMID: 29628131 DOI: 10.1016/j.jbiomech.2018.03.032
    The aims of this study were to demonstrate "order error" in the calculation of continuous relative phase (CRP) and to suggest two alternative methods-(i) constructing phase-plane portraits by plotting position over velocity; and (ii), the Hilbert transform-to rectify it. Order error is the change of CRP order between two degrees of freedom (e.g., body segments) when using the conventional method of constructing phase-plane portraits (i.e., velocity over position). Both sinusoidal and non-sinusoidal simulated signals as well as signals from human movement kinematics were used to investigate order error and the performance of the two alternative methods. Both methods have been shown to lead to correct results for simulated sinusoidal and non-sinusoidal signals. For human movement data, however, the Hilbert transform is superior for calculating CRP.
    Matched MeSH terms: Biomechanical Phenomena
  18. Mehdizadeh S, Glazier PS
    Comput Methods Biomech Biomed Engin, 2021 Aug;24(10):1097-1103.
    PMID: 33426927 DOI: 10.1080/10255842.2020.1867852
    Whether higher variability in older adults' walking is an indication of increased instability has been challenged recently. We performed a computer simulation to investigate the effect of sensorimotor noise on the kinematic variability and stability in a biped walking model. Stochastic differential equations of the system with additive Gaussian white noise was constructed and solved. Sensorimotor noise mainly resulted in higher kinematic variability but its influence on gait stability is minimal. This implies that kinematic variability evident in walking gaits of older adults could be the result of internal sensorimotor noise and not an indication of instability.
    Matched MeSH terms: Biomechanical Phenomena
  19. Syed Mubarak Ali SAA, Ahmad NS, Goh P
    Sensors (Basel), 2019 Sep 10;19(18).
    PMID: 31509987 DOI: 10.3390/s19183896
    In this paper, a new control-centric approach is introduced to model the characteristics of flex sensors on a goniometric glove, which is designed to capture the user hand gesture that can be used to wirelessly control a bionic hand. The main technique employs the inverse dynamic model strategy along with a black-box identification for the compensator design, which is aimed to provide an approximate linear mapping between the raw sensor output and the dynamic finger goniometry. To smoothly recover the goniometry on the bionic hand's side during the wireless transmission, the compensator is restructured into a Hammerstein-Wiener model, which consists of a linear dynamic system and two static nonlinearities. A series of real-time experiments involving several hand gestures have been conducted to analyze the performance of the proposed method. The associated temporal and spatial gesture data from both the glove and the bionic hand are recorded, and the performance is evaluated in terms of the integral of absolute error between the glove's and the bionic hand's dynamic goniometry. The proposed method is also compared with the raw sensor data, which has been preliminarily calibrated with the finger goniometry, and the Wiener model, which is based on the initial inverse dynamic design strategy. Experimental results with several trials for each gesture show that a great improvement is obtained via the Hammerstein-Wiener compensator approach where the resulting average errors are significantly smaller than the other two methods. This concludes that the proposed strategy can remarkably improve the dynamic goniometry of the glove, and thus provides a smooth human-robot collaboration with the bionic hand.
    Matched MeSH terms: Biomechanical Phenomena
  20. Teoh YX, Alwan JK, Shah DS, Teh YW, Goh SL
    Clin Biomech (Bristol, Avon), 2024 Mar;113:106188.
    PMID: 38350282 DOI: 10.1016/j.clinbiomech.2024.106188
    BACKGROUND: Despite the existence of evidence-based rehabilitation strategies that address biomechanical deficits, the persistence of recurrent ankle problems in 70% of patients with acute ankle sprains highlights the unresolved nature of this issue. Artificial intelligence (AI) emerges as a promising tool to identify definitive predictors for ankle sprains. This paper aims to summarize the use of AI in investigating the ankle biomechanics of healthy and subjects with ankle sprains.

    METHODS: Articles published between 2010 and 2023 were searched from five electronic databases. 59 papers were included for analysis with regards to: i). types of motion tested (functional vs. purposeful ankle movement); ii) types of biomechanical parameters measured (kinetic vs kinematic); iii) types of sensor systems used (lab-based vs field-based); and, iv) AI techniques used.

    FINDINGS: Most studies (83.1%) examined biomechanics during functional motion. Single kinematic parameter, specifically ankle range of motion, could obtain accuracy up to 100% in identifying injury status. Wearable sensor exhibited high reliability for use in both laboratory and on-field/clinical settings. AI algorithms primarily utilized electromyography and joint angle information as input data. Support vector machine was the most used supervised learning algorithm (18.64%), while artificial neural network demonstrated the highest accuracy in eight studies.

    INTERPRETATIONS: The potential for remote patient monitoring is evident with the adoption of field-based devices. Nevertheless, AI-based sensors are underutilized in detecting ankle motions at risk of sprain. We identify three key challenges: sensor designs, the controllability of AI models, and the integration of AI-sensor models, providing valuable insights for future research.

    Matched MeSH terms: Biomechanical Phenomena
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links