Displaying publications 61 - 80 of 237 in total

Abstract:
Sort:
  1. Subramaniam, U.
    Malaysian Dental Journal, 2007;28(2):103-106.
    MyJurnal
    Gingival overgrowth is a well-recognized unwanted effect associated with three major drugs / drug groups - phenytoin, cyclosporine and the calcium channel blockers. Cyclosporine is the first-choice immunosuppressant for preventing allograft rejection in patients who have received organ or bone marrow transplants. This report aims to highlight a case in which the patient on cyclosporine therapy had also contracted Hepatitis C virus infection.
    Matched MeSH terms: Bone Marrow Transplantation
  2. Krishnamurithy, G.
    JUMMEC, 2013;16(2):1-6.
    MyJurnal
    The biocompatibility and similarity of hydroxyapatite (HA) to the mineral composition of the bone has made HA a potential candidate in bone tissue engineering (BTE). Over the past few decades, its application as bone graft in combination with stem cells has gained much importance. The use of bone marrow-derived mesenchymal stromal cells (MSCs) will enhance the rate and quality of defect repair. However, application of hydroxyapatite as a material to develop a 3-dimension scaffold or carrier to support MSCs in vitro is still in its infant stage. This review will discuss the source, manufacturing methods and advantages of using HA scaffolds in bone tissue engineering applications.
    Matched MeSH terms: Bone Marrow
  3. Abudula T, Gauthaman K, Hammad AH, Joshi Navare K, Alshahrie AA, Bencherif SA, et al.
    Polymers (Basel), 2020 May 29;12(6).
    PMID: 32485817 DOI: 10.3390/polym12061233
    Lack of suitable auto/allografts has been delaying surgical interventions for the treatment of numerous disorders and has also caused a serious threat to public health. Tissue engineering could be one of the best alternatives to solve this issue. However, deficiency of oxygen supply in the wounded and implanted engineered tissues, caused by circulatory problems and insufficient angiogenesis, has been a rate-limiting step in translation of tissue-engineered grafts. To address this issue, we designed oxygen-releasing electrospun composite scaffolds, based on a previously developed hybrid polymeric matrix composed of poly(glycerol sebacate) (PGS) and poly(ε-caprolactone) (PCL). By performing ball-milling, we were able to embed a large percent of calcium peroxide (CP) nanoparticles into the PGS/PCL nanofibers able to generate oxygen. The composite scaffold exhibited a smooth fiber structure, while providing sustainable oxygen release for several days to a week, and significantly improved cell metabolic activity due to alleviation of hypoxic environment around primary bone-marrow-derived mesenchymal stem cells (BM-MSCs). Moreover, the composite scaffolds also showed good antibacterial performance. In conjunction to other improved features, such as degradation behavior, the developed scaffolds are promising biomaterials for various tissue-engineering and wound-healing applications.
    Matched MeSH terms: Bone Marrow
  4. Abdul Wahid SF, Ismail NA, Wan Jamaludin WF, Muhamad NA, Abdul Hamid MKA, Harunarashid H, et al.
    Cochrane Database Syst Rev, 2018 Aug 29;8(8):CD010747.
    PMID: 30155883 DOI: 10.1002/14651858.CD010747.pub2
    BACKGROUND: Revascularisation is the gold standard therapy for patients with critical limb ischaemia (CLI). In over 30% of patients who are not suitable for or have failed previous revascularisation therapy (the 'no-option' CLI patients), limb amputation is eventually unavoidable. Preliminary studies have reported encouraging outcomes with autologous cell-based therapy for the treatment of CLI in these 'no-option' patients. However, studies comparing the angiogenic potency and clinical effects of autologous cells derived from different sources have yielded limited data. Data regarding cell doses and routes of administration are also limited.

    OBJECTIVES: To compare the efficacy and safety of autologous cells derived from different sources, prepared using different protocols, administered at different doses, and delivered via different routes for the treatment of 'no-option' CLI patients.

    SEARCH METHODS: The Cochrane Vascular Information Specialist (CIS) searched the Cochrane Vascular Specialised Register, the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE Ovid, Embase Ovid, the Cumulative Index to Nursing and Allied Health Literature (CINAHL), the Allied and Complementary Medicine Database (AMED), and trials registries (16 May 2018). Review authors searched PubMed until February 2017.

    SELECTION CRITERIA: We included randomised controlled trials (RCTs) involving 'no-option' CLI patients comparing a particular source or regimen of autologous cell-based therapy against another source or regimen of autologous cell-based therapy.

    DATA COLLECTION AND ANALYSIS: Three review authors independently assessed the eligibility and methodological quality of the trials. We extracted outcome data from each trial and pooled them for meta-analysis. We calculated effect estimates using a risk ratio (RR) with 95% confidence interval (CI), or a mean difference (MD) with 95% CI.

    MAIN RESULTS: We included seven RCTs with a total of 359 participants. These studies compared bone marrow-mononuclear cells (BM-MNCs) versus mobilised peripheral blood stem cells (mPBSCs), BM-MNCs versus bone marrow-mesenchymal stem cells (BM-MSCs), high cell dose versus low cell dose, and intramuscular (IM) versus intra-arterial (IA) routes of cell implantation. We identified no other comparisons in these studies. We considered most studies to be at low risk of bias in random sequence generation, incomplete outcome data, and selective outcome reporting; at high risk of bias in blinding of patients and personnel; and at unclear risk of bias in allocation concealment and blinding of outcome assessors. The quality of evidence was most often low to very low, with risk of bias, imprecision, and indirectness of outcomes the major downgrading factors.Three RCTs (100 participants) reported a total of nine deaths during the study follow-up period. These studies did not report deaths according to treatment group.Results show no clear difference in amputation rates between IM and IA routes (RR 0.80, 95% CI 0.54 to 1.18; three RCTs, 95 participants; low-quality evidence). Single-study data show no clear difference in amputation rates between BM-MNC- and mPBSC-treated groups (RR 1.54, 95% CI 0.45 to 5.24; 150 participants; low-quality evidence) and between high and low cell dose (RR 3.21, 95% CI 0.87 to 11.90; 16 participants; very low-quality evidence). The study comparing BM-MNCs versus BM-MSCs reported no amputations.Single-study data with low-quality evidence show similar numbers of participants with healing ulcers between BM-MNCs and mPBSCs (RR 0.89, 95% CI 0.44 to 1.83; 49 participants) and between IM and IA routes (RR 1.13, 95% CI 0.73 to 1.76; 41 participants). In contrast, more participants appeared to have healing ulcers in the BM-MSC group than in the BM-MNC group (RR 2.00, 95% CI 1.02 to 3.92; one RCT, 22 participants; moderate-quality evidence). Researchers comparing high versus low cell doses did not report ulcer healing.Single-study data show similar numbers of participants with reduction in rest pain between BM-MNCs and mPBSCs (RR 0.99, 95% CI 0.93 to 1.06; 104 participants; moderate-quality evidence) and between IM and IA routes (RR 1.22, 95% CI 0.91 to 1.64; 32 participants; low-quality evidence). One study reported no clear difference in rest pain scores between BM-MNC and BM-MSC (MD 0.00, 95% CI -0.61 to 0.61; 37 participants; moderate-quality evidence). Trials comparing high versus low cell doses did not report rest pain.Single-study data show no clear difference in the number of participants with increased ankle-brachial index (ABI; increase of > 0.1 from pretreatment), between BM-MNCs and mPBSCs (RR 1.00, 95% CI 0.71 to 1.40; 104 participants; moderate-quality evidence), and between IM and IA routes (RR 0.93, 95% CI 0.43 to 2.00; 35 participants; very low-quality evidence). In contrast, ABI scores appeared higher in BM-MSC versus BM-MNC groups (MD 0.05, 95% CI 0.01 to 0.09; one RCT, 37 participants; low-quality evidence). ABI was not reported in the high versus low cell dose comparison.Similar numbers of participants had improved transcutaneous oxygen tension (TcO₂) with IM versus IA routes (RR 1.22, 95% CI 0.86 to 1.72; two RCTs, 62 participants; very low-quality evidence). Single-study data with low-quality evidence show a higher TcO₂ reading in BM-MSC versus BM-MNC groups (MD 8.00, 95% CI 3.46 to 12.54; 37 participants) and in mPBSC- versus BM-MNC-treated groups (MD 1.70, 95% CI 0.41 to 2.99; 150 participants). TcO₂ was not reported in the high versus low cell dose comparison.Study authors reported no significant short-term adverse effects attributed to autologous cell implantation.

    AUTHORS' CONCLUSIONS: Mostly low- and very low-quality evidence suggests no clear differences between different stem cell sources and different treatment regimens of autologous cell implantation for outcomes such as all-cause mortality, amputation rate, ulcer healing, and rest pain for 'no-option' CLI patients. Pooled analyses did not show a clear difference in clinical outcomes whether cells were administered via IM or IA routes. High-quality evidence is lacking; therefore the efficacy and long-term safety of autologous cells derived from different sources, prepared using different protocols, administered at different doses, and delivered via different routes for the treatment of 'no-option' CLI patients, remain to be confirmed.Future RCTs with larger numbers of participants are needed to determine the efficacy of cell-based therapy for CLI patients, along with the optimal cell source, phenotype, dose, and route of implantation. Longer follow-up is needed to confirm the durability of angiogenic potential and the long-term safety of cell-based therapy.

    Matched MeSH terms: Bone Marrow Cells/cytology; Bone Marrow Transplantation/methods*
  5. Yusoff NA, Abd Hamid Z, Chow PW, Shuib S, Taib IS, Budin SB
    Methods Mol Biol, 2024;2736:65-76.
    PMID: 36749486 DOI: 10.1007/7651_2022_477
    Hematopoiesis is maintained throughout life from the hematopoietic stem cell niche in which hematopoietic stem cells and lineage-specific hematopoietic progenitors (HSPCs) reside and regulate hematopoiesis. Meanwhile, HSPCs behavior is modulated by both cell intrinsic (e.g., transcriptional factors) and cell extrinsic (e.g., cytokines) factors. Dysregulation of these factors can alter HSPCs function, leading to disrupted hematopoiesis, cellular changes, and subsequent hematological diseases and malignancies. Moreover, it has been reported that chromosomal aberration (CA) in HSPCs following exposure to carcinogenic or genotoxic agents can initiate leukemia stem cells (LSCs) formation which lays a fundamental mechanism in leukemogenesis. Despite reported studies concerning the chromosomal integrity in HSPCs, CA analysis in lineage-specific HSPCs remains scarce. This indicates a need for a laboratory technique that allows the study of CA in specific HSPCs subpopulations comprising differential hematopoietic lineages. Thus, this chapter focuses on the structural (clastogenicity) and numerical (aneugenicity) form of CA analysis in lineage-specific HSPCs comprised of myeloid, erythroid and lymphoid lineages.In this protocol, we describe how to perform CA analysis in lineage-specific HSPCs derived from freshly isolated mouse bone marrow cells (MBMCs) using the combined techniques of colony-forming unit (CFU) and karyotyping. Prior to CA analysis, lineage-specific HSPCs for myeloid, erythroid, and lymphoid were enriched through colony-forming unit (CFU) assay. CFU assay assesses the proliferative ability and differentiation potential of an individual HSPC within a sample. About 6 to 14 days of cultures are required depending on the type of HSPCs lineage. The optimal duration is crucial to achieve sufficient colony growth that is needed for accurate CFU analysis via morphological identification and colony counting. Then, the CA focusing on clastogenicity and aneugenicity anomalies in respective HSPCs lineage for myeloid, erythroid and Pre-B lymphoid were investigated. The resulted karyotypes were classified according to the types of CA known as Robertsonian (Rb) translocation, hyperploidy or complex. We believe our protocol offers a significant contribution to be utilized as a reference method for chromosomal analysis in lineage-specific HSPCs subpopulations.
    Matched MeSH terms: Bone Marrow Cells
  6. Chin SP, Poey AC, Wong CY, Chang SK, Tan CS, Ng MT, et al.
    Cytotherapy, 2011 Aug;13(7):814-21.
    PMID: 21526902 DOI: 10.3109/14653249.2011.574118
    BACKGROUND AIMS: Mesenchymal stromal cells (MSC) may improve cardiac function following myocardial infarction. MSC can differentiate into cardiomyocytes and endothelial cells while exerting additional paracrine effects. There is limited information regarding the efficacy of route for MSC treatment of severe dilated cardiomyopathy (DCM). The aim of this study was to demonstrate the clinical safety, feasibility and efficacy of direct intramyocardial and intracoronary administration of autologous bone marrow-derived MSC treatment for no-option patients with chronic severe refractory DCM.

    METHODS: Ten symptomatic patients with DCM and refractory cardiac function, despite maximum medical therapy, were selected. Five had ischemic DCM deemed unlikely to benefit from revascularization alone and underwent bypass operations with concurrent intramyocardial MSC injection (group A). Two patients had previous revascularization and three had non-ischemic DCM and received intracoronary MSC injection (group B).

    RESULTS: Group A and B patients received 0.5-1.0 × 10(6) and 2.0-3.0 × 10(6) MSC/kg body weight, respectively. All patients remained alive at 1 year. There were significant improvements from baseline to 6 and 12 months in left ventricular ejection fraction and other left ventricular parameters. Scar reduction was noted in six patients by 12 months.

    CONCLUSIONS: Autologous bone marrow MSC treatment is safe and feasible for treating chronic severe refractory DCM effectively, via intracoronary or direct intramyocardial administration at prescribed doses.

    Matched MeSH terms: Bone Marrow Cells/cytology*
  7. Noor-Fadzilah Z, Leong CF, Sabariah MN, Cheong SK
    Malays J Pathol, 2009 Dec;31(2):129-32.
    PMID: 20514856 MyJurnal
    Idiopathic myelofibrosis occurs predominantly in older adults. It is very rarely seen in children. We describe a 3-year-old girl with Down's syndrome who presented with recurrent chest infections associated with anaemia and easy bruising. There was mild hepatosplenomegaly. Full blood picture revealed pancytopaenia with leucoerythroblastosis with absence of circulating blast cells. Repeated attempts at bone marrow aspiration and trephine biopsy were unsuccessful. A trephine biopsy from the tibia showed depressed myelopoiesis and erythropoiesis, megakaryocytes with atypical morphology and increased bone marrow reticulin fibres, findings compatible with idiopathic myelofibrosis. She was treated symptomatically as she was clinically stable. Review of the English literature online yielded 46 reported cases of childhood idiopathic myelofibrosis with variable outcome from spontaneous remission to an indolent course with shortened survival. 6 cases evolved to another malignancy. 5 cases were associated with Down's syndrome.
    Matched MeSH terms: Bone Marrow/pathology*
  8. Zarina AL, Hamidah A, Yong SC, Rohana J, Hamidah NH, Azma RZ, et al.
    Malays J Pathol, 2007 Dec;29(2):107-11.
    PMID: 19108403 MyJurnal
    Transient abnormal myelopoeisis (TAM) is a haematological phenomenon commonly seen in newborns with Down syndrome. Although the majority show spontaneous resolution, this condition should not be dismissed too readily as there have been associated fatalities. Furthermore, even for those who do show spontaneous resolution, a significant percentage will develop acute megakaryoblastic leukaemia within the next few years of life. We report a series of four patients with TAM who presented with hepatosplenomegaly and leucocytosis detected on preliminary investigations.
    Matched MeSH terms: Bone Marrow Diseases/complications*
  9. Ooi YY, Ramasamy R, Vidyadaran S
    Med J Malaysia, 2008 Jul;63 Suppl A:65-6.
    PMID: 19024986
    Classically, MSC are identified by a CD45-CD106+ phenotype. In this study, we found that mouse MSC achieve this characteristic phenotype only at later passages. With increasing passages, CD45 (hematopoietic marker) expression shifts to negativity, whereas CD106 (vascular cell adhesion molecule-1) expression becomes increasingly positive. These results demonstrate that MSC cells cultured from mouse bone marrow acquire a classical MSC immunophenotype (CD45-CD106+) in later passages.
    Matched MeSH terms: Bone Marrow*
  10. Al-Salihi KA
    Med J Malaysia, 2004 May;59 Suppl B:200-1.
    PMID: 15468887
    In the present study, natural coral of porites species was used as scaffold combined with in vitro expanded bone marrow stem cell derived osteoblasts (BMSC-DO), to develop a tissue-engineered bone graft in a rat model. Coral was molded into the shape of rat mandible seeded with 5x10(6) /ml BMSC-DO subsequently implanted subcutaneously in the back of 5 week Sprague dawely rats for 3 months. Coral alone was implanted as a control. The implants were harvest and processed for gross inspection and histological observations. The results showed that newly bone grafts were successfully formed coral seeded with cells group showed smooth highly vascularized like bone tissue. Histological sections revealed mature bone formation and lots of blood vessel, the bone formation occurred in the manner resemble intramembraneous bone formation. This study demonstrates that coral can be use as a suitable scaffold material for delivering bone marrow mesenchymal stem cells in tissue engineering.
    Matched MeSH terms: Bone Marrow Cells/cytology*
  11. Goh JC, Ouyang HW, Toh SL, Lee EH
    Med J Malaysia, 2004 May;59 Suppl B:47-8.
    PMID: 15468812
    Matched MeSH terms: Bone Marrow Transplantation*
  12. Shaharir SS, Tumian NR, Yu Lin AB, Abdul Wahid SF
    J Infect Dev Ctries, 2013 Mar;7(3):286-8.
    PMID: 23493009 DOI: 10.3855/jidc.2691
    Tuberculosis is notoriously known to be a great mimicker of other diseases and may cause various haematologic abnormalities, especially with marrow involvement. A 61-year-old man who presented with right empyema and pancytopenia was diagnosed to have disseminated tuberculosis supported by the presence of caseating granuloma with Langhan's giant cells in the marrow and demonstration of acid-fast bacilli in the pleural fluid. Trilineage dysplasia from marrow aspirate was initially attributed to be reactive to the infection. A cytogenetic study was repeated after he showed poor response to a year of anti-tuberculosis treatment. The underlying primary myelodysplastic syndrome was unmasked when his cytogenetics showed trisomy 8. This case report has demonstrated the various haematological manifestations of tuberculosis and highlighted the importance of cytogenetic study in differentiating between primary and secondary myelodysplastic marrow changes.
    Matched MeSH terms: Bone Marrow/pathology
  13. S Fadilah SAW, Cheong SK, Shahdan S
    Postgrad Med J, 2000 Nov;76(901):717, 725-6.
    PMID: 11060153 DOI: 10.1136/pmj.76.901.717
    Matched MeSH terms: Bone Marrow Cells/pathology
  14. Leong CF, Cheong SK, Hamidah NH, Ainoon O, Kannaheswary Y
    Malays J Pathol, 1998 Dec;20(2):103-8.
    PMID: 10879271
    A 40-day-old baby girl presented with intermittent fever, lymphadenopathy, massive hepatosplenomegaly, progressive pancytopenia and features of disseminated intravascular coagulopathy. A bone marrow aspiration was performed and showed florid histiocytic proliferation with marked hemophagocytosis. Based on the diagnostic guideline for Hemophagocytic Lymphohistiocytosis proposed by the Familial Hemophagocytic Lymphohistiocytosis Study Group of Histiocyte Society, this patient has fulfilled most of the criteria. We have also found that serum ferritin and lactate dehydrogenase to be very high in this patient. It remains uncertain whether the disorder is reactive or neoplastic.
    Matched MeSH terms: Bone Marrow Cells/pathology
  15. Hamidah HN, Cheong SK, Ainoon O
    Acta Haematol., 1993;89(1):50-1.
    PMID: 8480488
    All-trans retinoic acid therapy induces maturation in acute promyelocytic leukaemia. We document in vivo evidence of differentiation by all-trans retinoic acid in a case of acute promyelocytic leukaemia which was characterized by cytoplasmic vacuolations.
    Matched MeSH terms: Bone Marrow/ultrastructure
  16. Tan SL, Ahmad TS, Selvaratnam L, Kamarul T
    J Anat, 2013 Apr;222(4):437-50.
    PMID: 23510053 DOI: 10.1111/joa.12032
    Mesenchymal stem cells (MSCs) are recognized by their plastic adherent ability, fibroblastic-like appearance, expression of specific surface protein markers, and are defined by their ability to undergo multi-lineage differentiation. Although rabbit bone marrow-derived MSCs (rbMSCs) have been used extensively in previous studies especially in translational research, these cells have neither been defined morphologically and ultrastructurally, nor been compared with their counterparts in humans in their multi-lineage differentiation ability. A study was therefore conducted to define the morphology, surface marker proteins, ultrastructure and multi-lineage differentiation ability of rbMSCs. Herein, the primary rbMSC cultures of three adult New Zealand white rabbits (at least 4 months old) were used for three independent experiments. rbMSCs were isolated using the gradient-centrifugation method, an established technique for human MSCs (hMSCs) isolation. Cells were characterized by phase contrast microscopy observation, transmission electron microscopy analysis, reverse transcriptase-polymerase chain reaction (PCR) analysis, immunocytochemistry staining, flow cytometry, alamarBlue(®) assay, histological staining and quantitative (q)PCR analysis. The isolated plastic adherent cells were in fibroblastic spindle-shape and possessed eccentric, irregular-shaped nuclei as well as rich inner cytoplasmic zones similar to that of hMSCs. The rbMSCs expressed CD29, CD44, CD73, CD81, CD90 and CD166, but were negative (or dim positive) for CD34, CD45, CD117 and HLD-DR. Despite having similar morphology and phenotypic expression, rbMSCs possessed significantly larger cell size but had a lower proliferation rate as compared with hMSCs. Using established protocols to differentiate hMSCs, rbMSCs underwent osteogenic, adipogenic and chondrogenic differentiation. Interestingly, differentiated rbMSCs demonstrated higher levels of osteogenic (Runx2) and chondrogenic (Sox9) gene expressions than that of hMSCs (P  0.05). rbMSCs possess similar morphological characteristics to hMSCs, but have a higher potential for osteogenic and chondrogenic differentiation, despite having a lower cell proliferation rate than hMSCs. The characteristics reported here may be used as a comprehensive set of criteria to define or characterize rbMSCs.
    Matched MeSH terms: Bone Marrow Cells/cytology*
  17. Kaur A, Cho L, Cereb N, Lin PY, Yang KL
    HLA, 2020 09;96(3):329-330.
    PMID: 32227684 DOI: 10.1111/tan.13884
    One nucleotide substitution in codon 73 of HLA-A*01:01:01:01 results in a novel allele, HLA-A*01:211.
    Matched MeSH terms: Bone Marrow*
  18. D'Souza UJ, Zain A, Raju S
    Mutat Res, 2005 Mar 7;581(1-2):187-90.
    PMID: 15725618
    The genotoxic effect of the herbicide paraquat was studied in rat bone-marrow by means of the micronucleus assay. Paraquat at dose levels of 6, 15 and 30 mg/kg body weight was given to rats in a single application via the dermal route. Marrow was collected at 24, 48 and 72 h after the application. The micronucleus assay was done as recommended by standard procedures. Paraquat gave rise to an increase in the number of micronuclei in a dose-dependent manner. The number of micronucleated polychromatic erythrocytes showed a maximum at 48 h and the toxicity was further prolonged, as there was no complete recovery at 72 h. These findings suggest a genotoxic effect of paraquat even after exposure via dermal application.
    Matched MeSH terms: Bone Marrow/drug effects*
  19. Putra WE, Rifa'i M
    Trop Life Sci Res, 2020 Jul;31(2):175-185.
    PMID: 32922674 DOI: 10.21315/tlsr2020.31.2.9
    Aplastic anemia, life-threatened disease, is a hematologic disorder characterised by bone marrow hypoplasia. Multiple modalities such as bone marrow transplantation and immunosuppression treatment have been proposed to ameliorate this entity, however it remains ineffective. Sambucus, a group of herb plants, possesses a broad spectrum of medicinal properties such as antioxidant, insulin-like activity, anticancer and antiviral. However, the study about its activity toward aplastic anemia incidence is based on limited data. Thus, the research aim of this study was to evaluate the immunomodulatory activities of Sambucus javanica in chloramphenicol-induced anemia aplastic mouse model. In this present study, BALB/c mice were administrated with chloramphenicol (CMP) to induce aplastic anemia then followed by S. javanica extracts treatment. Additionally, cellular and molecular aspects were evaluated by flow cytometry and Hematoxylin-Eosin staining. Further analysis showed that S. javanica extracts could promote the population number of regulatory T-cells and naive cytotoxic T-cells. Moreover, those extract also reduced the inflammation and necrotic incidence in CMP-induced mouse aplastic anemia model. Together, these results suggest that S. javanica has therapeutically effect to aplastic anemia by altering the immune system as an immunomodulatory agent.
    Matched MeSH terms: Bone Marrow; Bone Marrow Transplantation
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links