Displaying publications 61 - 80 of 238 in total

Abstract:
Sort:
  1. Harcourt BH, Lowe L, Tamin A, Liu X, Bankamp B, Bowden N, et al.
    Emerg Infect Dis, 2005 Oct;11(10):1594-7.
    PMID: 16318702
    Until 2004, identification of Nipah virus (NV)-like outbreaks in Bangladesh was based on serology. We describe the genetic characterization of a new strain of NV isolated during outbreaks in Bangladesh (NV-B) in 2004, which confirms that NV was the etiologic agent responsible for these outbreaks.
    Matched MeSH terms: Cloning, Molecular
  2. Karim KM, Husaini A, Hossain MA, Sing NN, Mohd Sinang F, Hussain MH, et al.
    Biomed Res Int, 2016;2016:5962028.
    PMID: 27504454 DOI: 10.1155/2016/5962028
    A novel thermostable glucoamylase cDNA without starch binding domain (SBD) of Aspergillus flavus NSH9 was successfully identified, isolated, and overexpressed in Pichia pastoris GS115. The complete open reading frame of glucoamylase from Aspergillus flavus NSH9 was identified by employing PCR that encodes 493 amino acids lacking in the SBD. The first 17 amino acids were presumed to be a signal peptide. The cDNA was cloned into Pichia pastoris and the highest expression of recombinant glucoamylase (rGA) was observed after 8 days of incubation period with 1% methanol. The molecular weight of the purified rGA was about 78 kDa and exhibited optimum catalytic activity at pH 5.0 and temperature of 70°C. The enzyme was stable at higher temperature with 50% of residual activity observed after 20 min at 90°C and 100°C. Low concentration of metal (Mg(++), Fe(++), Zn(++), Cu(++), and Pb(++)) had positive effect on rGA activity. This rGA has the potential for use and application in the saccharification steps, due to its thermostability, in the starch processing industries.
    Matched MeSH terms: Cloning, Molecular/methods
  3. Karim KMR, Husaini A, Sing NN, Tasnim T, Mohd Sinang F, Hussain H, et al.
    Protein Expr Purif, 2019 12;164:105462.
    PMID: 31351992 DOI: 10.1016/j.pep.2019.105462
    The Aspergillus flavus NSH9 gene, encoding a pH and thermostable glucoamylase with a starch binding domain (SBD), was expressed in Pichia pastoris to produce recombinant glucoamylase (rGA2). The full-length glucoamylase gene (2039 bp), and cDNA (1839 bp) encode a 612 amino acid protein most similar to glucoamylase from Aspergillus oryzae RIB40; the first 19 amino acids are presumed to be a signal peptide for secretion, and the SBD is at the C-terminal. The cDNA was successfully secreted by Pichia at 8.23 U mL-1, and the rGA2 was found to be: a 80 kDa monomer, stable from pH 3.0-9.0, with optimum catalytic activity at pH 5.0, active at temperatures up to 80°C (rGA2 retained 58% of its activity after 60 min of incubation at 70°C), and metal ions such as Na+, K+, Ca++ and Mg++ enhanced rGA2 enzyme activity. The starch degrading ability of rGA2 was also observed on raw sago starch and where prolonged incubation generated larger, deeper, holes on the starch granules, indicating rGA2 is an excellent candidate for industrial starch processing applications.
    Matched MeSH terms: Cloning, Molecular/methods
  4. Alfizah H, Ramelah M
    Malays J Pathol, 2012 Jun;34(1):29-34.
    PMID: 22870595 MyJurnal
    Infection with Helicobacter pylori cagA-positive strains is associated with gastroduodenal diseases. The CagA protein is injected into gastric epithelial cells and supposedly induces morphological changes termed the 'hummingbird phenotype', which is associated with scattering and increased cell motility. The molecular mechanisms leading to the CagA-dependent morphological changes are only partially known. The present study was carried out to investigate the effect of CagA variants on the magnitude of gastric epithelial cell morphological changes. Recombinant 3' terminal domains of cagA were cloned and expressed in a gastric epithelial cell line and the hummingbird phenotype was quantified by microscopy. The 3' region of the cagA gene of Malaysian H. pylori isolates showed six sub-genotypes that differed in the structural organization of the EPIYA repeat sequences. The percentage of hummingbird cells induced by CagA increased with duration of transfection. The hummingbird phenotype was observed to be more pronounced when CagA with 4 EPIYA motifs rather than 3 or 2 EPIYA motifs was produced. The activity of different CagA variants in the induction of the hummingbird phenotype in gastric epithelial cells depends at least in part on EPIYA motif variability. The difference in CagA genotypes might influence the potential of individual CagAs to cause morphological changes in host cells. Depending on the relative exposure of cells to CagA genotypes, this may contribute to the various disease outcomes caused by H. pylori infection in different individuals.
    Matched MeSH terms: Cloning, Molecular
  5. Garba L, Ali MS, Oslan SN, Rahman RN
    Mol Biotechnol, 2016 Nov;58(11):718-728.
    PMID: 27629791
    Fatty acid desaturase enzymes are capable of inserting double bonds between carbon atoms of saturated fatty acyl-chains to produce unsaturated fatty acids. A gene coding for a putative Δ9-fatty acid desaturase-like protein was isolated from a cold-tolerant Pseudomonas sp. A8, cloned and heterologously expressed in Escherichia coli. The gene named as PA8FAD9 has an open reading frame of 1185 bp and codes for 394 amino acids with a predicted molecular weight of 45 kDa. The enzyme showed high Δ9-fatty acid desaturase-like protein activity and increased overall levels of cellular unsaturated fatty acids in the recombinant E. coli cells upon expression at different temperatures. The results showed that the ratio of palmitoleic to palmitic acid in the recombinant E. coli cells increased by more than twice the amount observed in the control cells at 20 °C using 0.4 mM IPTG. GCMS analysis confirmed the ability of this enzyme to convert exogenous stearic acid to oleic acid incorporated into the recombinant E. coli membrane phospholipids. It may be concluded that the PA8FAD9 gene from Pseudomonas sp. A8 codes for a putative Δ9-fatty acid desaturase protein actively expressed in E. coli under the influence of temperature and an inducer.
    Matched MeSH terms: Cloning, Molecular/methods*
  6. Garba L, Mohamad Ali MS, Oslan SN, Rahman RN
    PLoS One, 2016;11(8):e0160681.
    PMID: 27494717 DOI: 10.1371/journal.pone.0160681
    Fatty acid desaturase enzymes play an essential role in the synthesis of unsaturated fatty acids. Pseudomonas sp. A3 was found to produce a large amount of palmitoleic and oleic acids after incubation at low temperatures. Using polymerase Chain Reaction (PCR), a novel Δ9- fatty acid desaturase gene was isolated, cloned, and successfully expressed in Escherichia coli. The gene was designated as PA3FAD9 and has an open reading frame of 1,185 bp which codes for 394 amino acids with a predicted molecular weight of 45 kDa. The activity of the gene product was confirmed via GCMS, which showed a functional putative Δ9-fatty acid desaturase capable of increasing the total amount of cellular unsaturated fatty acids of the E. coli cells expressing the gene. The results demonstrate that the cellular palmitoleic acids have increased two-fold upon expression at 15°C using only 0.1 mM IPTG. Therefore, PA3FAD9 from Pseudomonas sp.A3 codes for a Δ9-fatty acid desaturase-like protein which was actively expressed in E. coli.
    Matched MeSH terms: Cloning, Molecular
  7. Fong MY, Lau YL, Init I, Jamaiah I, Anuar AK, Rahmah N
    PMID: 15115078
    The gene encoding the excretory-secretory antigen TES-120 of dog ascarid worm Toxocara canis was cloned into the bacterium Escherichia coli. The specificity of the recombinant TES-120 antigen produced by the bacterium was investigated. A total of 45 human serum samples from patients infected with differenthelminthes and protozoa, including 8 cases of toxocariasis, were tested against the recombinant antigens in immunoblot assays. The results from the assays revealed that the recombinant TES-120 antigen reacted with sera from toxocariasis patients only. This highly specific recombinant TES-120 antigen can potentially be used for the development of an inexpensive serodiagnostic assay for human toxocariasis.
    Matched MeSH terms: Cloning, Molecular
  8. Kotresha D, Poonam D, Muhammad Hafiznur Y, Saadatnia G, Nurulhasanah O, Sabariah O, et al.
    Trop Biomed, 2012 Mar;29(1):129-37.
    PMID: 22543613 MyJurnal
    In this study we have cloned unreported gene fragments of Toxoplasma gondii GRA7 and SAG1 and expressed the corresponding recombinant proteins, followed by evaluation of their usefulness for the serological diagnosis of toxoplasmosis. Both recombinant proteins were expressed efficiently in insoluble form, purified by single step Ni-NTA affinity chromatography and their antigenicity to detect toxoplasma specific IgG antibodies were determined by immunoblotting. A total of 60 serum samples from three groups of individuals based on their anti-toxoplasma antibody profiles were tested, namely (I) IgM+, IgG+ (n=20), (II) IgM-, IgG+ (n=20) and (III) IgM-, IgG- (n=20). Both recombinant proteins exhibited high sensitivity (100%) with sera from Group I. rGRA7 and rSAG1 reacted 40% and 80% respectively with Group II sera. The specificity of the recombinant proteins based on reactivities with Group III sera were 100% and 80% with rGRA7 and rSAG1 respectively. Thus rGRA7 was found to be better at discriminating probable acute from chronic phases of toxoplasmosis, and it also showed higher specificity.
    Matched MeSH terms: Cloning, Molecular
  9. Song AA, Abdullah JO, Abdullah MP, Shafee N, Othman R, Noor NM, et al.
    FEMS Microbiol Lett, 2014 Jun;355(2):177-84.
    PMID: 24828482 DOI: 10.1111/1574-6968.12469
    Isoprenoids are a large, diverse group of secondary metabolites which has recently raised a renewed research interest due to genetic engineering advances, allowing specific isoprenoids to be produced and characterized in heterologous hosts. Many researches on metabolic engineering of heterologous hosts for increased isoprenoid production are focussed on Escherichia coli and yeasts. E. coli, as most prokaryotes, use the 2-C-methyl-d-erythritol-4-phosphate (MEP) pathway for isoprenoid production. Yeasts on the other hand, use the mevalonate pathway which is commonly found in eukaryotes. However, Lactococcus lactis is an attractive alternative host for heterologous isoprenoid production. Apart from being food-grade, this Gram-positive prokaryote uses the mevalonate pathway for isoprenoid production instead of the MEP pathway. Previous studies have shown that L. lactis is able to produce sesquiterpenes through heterologous expression of plant sesquiterpene synthases. In this work, we analysed the gene expression of the lactococcal mevalonate pathway through RT-qPCR to successfully engineer L. lactis as an efficient host for isoprenoid production. We then overexpressed the mvk gene singly or co-expressed with the mvaA gene as an attempt to increase β-sesquiphellandrene production in L. lactis. It was observed that co-expression of mvk with mvaA doubled the amount of β-sesquiphellandrene produced.
    Matched MeSH terms: Cloning, Molecular
  10. Baradaran A, Sieo CC, Foo HL, Illias RM, Yusoff K, Rahim RA
    Biotechnol Lett, 2013 Feb;35(2):233-8.
    PMID: 23076361 DOI: 10.1007/s10529-012-1059-4
    Fifty signal peptides of Pediococcus pentosaceus were characterized by in silico analysis and, based on the physicochemical analysis, (two potential signal peptides Spk1 and Spk3 were identified). The coding sequences of SP were amplified and fused to the gene coding for green fluorescent protein (GFP) and cloned into Lactococcus lactis pNZ8048 and pMG36e vectors, respectively. Western blot analysis indicated that the GFP proteins were secreted using both heterologous SPs. ELISA showed that the secretion efficiency of GFP using Spk1 (0.64 μg/ml) was similar to using Usp45 (0.62 μg/ml) and Spk3 (0.58 μg/ml).
    Matched MeSH terms: Cloning, Molecular
  11. Maidin MS, Song AA, Jalilsood T, Sieo CC, Yusoff K, Rahim RA
    Plasmid, 2014 Jul;74:32-8.
    PMID: 24879963 DOI: 10.1016/j.plasmid.2014.05.003
    A vector that drives the expression of the reporter gusA gene in both Lactobacillus plantarum and Lactococcus lactis was constructed in this study. This vector contained a newly characterized heat shock promoter (Phsp), amplified from an Enterococcus faecium plasmid, pAR6. Functionality and characterization of this promoter was initially performed by cloning Phsp into pNZ8008, a commercial lactococcal plasmid used for screening of putative promoters which utilizes gusA as a reporter. It was observed that Phsp was induced under heat, salinity and alkaline stresses or a combination of all three stresses. The newly characterized Phsp promoter was then used to construct a novel Lactobacillus vector, pAR1801 and its ability to express the gusA under stress-induced conditions was reproducible in both Lb. plantarum Pa21 and L. lactis M4 hosts.
    Matched MeSH terms: Cloning, Molecular
  12. Song AA, Abdullah JO, Abdullah MP, Shafee N, Othman R, Tan EF, et al.
    PLoS One, 2012;7(12):e52444.
    PMID: 23300671 DOI: 10.1371/journal.pone.0052444
    Isoprenoids are a large and diverse group of metabolites with interesting properties such as flavour, fragrance and therapeutic properties. They are produced via two pathways, the mevalonate pathway or the 2-C-methyl-D-erythritol-4-phosphate (MEP) pathway. While plants are the richest source of isoprenoids, they are not the most efficient producers. Escherichia coli and yeasts have been extensively studied as heterologous hosts for plant isoprenoids production. In the current study, we describe the usage of the food grade Lactococcus lactis as a potential heterologous host for the production of sesquiterpenes from a local herbaceous Malaysian plant, Persicaria minor (synonym Polygonum minus). A sesquiterpene synthase gene from P. minor was successfully cloned and expressed in L. lactis. The expressed protein was identified to be a β-sesquiphellandrene synthase as it was demonstrated to be functional in producing β-sesquiphellandrene at 85.4% of the total sesquiterpenes produced based on in vitro enzymatic assays. The recombinant L. lactis strain developed in this study was also capable of producing β-sesquiphellandrene in vivo without exogenous substrates supplementation. In addition, overexpression of the strain's endogenous 3-hydroxy-3-methylglutaryl coenzyme-A reductase (HMGR), an established rate-limiting enzyme in the eukaryotic mevalonate pathway, increased the production level of β-sesquiphellandrene by 1.25-1.60 fold. The highest amount achieved was 33 nM at 2 h post-induction.
    Matched MeSH terms: Cloning, Molecular
  13. Raja N, Shamsudin MN, Somarny W, Rosli R, Rahim RA, Radu S
    PMID: 11485069
    A total of 11 Vibrio cholerae isolates from 1996-1998 outbreaks in Malaysia and 4 V. alginolyticus were analyzed. Isolates were characterized by polymerase chain reaction (PCR) and Southern hybridization for the presence of the gene encoding zonula occludens toxin (zot). Screening of zot gene by PCR revealed the presence of this gene in V. cholerae and V. alginolyticus. The zot gene from one V. cholerae Ogawa isolate that was cloned in a pCR 2.1 TOPO vector was sequenced. The sequences obtained were 99% homologous to the zot gene sequence from the Gene Bank.
    Matched MeSH terms: Cloning, Molecular
  14. Yeo CC, Tan CL, Gao X, Zhao B, Poh CL
    Res. Microbiol., 2007 Sep;158(7):608-16.
    PMID: 17720458
    Pseudomonas alcaligenes NCIMB 9867 (strain P25X) is known to synthesize two isofunctional gentisate 1,2-dioxygenases (GDO; EC 1.13.11.4) as well as other enzymes involved in the degradation of xylenols and cresols via the gentisate pathway. The hbzE gene encoding what is possibly the strictly inducible gentisate 1,2-dioxygenase II (GDO-II) was cloned, overexpressed and purified as a hexahistidine fusion protein from Escherichia coli. Active recombinant GDO-II had an estimated molecular mass of 150kDa and is likely a tetrameric protein with a subunit mass of approximately 40kDa, similar to the previously characterized gentisate 1,2-dioxygenase I (GDO-I) encoded by xlnE. However, GDO-II was unable to utilize gentisate that is substituted at the carbon-4 position, unlike GDO-I which had broader substrate specificity. GDO-II also possessed different kinetic characteristics when compared to GDO-I. The hbzE-encoded GDO-II shared higher sequence identities (53%) with GDOs from Ralstonia sp. U2 and Polaromonas naphthalenivorans CJ2, compared with only 35% identity with the xlnE-encoded GDO-I. The hbzE gene was found to be part of a cluster of nine genes including the putative regulatory gene designated hbzR, which encodes an LysR-type regulator and is divergently transcribed from the other genes of the hbzHIJKLFED cluster.
    Matched MeSH terms: Cloning, Molecular
  15. Pletnev AG
    Virology, 2001 Apr 10;282(2):288-300.
    PMID: 11289811
    Forty-five years ago a naturally attenuated tick-borne flavivirus, Langat (LGT) strain TP21, was recovered from ticks in Malaysia. Subsequently, it was tested as a live attenuated vaccine for virulent tick-borne encephalitis viruses. In a large clinical trial its attenuation was confirmed but there was evidence of a low level of residual virulence. Thirty-five years ago further attenuation of LGT TP21 was achieved by multiple passages in eggs to yield mutant E5. To study the genetic determinants of the further attenuation exhibited by E5 and to allow us to manipulate the genome of this virus for the purpose of developing a satisfactory live attenuated tick-borne flavivirus vaccine, we recovered infectious E5 virus from a full-length cDNA clone. The recombinant E5 virus (clone 651) recovered from a full-length infectious cDNA clone was more attenuated in immunodeficient mice than that of its biologically derived E5 parent. Increase in attenuation was associated with three amino acid substitutions, two located in the structural protein E and one in nonstructural protein NS4B. Subsequently an even greater degree of attenuation was achieved by creating a viable 320 nucleotide deletion in the 3'-noncoding region of infectious full-length E5 cDNA. This deletion mutant was not cytopathic in simian Vero cells and it replicated to lower titer than its E5-651 parent. In addition, the E5 3' deletion mutant was less neuroinvasive in SCID mice than its E5-651 parent. Significantly, the deletion mutant proved to be 119,750 times less neuroinvasive in SCID mice than its progenitor, LGT strain TP21. Despite its high level of attenuation, the E5 3' deletion mutant remained highly immunogenic and intraperitoneal (ip) inoculation of 10 PFU induced complete protection in Swiss mice against subsequent challenge with 2000 ip LD50 of the wild-type LGT TP21.
    Matched MeSH terms: Cloning, Molecular
  16. Chutrakul C, Peberdy JF
    FEMS Microbiol Lett, 2005 Nov 15;252(2):257-65.
    PMID: 16214297
    Many species of Trichoderma have attracted interest as agents for the biological control of soil borne fungal pathogens of a range of crop plants. Research on the biochemical mechanisms associated with this application has focused on the ability of these fungi to produce enzymes which lyse fungal cell walls, and antifungal antibiotics. An important group of the latter are the non-ribosomal peptides called peptaibols. In this study Trichoderma asperellum, a strain used in biological control in Malaysia, was found to produce the peptaibol, trichotoxin. This type of peptide molecule is synthesised by a peptide synthetase (PES) enzyme template encoded by a peptide synthetase (pes) gene. Using nucleotide sequences amplified from adenylation (A-) domains as probes, to hybridise against a lambda FIXII genomic library from T. asperellum, 25 clones were recovered. These were subsequently identified as representative of four groups based on their encoding properties for specific amino acid incorporation modules in a PES. This was based on analysis of their amino acid sequences which showed up to 86% identity to other PESs including TEX 1.
    Matched MeSH terms: Cloning, Molecular
  17. Ogawa S, Ramadasan PN, Goschorska M, Anantharajah A, Ng KW, Parhar IS
    J. Comp. Neurol., 2012 Sep 1;520(13):2991-3012.
    PMID: 22430310 DOI: 10.1002/cne.23103
    The tachykinins are a family of neuropeptides, including substance P (SP), neurokinin A (NKA), and neurokinin B (NKB), that are encoded by the tac1 (SP and NKA) or tac2/3 (NKB) genes. Tachykinins are widely distributed in the central nervous system and have roles as neurotransmitters and/or neuromodulators. Recent studies in mammals have demonstrated the coexpression of NKB and kisspeptin and their comodulatory roles over the control of reproduction. We have recently identified two kisspeptin-encoding genes, kiss1 and kiss2, in teleosts. However, such relationship between tachykinins and kisspeptins has not been demonstrated in non-mammalian species. To determine the involvement of tachykinins in the reproduction in teleosts, we identified tac1 and two tac2 (tac2a and tac2b) sequences in the zebrafish genome using in silico data mining. Zebrafish tac1 encodes SP and NKA, whereas the tac2 sequences encode NKB and an additional peptide homologous to NKB (NKB-related peptide). Digoxigenin in situ hybridization in the brain of zebrafish showed tac1 mRNA-containing cells in the olfactory bulb, telencephalon, preoptic region, hypothalamus, mesencephalon, and rhombencephalon. The zebrafish tac2a mRNA-containing cells were observed in the preoptic region, habenula, and hypothalamus, whereas the tac2b mRNA-containing cells were predominantly observed in the dorsal telencephalic area. Furthermore, we examined the coexpression of tachykinins and two kisspeptin genes in the brain of zebrafish. Dual fluorescent in situ hybridization showed no coexpression of tachykinins mRNA with kisspeptins mRNA in hypothalamic nuclei or the habenula. These results suggest the presence of independent pathways for kisspeptins and NKB neurons in the brain of zebrafish.
    Matched MeSH terms: Cloning, Molecular
  18. Phang YL, Soga T, Kitahashi T, Parhar IS
    Neuroscience, 2012 Feb 17;203:39-49.
    PMID: 22198513 DOI: 10.1016/j.neuroscience.2011.12.016
    In addition to reproduction, gonadotropin-releasing hormone (GnRH) has been postulated to control cholesterol metabolism via cholesterol transport, which is carried out partly by the members of ATP-binding cassette (ABC) transporters G1 (ABCG1) and G4 (ABCG4). However, there is yet to be evidence demonstrating the relationship between these transporters with reference to GnRH neurons. In the present study, we cloned two ABCG1 messenger RNA (mRNA) variants and one ABCG4 mRNA and examined their expression in the brain including GnRH neurons (GnRH1, GnRH2, and GnRH3) in the cichlid tilapia (Oreochromis niloticus). Comparison of nucleotide sequences of the tilapia ABCG1 and ABCG4 with that of other fish species showed that both of these genes are evolutionarily conserved among fishes. ABCG1 and ABCG4 were shown to have high mRNA expressions in the CNS, pituitary, and gonads. In the brain, real-time polymerase chain reaction (PCR) showed that ABCG4 mRNA was higher than ABCG1a in all brain regions including the olfactory bulb (ABCG1=13.34, ABCG4=6796.35; P<0.001), dorsal telencephalon (ABCG1=8.64, ABCG4=10149.13; P=0.001), optic tectum (ABCG1=22.12, ABCG4=13931.04; P<0.01), cerebellum (ABCG1=8.68, ABCG4=12382.90; P<0.01), and preoptic area-midbrain-hypothalamus (ABCG1=21.36, ABCG4=13255.41; P=0.001). Similarly, although ABCG1 mRNA level is much higher in the pituitary compared with the brain, it was still significantly lower compared with ABCG4 (ABCG1=337.73, ABCG4=1157.87; P=0.01). The differential pattern of expression of ABCG1 and ABCG4 in the brain versus pituitary suggests that the two transporters are regulated by different mechanisms. Furthermore, ABCG1 and ABCG4 mRNA expressions were found in all three types of laser-captured GnRH neurons with highly similar percentage of expressions, suggesting that cholesterol efflux from GnRH neurons may require heterodimerization of both ABCG1 and ABCG4.
    Matched MeSH terms: Cloning, Molecular
  19. Kitahashi T, Ogawa S, Parhar IS
    Endocrinology, 2009 Feb;150(2):821-31.
    PMID: 18927220 DOI: 10.1210/en.2008-0940
    Newly discovered kisspeptin (metastin), encoded by the Kiss1/KISS1 gene, is considered as a major gatekeeper of puberty through the regulation of GnRH. In the present study, we cloned a novel kisspeptin gene (kiss2) in the zebrafish Danio rerio and the medaka Oryzias latipes, which encodes a sequence of 125 and 115 amino acids, respectively, and its core sequence (FNLNPFGLRF, F-F form) is different from the previously characterized kiss1 (YNLNSFGLRY, Y-Y form). Our in silico data mining shows kiss1 and kiss2 are highly conserved across nonmammalian vertebrate species, and we have identified two putative kisspeptins in the platypus and three forms in Xenopus. In the brain of zebrafish and medaka, in situ hybridization and laser capture microdissection coupled with real-time PCR showed kiss1 mRNA expression in the ventromedial habenula and the periventricular hypothalamic nucleus. The kiss2 mRNA expression was observed in the posterior tuberal nucleus and the periventricular hypothalamic nucleus. Quantitative real-time PCR analysis during zebrafish development showed a significant increase in zebrafish kiss1, kiss2 (P < 0.002), gnrh2, and gnrh3 (P < 0.001) mRNA levels at the start of the pubertal phase and remained high in adulthood. In sexually mature female zebrafish, Kiss2 but not Kiss1 administration significantly increased FSH-beta (2.7-fold, P < 0.05) and LH-beta (8-fold, P < 0.01) mRNA levels in the pituitary. These results suggest that the habenular Kiss1 and the hypothalamic Kiss2 are potential regulators of reproduction including puberty and that Kiss2 is the predominant regulator of gonadotropin synthesis in fish.
    Matched MeSH terms: Cloning, Molecular
  20. Moriya S, Chourasia D, Ng KW, Khel NB, Parhar IS
    J. Chem. Neuroanat., 2016 11;77:24-29.
    PMID: 27134039 DOI: 10.1016/j.jchemneu.2016.04.005
    Immediate early response (IER) 2 gene, a member of the IER family, is a gene of unknown function which is affected by external stimuli in the brain. In the present study, the full length sequence and localization of medaka (Oryzias latipes) ier2 was investigated in the brain to understand the functions of Ier2 in the future studies. The full length sequence of medaka ier2 was identified using a 3'-, 5'- rapid amplification of cDNA ends method, and distribution in the brain was identified using in situ hybridization. The identified full length ier2 mRNA consisted of 939 nucleotides spanning along 1 exon. The deduced amino acid sequence consisted of 171 amino acid residues which contains a highly conserved sequence, nuclear localization signal. ier2 mRNA was distributed in the telencephalon, midbrain and the hypothalamus. This highly conserved primary response gene Ier2 can be used to visualize and map functionally activated neuronal circuitry in the brain of medaka.
    Matched MeSH terms: Cloning, Molecular
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links