Displaying publications 61 - 80 of 107 in total

Abstract:
Sort:
  1. Drinkwater R, Jucker T, Potter JHT, Swinfield T, Coomes DA, Slade EM, et al.
    Mol Ecol, 2021 07;30(13):3299-3312.
    PMID: 33171014 DOI: 10.1111/mec.15724
    The application of metabarcoding to environmental and invertebrate-derived DNA (eDNA and iDNA) is a new and increasingly applied method for monitoring biodiversity across a diverse range of habitats. This approach is particularly promising for sampling in the biodiverse humid tropics, where rapid land-use change for agriculture means there is a growing need to understand the conservation value of the remaining mosaic and degraded landscapes. Here we use iDNA from blood-feeding leeches (Haemadipsa picta) to assess differences in mammalian diversity across a gradient of forest degradation in Sabah, Malaysian Borneo. We screened 557 individual leeches for mammal DNA by targeting fragments of the 16S rRNA gene and detected 14 mammalian genera. We recorded lower mammal diversity in the most heavily degraded forest compared to higher quality twice logged forest. Although the accumulation curves of diversity estimates were comparable across these habitat types, diversity was higher in twice logged forest, with more taxa of conservation concern. In addition, our analysis revealed differences between the community recorded in the heavily logged forest and that of the twice logged forest. By revealing differences in mammal diversity across a human-modified tropical landscape, our study demonstrates the value of iDNA as a noninvasive biomonitoring approach in conservation assessments.
    Matched MeSH terms: DNA/genetics
  2. Chua EW, Maggo S, Kennedy MA
    Methods Mol Biol, 2017;1620:65-74.
    PMID: 28540699 DOI: 10.1007/978-1-4939-7060-5_3
    Polymerase chain reaction (PCR) is an oft-used preparatory technique in amplifying specific DNA regions for downstream analysis. The size of an amplicon was initially limited by errors in nucleotide polymerization and template deterioration during thermal cycling. A variant of PCR, designated long-range PCR, was devised to counter these drawbacks and enable the amplification of large fragments exceeding a few kb. In this chapter we describe a protocol for long-range PCR, which we have adopted to obtain products of 6.6, 7.2, 13, and 20 kb from human genomic DNA samples.
    Matched MeSH terms: DNA/genetics*
  3. Periasamy V, Rizan N, Al-Ta'ii HM, Tan YS, Tajuddin HA, Iwamoto M
    Sci Rep, 2016 07 20;6:29879.
    PMID: 27435636 DOI: 10.1038/srep29879
    The discovery of semiconducting behavior of deoxyribonucleic acid (DNA) has resulted in a large number of literatures in the study of DNA electronics. Sequence-specific electronic response provides a platform towards understanding charge transfer mechanism and therefore the electronic properties of DNA. It is possible to utilize these characteristic properties to identify/detect DNA. In this current work, we demonstrate a novel method of DNA-based identification of basidiomycetes using current-voltage (I-V) profiles obtained from DNA-specific Schottky barrier diodes. Electronic properties such as ideality factor, barrier height, shunt resistance, series resistance, turn-on voltage, knee-voltage, breakdown voltage and breakdown current were calculated and used to quantify the identification process as compared to morphological and molecular characterization techniques. The use of these techniques is necessary in order to study biodiversity, but sometimes it can be misleading and unreliable and is not sufficiently useful for the identification of fungi genera. Many of these methods have failed when it comes to identification of closely related species of certain genus like Pleurotus. Our electronics profiles, both in the negative and positive bias regions were however found to be highly characteristic according to the base-pair sequences. We believe that this simple, low-cost and practical method could be useful towards identifying and detecting DNA in biotechnology and pathology.
    Matched MeSH terms: DNA/genetics
  4. Wei LK, Sutherland H, Au A, Camilleri E, Haupt LM, Gan SH, et al.
    J Clin Lab Anal, 2016 Jul;30(4):335-44.
    PMID: 26109141 DOI: 10.1002/jcla.21860
    BACKGROUND: Determination of the differential DNA methylation patterns of methylenetetrahydrofolate reductase (MTHFR) that are associated with differential MTHFR activity is important to understand the pathogenesis of ischemic stroke. However, to date, no data are available on the differential DNA methylation profiles of Kelantanese Malays. Therefore, we developed a rapid and efficient serial pyrosequencing assay to determine differential DNA methylation profiles of MTHFR, which help to further our understanding of the pathogenesis of ischemic stroke. The developed assay also served as the validation platform for our previous computational epigenetic research on MTHFR.

    METHODS: Polymerase chain reaction primers were designed and validated to specifically amplify the cytosine that is followed by guanine residues (CpGs) A and B regions. Prior epigenotyping on 110 Kelantanese Malays, the serial pyrosequencing assays for the CpGs A and B regions were validated using five validation controls. The mean values of the DNA methylation profiles of CpGs A and B were calculated.

    RESULTS: The mean DNA methylation levels for CpGs A and B were 0.984 ± 0.582 and 2.456 ± 1.406, respectively. The CpGs 8 and 20 showed the highest (5.581 ± 4.497) and the lowest (0.414 ± 2.814) levels of DNA methylation at a single-base resolution.

    CONCLUSION: We have successfully developed and validated a pyrosequencing assay that is fast and can yield high-quality pyrograms for DNA methylation analysis and is therefore applicable to high throughput study. Using this newly developed pyrosequencing assay, the MTHFR DNA methylation profiles of 110 Kelantanese Malays were successfully determined. It also validated our computational epigenetic research on MTHFR.

    Matched MeSH terms: DNA/genetics
  5. Tan JAMA, Yap SF, Tan KL, Wong YC, Wee YC, Kok JL
    Acta Haematol., 2003;109(4):169-75.
    PMID: 12853688 DOI: 10.1159/000070965
    Molecular characterization of the compound heterozygous condition - (G)gamma((A)gammadeltabeta)(o)/beta-thalassemia - in four families showing mild beta-thalassemia intermedia was carried out using DNA amplification techniques. Using the Amplification Refractory Mutation System (ARMS) to confirm the beta-mutations and DNA amplification to detect the 100-kb Chinese-specific (G)gamma((A)gammadeltabeta)(o)-deletion, ()two families were confirmed to possess (G)gamma((A)gammadeltabeta)(o)/beta-thalassemia with the IVSII No. 654 beta(+)-allele. In the third family, the (G)gamma((A)gammadeltabeta)(o)-deletion was confirmed in the father and the mother was a beta-thalassemia carrier with the cd 41-42 beta(o)-allele. Their affected child with (G)gamma((A)gammadeltabeta)(o)/beta-thalassemia was found to be transfusion dependent. The same (G)gamma((A)gammadeltabeta)(o)-deletion and beta-thalassemia (cd 41-42) was also confirmed in a fourth family. In addition, the mother was also diagnosed with Hb H disease (genotype -alpha(3.7)/-(SEA)). Both the children were found to possess (G)gamma((A)gammadeltabeta)(o)/beta-thalassemia but they were not transfusion dependent and this could be due to co-inheritance of alpha-thalassemia-2 (genotype-alpha(3.7)/alphaalpha) in the children together with their compound heterozygous condition.
    Matched MeSH terms: DNA/genetics
  6. Laosombat V, Fucharoen SP, Panich V, Fucharoen G, Wongchanchailert M, Sriroongrueng W, et al.
    Am J Hematol, 1992 Nov;41(3):194-8.
    PMID: 1415194
    A total of 103 beta thalassemia genes from 78 children (45 with Hb E/beta thalassemia, 8 with beta thalassemia heterozygotes, and 25 with homozygous beta thalassemia) were analyzed using dot-blot hybridization of the polymerase chain reaction-amplified DNA and direct DNA sequencing. Nine mutations were characterized in 98/103 (95%) of beta thalassemia alleles, of which six (a 4 bp deletion in codons 41-42, a G-C transition at position 5 of IVS-1, A-G transition at codon 19, an A-T transition at codon 17, an A-G transition at position -28 upstream of the beta globin gene, a G-T transition at position 1 of IVS-1), accounted for 92%. The spectrum of beta thalassemia mutations in Chinese Thai is similar to that reported among the Chinese from other parts of the world. The distribution of beta thalassemia mutations in Muslim Thai is similar to that reported among Malaysians. The most common beta thalassemia mutation in Thai and Chinese Thai patients is the frameshift mutation at codons 41-42, in comparison with the Muslim Thai in whom the G-C transition at position 5 of the IVS-1 mutation predominates. The heterogeneity of molecular defects causing beta thalassemia should aid in the planning of a prenatal diagnosis program for beta thalassemia in the South of Thailand.
    Matched MeSH terms: DNA/genetics
  7. Yong RY, Gan LS, Chang YM, Yap EP
    Hum Genet, 2007 Nov;122(3-4):237-49.
    PMID: 17588179
    Amelogenin paralogs on Chromosome X (AMELX) and Y (AMELY) are commonly used sexing markers. Interstitial deletion of Yp involving the AMELY locus has previously been reported. The combined frequency of the AMELY null allele in Singapore and Malaysia populations is 2.7%, 0.6% in Indian and Malay ethnic groups respectively. It is absent among 541 Chinese screened. The null allele in this study belongs to 3 Y haplogroups; J2e1 (85.7%), F* (9.5%) and D* (4.8%). Low and high-resolution STS mapping, followed by sequence analysis of breakpoint junction confirmed a large deletion of 3 to 3.7-Mb located at the Yp11.2 region. Both breakpoints were located in TSPY repeat arrays, suggesting a non-allelic homologous recombination (NAHR) mechanism of deletion. All regional null samples shared identical breakpoint sequences according to their haplogroup affiliation, providing molecular evidence of a common ancestry origin for each haplogroup, and at least 3 independent deletion events recurred in history. The estimated ages based on Y-SNP and STR analysis were approximately 13.5 +/- 3.1 kyears and approximately 0.9 +/- 0.9 kyears for the J2e1 and F* mutations, respectively. A novel polymorphism G > A at Y-GATA-H4 locus in complete linkage disequilibrium with J2e1 null mutations is a more recent event. This work re-emphasizes the need to include other sexing markers for gender determination in certain regional populations. The frequency difference among global populations suggests it constitutes another structural variation locus of human chromosome Y. The breakpoint sequences provide further information to a better understanding of the NAHR mechanism and DNA rearrangements due to higher order genomic architecture.
    Matched MeSH terms: DNA/genetics
  8. Okuma HS, Yoshida H, Kobayashi Y, Arakaki M, Mizoguchi C, Inagaki L, et al.
    Cancer Sci, 2023 Jun;114(6):2664-2673.
    PMID: 36919757 DOI: 10.1111/cas.15790
    Tissue specimen quality assurance is a major issue of precision medicine for rare cancers. However, the laboratory standards and quality of pathological specimens prepared in Asian hospitals remain unknown. To understand the methods in Southeast Asian oncology hospitals and to clarify how pre-analytics affect the quality of formalin-fixed paraffin-embedded (FFPE) specimens, a questionnaire surveying pre-analytical procedures (Part I) was administered, quality assessment of immunohistochemistry (IHC) staining and DNA/RNA extracted from the representative FFPE specimens from each hospital (Part II) was conducted, and the quality of DNA/RNA extracted from FFPE of rare-cancer patients for genomic sequencing (Part III) was examined. Quality measurements for DNA/RNA included ΔΔCt, DV200, and cDNA yield. Six major cancer hospitals from Malaysia, Philippines, and Vietnam participated. One hospital showed unacceptable quality for the DNA/RNA assessment, but improved by revising laboratory procedures. Only 57% (n = 73) of the 128 rare-cancer patients' specimens met both DNA and RNA quality criteria for next-generation sequencing. Median DV200 was 80.7% and 64.3% for qualified and failed RNA, respectively. Median ΔΔCt was 1.25 for qualified and 4.89 for failed DNA. Longer storage period was significantly associated with poor DNA (fail to qualify ratio = 1579:321 days, p 
    Matched MeSH terms: DNA/genetics
  9. Darlina MN, Masazurah AR, Jayasankar P, Jamsari AF, Siti AM
    Genet. Mol. Res., 2011;10(3):2078-92.
    PMID: 21968625 DOI: 10.4238/vol10-3gmr1249
    Mackerel (Scombridae; Rastrelliger) are small commercially important pelagic fish found in tropical regions. They serve as a cheap source of animal protein and are commonly used as live bait. By using a truss morphometrics protocol and RAPD analysis, we examined morphological and genetic variation among 77 individual mackerel that were caught using long lines and gillnets at 11 locations along the west coast of Peninsular Malaysia. Nineteen morphometric traits were evaluated and genetic information was estimated using five 10-base RAPD random primers. Total DNA was extracted from muscle tissue. Morphometric discriminant function analysis revealed that two morphologically distinct groups of Rastrelliger kanagurta and a single group of R. brachysoma can be found along the west coast of Peninsular Malaysia. We also found that the head-related characters and those from the anterior part of the body of Rastrelliger spp significantly contribute to stock assessment of this population. RAPD analysis showed a trend similar to that of the morphometric analysis, suggesting a genetic component to the observed phenotypic differentiation. These data will be useful for developing conservation strategies for these species.
    Matched MeSH terms: DNA/genetics
  10. Takenaka A, Ueda S, Terao K, Takenaka O
    Mol Biol Evol, 1991 May;8(3):320-6.
    PMID: 2072861
    Alpha-globin genes in crab-eating macaques were found to be triplicated at high frequencies according to restriction-enzyme comparisons. The frequencies of triplicated alpha-globin genes in macaques originally from Malaysia and Indonesia were 0.432 and 0.275, respectively, while no triplication was found in individuals from either the Philippines or northern and central Thailand. Quadruplicated alpha-globin genes were also observed, at frequencies of 0.045 (Malaysia), 0.075 (Indonesia), and 0.021 (the Philippines). A single locus was detected in only one of 40 chromosomes from Indonesia (frequency 0.025).
    Matched MeSH terms: DNA/genetics
  11. Ali ME, Razzak MA, Hamid SB, Rahman MM, Amin MA, Rashid NR, et al.
    Food Chem, 2015 Jun 15;177:214-24.
    PMID: 25660879 DOI: 10.1016/j.foodchem.2014.12.098
    Food falsification has direct impact on public health, religious faith, fair-trades and wildlife. For the first time, here we described a multiplex polymerase chain reaction assay for the accurate identification of five meat species forbidden in Islamic foods in a single assay platform. Five pairs of species-specific primers were designed targeting mitochondrial ND5, ATPase 6, and cytochrome b genes to amplify 172, 163, 141, 129 and 108 bp DNA fragments from cat, dog, pig, monkey and rat meats, respectively. All PCR products were identified in gel-images and electrochromatograms obtained from Experion Bioanalyzer. Species-specificity checking against 15 important meat and fish and 5 plant species detected no cross-species amplification. Screening of target species in model and commercial meatballs reflected its application to detect target species in process foods. The assay was tested to detect 0.01-0.02 ng DNA under raw states and 1% suspected meats in meatball formulation.
    Matched MeSH terms: DNA/genetics
  12. Strijk JS, Binh HT, Ngoc NV, Pereira JT, Slik JWF, Sukri RS, et al.
    PLoS One, 2020;15(5):e0232936.
    PMID: 32442164 DOI: 10.1371/journal.pone.0232936
    Natural history collections and tropical tree diversity are both treasure troves of biological and evolutionary information, but their accessibility for scientific study is impeded by a number of properties. DNA in historical specimens is generally highly fragmented, complicating the recovery of high-grade genetic material. Furthermore, our understanding of hyperdiverse, wide-spread tree assemblages is obstructed by extensive species ranges, fragmented knowledge of tropical tree diversity and phenology, and a widespread lack of species-level diagnostic characters, prohibiting the collecting of readily identifiable specimens which can be used to build, revise or strengthen taxonomic frameworks. This, in turn, delays the application of downstream conservation action. A sizable component of botanical collections are sterile-thus eluding identification and are slowing down progress in systematic treatments of tropical biodiversity. With rapid advances in genomics and bioinformatic approaches to biodiversity research, museomics is emerging as a new field breathing life into natural collections that have been built up over centuries. Using MIGseq (multiplexed ISSR genotyping by sequencing), we generated 10,000s of short loci, for both freshly collected materials and museum specimens (aged >100 years) of Lithocarpus-a widespread tropical tree genus endemic to the Asian tropics. Loci recovery from historical and recently collected samples was not affected by sample age and preservation history of the study material, underscoring the reliability and flexibility of the MIGseq approach. Phylogenomic inference and biogeographic reconstruction across insular Asia, highlights repeated migration and diversification patterns between continental regions and islands. Results indicate that co-occurring insular species at the extremity of the distribution range are not monophyletic, raising the possibility of multiple independent dispersals along the outer edge of Wallacea. This suggests that dispersal of large seeded tree genera throughout Malesia and across Wallacea may have been less affected by large geographic distances and the presence of marine barriers than generally assumed. We demonstrate the utility of MIGseq in museomic studies using non-model taxa, presenting the first range-wide genomic assessment of Lithocarpus and tropical Fagaceae as a proof-of-concept. Our study shows the potential for developing innovative genomic approaches to improve the capture of novel evolutionary signals using valuable natural history collections of hyperdiverse taxa.
    Matched MeSH terms: DNA/genetics
  13. Ali ME, Hashim U, Mustafa S, Man YB, Yusop MH, Bari MF, et al.
    Nanotechnology, 2011 May 13;22(19):195503.
    PMID: 21430321 DOI: 10.1088/0957-4484/22/19/195503
    We used 40 ± 5 nm gold nanoparticles (GNPs) as colorimetric sensor to visually detect swine-specific conserved sequence and nucleotide mismatch in PCR-amplified and non-amplified mitochondrial DNA mixtures to authenticate species. Colloidal GNPs changed color from pinkish-red to gray-purple in 2 mM PBS. Visually observed results were clearly reflected by the dramatic reduction of surface plasmon resonance peak at 530 nm and the appearance of new features in the 620-800 nm regions in their absorption spectra. The particles were stabilized against salt-induced aggregation upon the adsorption of single-stranded DNA. The PCR products, without any additional processing, were hybridized with a 17-base probe prior to exposure to GNPs. At a critical annealing temperature (55 °C) that differentiated matched and mismatched base pairing, the probe was hybridized to pig PCR product and dehybridized from the deer product. The dehybridized probe stuck to GNPs to prevent them from salt-induced aggregation and retained their characteristic red color. Hybridization of a 27-nucleotide probe to swine mitochondrial DNA identified them in pork-venison, pork-shad and venison-shad binary admixtures, eliminating the need of PCR amplification. Thus the assay was applied to authenticate species both in PCR-amplified and non-amplified heterogeneous biological samples. The results were determined visually and validated by absorption spectroscopy. The entire assay (hybridization plus visual detection) was performed in less than 10 min. The LOD (for genomic DNA) of the assay was 6 µg ml(-1) swine DNA in mixed meat samples. We believe the assay can be applied for species assignment in food analysis, mismatch detection in genetic screening and homology studies between closely related species.
    Matched MeSH terms: DNA/genetics*
  14. Mokhtar NFK, Shun YQ, Raja Nhari RMH, Mohamad NA, Shahidan NM, Warsanah IH, et al.
    PMID: 38190283 DOI: 10.1080/19440049.2023.2298476
    The inclusion of ingredients derived from pigs in highly processed consumer products poses a significant challenge for DNA-targeted analytical enforcement, which could be overcome by using digital PCR. However, most species detection methods use digital PCR to target single-copy nuclear genes, which limits their sensitivity. In this work, we examined the performance of a nanoplate-based digital PCR method that targets multi-copy nuclear (MPRE42) and mitochondrial (Cytb) genes. Poor separation of positive and negative partitions, as well as a 'rain effect' were obtained in the porcine-specific MPRE42 assay. Among the optimization strategies examined, the inclusion of restriction enzymes slightly improved the separation of positive and negative partitions, but a more extensive 'rain effect' was observed. The high copy number of the MPRE42 amplicon is hypothesized to contribute to the saturation of the positive signal. In contrast, the porcine-specific Cytb assay achieved perfect separation of positive and negative partitions with no 'rain effect'. This assay can detect as little as 0.4 pg of pork DNA, with a sensitivity of 0.05% (w/w) in a pork-chicken mixture, proving its applicability for detecting pork in meat and meat-based products. For the MPRE42 assay, potential applications in highly degraded products such as gelatin and lard are anticipated.
    Matched MeSH terms: DNA/genetics
  15. De Ang JX, Yaman K, Kadir KA, Matusop A, Singh B
    Sci Rep, 2021 Apr 08;11(1):7739.
    PMID: 33833272 DOI: 10.1038/s41598-021-86107-3
    Plasmodium knowlesi is the main cause of malaria in Sarawak, where studies on vectors of P. knowlesi have been conducted in only two districts. Anopheles balabacensis and An. donaldi were incriminated as vectors in Lawas and An. latens in Kapit. We studied a third location in Sarawak, Betong, where of 2169 mosquitoes collected over 36 days using human-landing catches, 169 (7.8%) were Anopheles spp. PCR and phylogenetic analyses identified P. knowlesi and/or P. cynomolgi, P. fieldi, P. inui, P. coatneyi and possibly novel Plasmodium spp. in salivary glands of An. latens and An. introlatus from the Leucosphyrus Group and in An. collessi and An. roperi from the Umbrosus Group. Phylogenetic analyses of cytochrome oxidase subunit I sequences indicated three P. knowlesi-positive An. introlatus had been misidentified morphologically as An. latens, while An. collessi and An. roperi could not be delineated using the region sequenced. Almost all vectors from the Leucosphyrus Group were biting after 1800 h but those belonging to the Umbrosus Group were also biting between 0700 and 1100 h. Our study incriminated new vectors of knowlesi malaria in Sarawak and underscores the importance of including entomological studies during the daytime to obtain a comprehensive understanding of the transmission dynamics of malaria.
    Matched MeSH terms: DNA/genetics
  16. Abd Rahim MR, Kho SL, Kuppusamy UR, Tan JA
    Clin. Lab., 2015;61(9):1325-30.
    PMID: 26554253
    BACKGROUND: Beta-thalassemia is the most common genetic disorder in Malaysia. Confirmation of the β-globin gene mutations involved in thalassemia is usually carried out by molecular analysis of DNA extracted from leukocytes in whole blood. Molecular analysis is generally carried out when affected children are around 1 - 2 years as clinical symptoms are expressed during this period. Blood taking at this age can be distressing for the child. High yield and pure DNA extracted from non-invasive sampling methods can serve as alternative samples in molecular studies for genetic diseases especially in pediatric cases.

    METHODS: In this study, mouthwash, saliva, and buccal cytobrush samples were collected from β-thalassemia major patients who had previously been characterized using DNA extracted from peripheral blood. DNA was extracted from mouthwash, saliva, and buccal cytobrush samples using the conventional inexpensive phenol-chloroform method and was measured by spectrophotometry for yield and purity. Molecular characterization of β-globin gene mutations was carried out using the amplification refractory mutation system (ARMS).

    RESULTS: DNA extracted from mouthwash, saliva, and buccal cytobrush samples produced high concentration and pure DNA. The purified DNA was successfully amplified using ARMS. Results of the β-globin gene mutations using DNA from the three non-invasive samples were in 100% concordance with results from DNA extracted from peripheral blood.

    CONCLUSIONS: The conventional in-house developed methods for non-invasive sample collection and DNA extraction from these samples are effective and negate the use of more expensive commercial kits. In conclusion, DNA extracted from mouthwash, saliva, and buccal cytobrush samples provided sufficiently high amounts of pure DNA suitable for molecular analysis of β-thalassemia.

    Matched MeSH terms: DNA/genetics
  17. Sultana S, Hossain MAM, Naquiah NNA, Ali ME
    PMID: 30028648 DOI: 10.1080/19440049.2018.1500719
    Gelatin is widely used in pharmaceuticals as a protective coating, such as soft and hard capsule shells. However, the animal source of gelatin is a sensitive issue because certain gelatins such as porcine and bovine gelatins are not welcome in Halal, Kosher and Hindus' consumer goods. Recently, we have documented DNA barcoding and multiplex PCR platforms for discriminating porcine, bovine and fish gelatins in various fish and confectionary products; but those assays were not self-authenticating and also not tested in highly refined pharmaceutical products. To address this knowledge gap, here we report a self-authenticating multiplex PCR-restriction fragment length polymorphism (RFLP) assay to identify animal sources of various gelatin in pharmaceutical capsules. Three different restriction enzymes, BsaAI, Hpy188I and BcoDI were used to yield distinctive RFLP patterns for gelatin-based bovine (26, 94 bp), fish (97, 198 bp) and porcine (17, 70 bp) DNA in control experiments. The specificity was cross-tested against 16 non-target species and the optimised assay was used to screen gelatin sources in 30 halal-branded pharmaceuticals capsule shells. Bovine and porcine DNA was found in 27 and 3 of the 30 different capsules products. The assay was suitable for detecting 0.1 to 0.01 ng total DNA extracted from pure and mixed gelatins. The study might be useful to authenticate and monitor halal, kosher, vegetarian and Hindu compliant pharmaceuticals, foods and cosmetics.
    Matched MeSH terms: DNA/genetics*
  18. Ahmad M, Jung LT, Bhuiyan MA
    Comput Biol Med, 2016 Feb 1;69:144-51.
    PMID: 26773936 DOI: 10.1016/j.compbiomed.2015.12.017
    A coding measure scheme numerically translates the DNA sequence to a time domain signal for protein coding regions identification. A number of coding measure schemes based on numerology, geometry, fixed mapping, statistical characteristics and chemical attributes of nucleotides have been proposed in recent decades. Such coding measure schemes lack the biologically meaningful aspects of nucleotide data and hence do not significantly discriminate coding regions from non-coding regions. This paper presents a novel fuzzy semantic similarity measure (FSSM) coding scheme centering on FSSM codons׳ clustering and genetic code context of nucleotides. Certain natural characteristics of nucleotides i.e. appearance as a unique combination of triplets, preserving special structure and occurrence, and ability to own and share density distributions in codons have been exploited in FSSM. The nucleotides׳ fuzzy behaviors, semantic similarities and defuzzification based on the center of gravity of nucleotides revealed a strong correlation between nucleotides in codons. The proposed FSSM coding scheme attains a significant enhancement in coding regions identification i.e. 36-133% as compared to other existing coding measure schemes tested over more than 250 benchmarked and randomly taken DNA datasets of different organisms.
    Matched MeSH terms: DNA/genetics*
  19. George E, Wong HB, Jamaluddin M, Huisman TH
    Singapore Med J, 1993 Jun;34(3):241-4.
    PMID: 8266182
    Following complete DNA characterisation patients with Hb H disease were assigned into two groups: deletional (alpha +/alpha o) and non deletional (HbCS/alpha o). Earlier studies have indicated that the group with (HbCS/alpha o) has more severe clinical problems. The serum malonyldialdehyde (MDA) levels, a secondary product of lipid peroxidation were within the normal range, though significantly higher levels of MDA were seen in the non-deletional type of Hb H disease when compared with the deletional type. Markedly low vitamin E levels were also seen in the former group. There were no significant differences in clinical severity may be attributed to an interplay of the accelerated destruction of damaged mature red blood cells secondary to the oxidative denaturation of Hb H and inclusion precipitation; higher levels of Hb H and more inclusion precipitation were seen in the group with (HbCS/alpha o). Low levels of vitamin E in the (HbCS/alpha o) group being due to its consumption in the neutralisation of free radicals formed with the oxidation of globin chains.
    Matched MeSH terms: DNA/genetics
  20. Yap FC, Yan YJ, Loon KT, Zhen JL, Kamau NW, Kumaran JV
    Anim Biotechnol, 2010 Oct;21(4):226-40.
    PMID: 20967642 DOI: 10.1080/10495398.2010.506334
    The present investigation was carried out in an attempt to study the phylogenetic analysis of different breeds of domestic chickens in Peninsular Malaysia inferred from partial cytochrome b gene information and random amplified polymorphic DNA (RAPD) markers. Phylogenetic analysis using both neighbor-joining (NJ) and maximum parsimony (MP) methods produced three clusters that encompassed Type-I village chickens, the red jungle fowl subspecies and the Japanese Chunky broilers. The phylogenetic analysis also revealed that majority of the Malaysian commercial chickens were randomly assembled with the Type-II village chickens. In RAPD assay, phylogenetic analysis using neighbor-joining produced six clusters that were completely distinguished based on the locality of chickens. High levels of genetic variations were observed among the village chickens, the commercial broilers, and between the commercial broilers and layer chickens. In this study, it was found that Type-I village chickens could be distinguished from the commercial chickens and Type-II village chickens at the position of the 27th nucleotide of the 351 bp cytochrome b gene. This study also revealed that RAPD markers were unable to differentiate the type of chickens, but it showed the effectiveness of RAPD in evaluating the genetic variation and the genetic relationships between chicken lines and populations.
    Matched MeSH terms: DNA/genetics
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links