Displaying publications 61 - 80 of 114 in total

Abstract:
Sort:
  1. Samrot AV, Angalene JLA, Roshini SM, Stefi SM, Preethi R, Raji P, et al.
    Int J Biol Macromol, 2019 Nov 01;140:393-400.
    PMID: 31425761 DOI: 10.1016/j.ijbiomac.2019.08.121
    In this study, gum of Araucaria heterophylla was collected. The collected gum was subjected for extraction of polysaccharide using solvent extraction system. Thus, extracted polysaccharide was further purified using solvent method and was characterized using UV-Vis spectroscopy, Phenol sulfuric acid assay, FTIR, TGA, TLC and GC-MS. The gum derived polysaccharide was found to have the following sugars Rhamnose, Allose, Glucosinolate, Threose, Idosan, Galactose and Arabinose. The extracted polysaccharide was tested for various in-vitro bioactive studies such as antibacterial activity, antioxidant activity and anticancer activity. The polysaccharide was found to have antioxidant and anticancer activity. Further, the polysaccharide was subjected for carboxymethylation to favor the nanocarrier synthesis, where it was chelated using Sodium Tri Meta Phosphate (STMP) to form nanocarriers. The nanocarriers so formed were loaded with curcumin and were characterized using FTIR, SEM, EDX and AFM. Both the loaded and unloaded nanocarriers were studied for its in-vitro cytotoxic effect against the MCF7 human breast cancer cell lines. The nanocarriers were found to deliver the drug efficiently against the cancer cell line used in this study.
    Matched MeSH terms: Drug Delivery Systems/methods
  2. Subin TS, Vijayan V, Kumar KJR
    Pharm Nanotechnol, 2017;5(3):180-191.
    PMID: 28641516 DOI: 10.2174/2211738505666170615095542
    BACKGROUND: Nanomedicine is a branch which deals with medicinal products, devices, nonbiological complex drugs and antibody-nanoparticle conjugates and general health products that are manufactured using nanotechnology.

    OBJECTIVE: Nano-medicine provides the same efficacies as traditional medicines owing to their improved solubility and bioavailability with reduced dosages. However, there are currently safety concerns due to the difficulties related to nanomaterial characterization; this might be the reason for unawareness of such medicines among the patients. The absence of clear regulatory guidelines further complicates matters, as it makes the path to registering them with regulatory bodies difficult. However, some products have overcome these obstacles and have been registered. While there are many international initiatives to harmonize the regulatory requirements and helps the industry to determine the most important characteristics that influence in vivo product performance.

    CONCLUSION: This review focuses on the various types of nanopharmaceuticals, and developments process with strategies tailored to upcoming regulations may satisfy the patients' needs.

    Matched MeSH terms: Drug Delivery Systems/methods
  3. Meka VS, Nali SR, Songa AS, Kolapalli VR
    AAPS PharmSciTech, 2012 Dec;13(4):1451-64.
    PMID: 23090110 DOI: 10.1208/s12249-012-9873-5
    The main objective of the present study is the physicochemical characterization of naturally available Terminalia catappa gum (Badam gum [BG]) as a novel pharmaceutical excipient and its suitability in the development of gastroretentive floating drug delivery systems (GRFDDS) to retard the drug for 12 h when the dosage form is exposed to gastrointestinal fluids in the gastric environment. As BG was being explored for the first time for its pharmaceutical application, physicochemical, microbiological, rheological, and stability studies were carried out on this gum. In the present investigation, the physicochemical properties, such as micromeritic, rheological, melting point, moisture content, pH, swelling index, water absorption, and volatile acidity, were evaluated. The gum was characterized by scanning electron microscopy, differential scanning calorimetry (DSC), powder X-ray diffraction studies (PXRD), and Fourier transform infrared spectroscopy (FTIR). Gastroretentive floating tablets of BG were prepared with the model drug propranolol HCl by direct compression methods. The prepared tablets were evaluated for all their physicochemical properties, in vitro buoyancy, in vitro drug release, and rate order kinetics. PBG 04 was selected as an optimized formulation based on its 12-h drug release and good buoyancy characteristics. The optimized formulation was characterized with FTIR, DSC, and PXRD studies, and no interaction between the drug and BG was found. Thus, the study confirmed that BG might be used in the gastroretentive drug delivery system as a release-retarding polymer.
    Matched MeSH terms: Drug Delivery Systems/methods
  4. Ruttala HB, Ramasamy T, Madeshwaran T, Hiep TT, Kandasamy U, Oh KT, et al.
    Arch Pharm Res, 2018 Feb;41(2):111-129.
    PMID: 29214601 DOI: 10.1007/s12272-017-0995-x
    The development of novel drug delivery systems based on well-defined polymer therapeutics has led to significant improvements in the treatment of multiple disorders. Advances in material chemistry, nanotechnology, and nanomedicine have revolutionized the practices of drug delivery. Stimulus-responsive material-based nanosized drug delivery systems have remarkable properties that allow them to circumvent biological barriers and achieve targeted intracellular drug delivery. Specifically, the development of novel nanocarrier-based therapeutics is the need of the hour in managing complex diseases. In this review, we have briefly described the fundamentals of drug targeting to diseased tissues, physiological barriers in the human body, and the mechanisms/modes of drug-loaded carrier systems. To that end, this review serves as a comprehensive overview of the recent developments in stimulus-responsive drug delivery systems, with focus on their potential applications and impact on the future of drug delivery.
    Matched MeSH terms: Drug Delivery Systems/methods
  5. Gorain B, Choudhury H, Nair AB, Dubey SK, Kesharwani P
    Drug Discov Today, 2020 07;25(7):1174-1188.
    PMID: 32344042 DOI: 10.1016/j.drudis.2020.04.013
    Theranostics has the potential to revolutionize the diagnosis, treatment, and prognosis of cancer, where novel drug delivery systems could be used to detect the disease at an early stage with instantaneous treatment. Various preclinical approaches of nanoemulsions with entrapped contrast and chemotherapeutic agents have been documented to act specifically on the tumor microenvironment (TME) for both diagnostic and therapeutic purposes. However, bringing these theranostic nanoemulsions through preclinical trials to patients requires several fundamental hurdles to be overcome, including the in vivo behavior of the delivery tool, degradation, and clearance from the system, as well as long-term toxicities. Here, we discuss recent advances in the application of nanoemulsions in molecular imaging with simultaneous therapeutic efficacy in a single delivery system.
    Matched MeSH terms: Drug Delivery Systems/methods
  6. Sristi, Fatima M, Sheikh A, Almalki WH, Talegaonkar S, Dubey SK, et al.
    J Drug Target, 2023 Jun;31(5):486-499.
    PMID: 37125741 DOI: 10.1080/1061186X.2023.2205609
    With the advancement of nanotechnology, many different forms of nanoparticles (NPs) are created, which specifically enhance anticancer drug delivery to tumour cells. Albumin bio-macromolecule is a flexible protein carrier for the delivery of drugs that is biodegradable, biocompatible, and non-toxic. As a result, it presents itself as an ideal material for developing nanoparticles for anticancer drug delivery. Toxicological investigations demonstrated that this novel drug delivery technique is safe for use in the human population. Furthermore, drug compatibility with the albumin nanoparticle is remarkable. The robust structure of the nanoparticle, high drug encapsulation, and customisable drug release make it a promising carrier option for the treatment of lung cancer. In this review, we summarise human serum albumin and bovine serum albumin in the targeted delivery of anticancer drugs to lung cancer cells.
    Matched MeSH terms: Drug Delivery Systems/methods
  7. Ng SF, Jumaat N
    Eur J Pharm Sci, 2014 Jan 23;51:173-9.
    PMID: 24076463 DOI: 10.1016/j.ejps.2013.09.015
    Lyophilised wafers have been shown to have potential as a modern dressing for mucosal wound healing. The wafer absorbs wound exudates and transforms into a gel, thus providing a moist environment which is essential for wound healing. The objective of this study was to develop a carboxymethyl cellulose wafer containing antimicrobials to promote wound healing and treat wound infection. The pre-formulation studies began with four polymers, sodium carboxymethyl cellulose (NaCMC), methylcellulose (MC), sodium alginate and xanthan gum, but only NaCMC and MC were chosen for further investigation. The wafers were characterised by physical assessments, solvent loss, microscopic examination, swelling and hydration properties, drug content uniformity, drug release and efficacy of antimicrobials. Three of the antimicrobials, neomycin trisulphate salt hydrate, sulphacetamide sodium and silver nitrate, were selected as model drugs. Among the formulations, NaCMC wafer containing neomycin trisulphate exhibited the most desirable wound dressing characteristics (i.e., flexibility, sponginess, uniform wafer texture, high content drug uniformity) with the highest in vitro drug release and the greatest inhibition against both Gram positive and Gram negative bacteria. In conclusion, we successfully developed a NaCMC lyophilised wafer containing antimicrobials, and this formulation has potential for use in mucosal wounds infected with bacteria.
    Matched MeSH terms: Drug Delivery Systems/methods
  8. Wickens JM, Alsaab HO, Kesharwani P, Bhise K, Amin MCIM, Tekade RK, et al.
    Drug Discov Today, 2017 Apr;22(4):665-680.
    PMID: 28017836 DOI: 10.1016/j.drudis.2016.12.009
    The cluster-determinant 44 (CD44) receptor has a high affinity for hyaluronic acid (HA) binding and is a desirable receptor for active targeting based on its overexpression in cancer cells compared with normal body cells. The nanocarrier affinity can be increased by conjugating drug-loaded carriers with HA, allowing enhanced cancer cell uptake via the HA-CD44 receptor-mediated endocytosis pathway. In this review, we discuss recent advances in HA-based nanocarriers and micelles for cancer therapy. In vitro and in vivo experiments have repeatedly indicated HA-based nanocarriers to be a target-specific drug and gene delivery platform with great promise for future applications in clinical cancer therapy.
    Matched MeSH terms: Drug Delivery Systems/methods
  9. Benchoula K, Parhar IS, Madhavan P, Hwa WE
    Biochem Pharmacol, 2021 06;188:114531.
    PMID: 33773975 DOI: 10.1016/j.bcp.2021.114531
    Diabetes mellitus is a metabolic disorder diagnosed by elevated blood glucose levels and a defect in insulin production. Blood glucose, an energy source in the body, is regenerated by two fundamental processes: glycolysis and gluconeogenesis. These two processes are the main mechanisms used by humans and many other animals to maintain blood glucose levels, thereby avoiding hypoglycaemia. The released insulin from pancreatic β-cells activates glycolysis. However, the glucagon released from the pancreatic α-cells activates gluconeogenesis in the liver, leading to pyruvate conversion to glucose-6-phosphate by different enzymes such as fructose 1,6-bisphosphatase and glucose 6-phosphatase. These enzymes' expression is controlled by the glucagon/ cyclic adenosine 3',5'-monophosphate (cAMP)/ proteinkinase A (PKA) pathway. This pathway phosphorylates cAMP-response element-binding protein (CREB) in the nucleus to bind it to these enzyme promoters and activate their expression. During fasting, this process is activated to supply the body with glucose; however, it is overactivated in diabetes. Thus, the inhibition of this process by blocking the expression of the enzymes via CREB is an alternative strategy for the treatment of diabetes. This review was designed to investigate the association between CREB activity and the treatment of diabetes and diabetes complications. The phosphorylation of CREB is a crucial step in regulating the gene expression of the enzymes of gluconeogenesis. Many studies have proven that CREB is over-activated by glucagon and many other factors contributing to the elevation of fasting glucose levels in people with diabetes. The physiological function of CREB should be regarded in developing a therapeutic strategy for the treatment of diabetes mellitus and its complications. However, the accessible laboratory findings for CREB activity of the previous research still not strong enough for continuing to the clinical trial yet.
    Matched MeSH terms: Drug Delivery Systems/methods*
  10. Saifullah B, Arulselvan P, El Zowalaty ME, Fakurazi S, Webster TJ, Geilich BM, et al.
    Int J Nanomedicine, 2014;9:4749-62.
    PMID: 25336952 DOI: 10.2147/IJN.S63608
    The primary challenge in finding a treatment for tuberculosis (TB) is patient non-compliance to treatment due to long treatment duration, high dosing frequency, and adverse effects of anti-TB drugs. This study reports on the development of a nanodelivery system that intercalates the anti-TB drug isoniazid into Mg/Al layered double hydroxides (LDHs). Isoniazid was found to be released in a sustained manner from the novel nanodelivery system in humans in simulated phosphate buffer solutions at pH 4.8 and pH 7.4. The nanodelivery formulation was highly biocompatible compared to free isoniazid against human normal lung and 3T3 mouse fibroblast cells. The formulation was active against Mycobacterium tuberculosis and gram-positive bacteria and gram-negative bacteria. Thus results show significant promise for the further study of these nanocomposites for the treatment of TB.
    Matched MeSH terms: Drug Delivery Systems/methods*
  11. Ruman U, Fakurazi S, Masarudin MJ, Hussein MZ
    Int J Nanomedicine, 2020;15:1437-1456.
    PMID: 32184597 DOI: 10.2147/IJN.S236927
    The development of therapeutics and theranostic nanodrug delivery systems have posed a challenging task for the current researchers due to the requirement of having various nanocarriers and active agents for better therapy, imaging, and controlled release of drugs efficiently in one platform. The conventional liver cancer chemotherapy has many negative effects such as multiple drug resistance (MDR), high clearance rate, severe side effects, unwanted drug distribution to the specific site of liver cancer and low concentration of drug that finally reaches liver cancer cells. Therefore, it is necessary to develop novel strategies and novel nanocarriers that will carry the drug molecules specific to the affected cancerous hepatocytes in an adequate amount and duration within the therapeutic window. Therapeutics and theranostic systems have advantages over conventional chemotherapy due to the high efficacy of drug loading or drug encapsulation efficiency, high cellular uptake, high drug release, and minimum side effects. These nanocarriers possess high drug accumulation in the tumor area while minimizing toxic effects on healthy tissues. This review focuses on the current research on nanocarrier-based therapeutics and theranostic drug delivery systems excluding the negative consequences of nanotechnology in the field of drug delivery systems. However, clinical developments of theranostics nanocarriers for liver cancer are considered outside of the scope of this article. This review discusses only the recent developments of nanocarrier-based drug delivery systems for liver cancer therapy and diagnosis. The negative consequences of individual nanocarrier in the drug delivery system will also not be covered in this review.
    Matched MeSH terms: Drug Delivery Systems/methods*
  12. Dong J, Tao L, Abourehab MAS, Hussain Z
    Int J Biol Macromol, 2018 Sep;116:1268-1281.
    PMID: 29782984 DOI: 10.1016/j.ijbiomac.2018.05.116
    Osteoporosis is a medical condition of fragile bones with an increased susceptibility to fracture. Despite having availability of a wide range of pharmacological agents, prevalence of osteoporosis is continuously escalating. Owing to excellent biomedical achievements of nanomedicines in the last few decades, we aimed combo-delivery of bone anti-resorptive agent, alendronate (ALN), and bone density enhancing drug, curcumin (CUR) in the form of polymeric nanoparticles. To further optimize the therapeutic efficacy, the prepared ALN/CUR nanoparticles (NPs) were decorated with hyaluronic acid (HA) which is a well-documented biomacromolecule having exceptional bone regenerating potential. The optimized nanoformulation was then evaluated for bone regeneration efficacy by assessing time-mannered modulation in the proliferation, differentiation, and mineralization of MC3T3-E1 cells, a pre-osteoblastic model. Moreover, the time-mannered expression of various bone-forming protein biomarkers such as bone morphogenetic protein, runt related transcription factor 2, and osteocalcin were assessed in the cell lysates. Results revealed that HA-ALN/CUR NPs provoke remarkable increase in the proliferation, differentiation, and mineralization in the ECM of MC3T3-E1 cells which ultimately leads to enhanced bone formation. This new strategy of employing simultaneous delivery of anti-resorptive and bone forming agents would open new horizons for scientists as an efficient alternative pharmacotherapy for the management of osteoporosis.
    Matched MeSH terms: Drug Delivery Systems/methods*
  13. Pandey M, Choudhury H, Yi CX, Mun CW, Phing GK, Rou GX, et al.
    Curr Drug Targets, 2018;19(15):1782-1800.
    PMID: 29792143 DOI: 10.2174/1389450119666180523092100
    Diabetes mellitus, a metabolic disorder of glucose metabolism, is mainly associated with insulin resistance to the body cells, or impaired production of insulin by the pancreatic β-cells. Insulin is mainly required to regulate glucose metabolism in type 1 diabetes mellitus patients; however, many patients with type 2 diabetes mellitus also require insulin, especially when their condition cannot be controlled solely by oral hypoglycemic agents. Hence, major research is ongoing attempting to improve the delivery of insulin in order to make it more convenient to patients who experience side effects from the conventional treatment procedure or non-adherence to insulin regimen due to multiple comorbid conditions. Conventionally, insulin is administered via subcutaneous route which is also one of the sole reasons of patient's non-compliance due to the invasiveness of this method. Several attempts have been done to improve patient compliance, reduce side effects, improve delivery adherence, and to enhance the pharmaceutical performance of the insulin therapy. Despite facing substantial challenges in developing efficient delivery systems for insulin, vast research studies have been carried out for the development of smart delivery systems to deliver insulin via ocular, buccal, pulmonary, oral, transdermal, as well as rectal routes. Therefore, the present review was aimed to overview the challenges encountered with the current insulin delivery systems and to summarize recent advancements in technology of various novel insulin delivery systems being discovered and introduced in the current market.
    Matched MeSH terms: Drug Delivery Systems/methods*
  14. Perumalsamy S, Aqilah Mohd Zin NA, Widodo RT, Wan Ahmad WA, Vethakkan SRDB, Huri HZ
    Curr Pharm Des, 2017;23(25):3689-3698.
    PMID: 28625137 DOI: 10.2174/1381612823666170616081256
    BACKGROUND: Chemerin is an adipokine that induces insulin resistance by the mechanism of inflammation in adipose tissue but these are still unclear. A high level of chemerin in humans is considered as a marker of inflammation in insulin resistance and obesity as well as in type 2 diabetes mellitus. Despite the role of chemerin in insulin resistance progression, chemerin as one of the novel adipokines is proposed to be involved in high cancer risk and mortality.

    AIM: The aim of this paper was to review the role of CMKLR-1 receptor and the potential therapeutic target in the management of chemerin induced type 2 diabetes mellitus and cancer.

    PATHOPHYSIOLOGY: Increased chemerin secretion activates an inflammatory response. The inflammatory response will increase the oxidative stress in adipose tissue and consequently results in an insulin-resistant state. The occurrence of inflammation, oxidative stress and insulin resistance leads to the progression of cancers.

    CONCLUSION: Chemerin is one of the markers that may involve in development of both cancer and insulin resistance. Chemokine like receptor- 1 (CMKLR-1) receptor that regulates chemerin levels exhibits a potential therapeutic target for insulin resistance, type 2 diabetes and cancer treatment.

    Matched MeSH terms: Drug Delivery Systems/methods
  15. Shao M, Li S, Tan CP, Kraithong S, Gao Q, Fu X, et al.
    Int J Biol Macromol, 2021 Mar 15;173:118-127.
    PMID: 33444656 DOI: 10.1016/j.ijbiomac.2021.01.043
    In this study, caffeine (CA) was encapsulated into food-grade starch matrices, including swelled starch (SS), porous starch (PS), and V-type starch (VS). The bitterness of the microcapsules and suppression mechanisms were investigated using an electronic tongue, molecular dynamics (MD) simulation and the in vitro release kinetics of CA. All the CA-loaded microcapsules showed a lower bitterness intensity than the control. The MD results proved that the weak interactions between starch and CA resulted in a moderate CA release rate for SS-CA microcapsules. The PS-CA microcapsule presented the longest CA release, up to 40 min, whereas the VS-CA microcapsule completely released CA in 9 min. The CA release rate was found to be related to the microcapsule structure and rehydration properties. A low CA bitterness intensity could be attributed to a delay in the CA release rate and resistance to erosion of the microcapsules. The results of this work are valuable for improving starch-based microcapsules (oral-targeted drug-delivery systems) by suppressing the bitterness of alkaloid compounds.
    Matched MeSH terms: Drug Delivery Systems/methods*
  16. Dabbagh A, Abdullah BJ, Abu Kasim NH, Abdullah H, Hamdi M
    Int J Hyperthermia, 2015 Jun;31(4):375-85.
    PMID: 25716769 DOI: 10.3109/02656736.2015.1006268
    The aim of this paper was to introduce a new mechanism of thermal sensitivity in nanocarriers that results in a relatively low drug release at physiological temperature and rapid release of the encapsulated drug at hyperthermia and thermal ablation temperature range (40-60 °C).
    Matched MeSH terms: Drug Delivery Systems/methods*
  17. Hussein MZ, Al Ali SH, Zainal Z, Hakim MN
    Int J Nanomedicine, 2011;6:1373-83.
    PMID: 21796241 DOI: 10.2147/IJN.S21567
    An ellagic acid (EA)-zinc layered hydroxide (ZLH) nanohybrid (EAN) was synthesized under a nonaqueous environment using EA and zinc oxide (ZnO) as the precursors. Powder X-ray diffraction showed that the basal spacing of the nanohybrid was 10.4 Å, resulting in the spatial orientation of EA molecules between the interlayers of 22.5° from z-axis with two negative charges at 8,8' position of the molecules pointed toward the ZLH interlayers. FTIR study showed that the intercalated EA spectral feature is generally similar to that of EA, but with bands slightly shifted. This indicates that some chemical bonding of EA presence between the nanohybrid interlayers was slightly changed, due to the formation of host-guest interaction. The nanohybrid is of mesopores type with 58.8% drug loading and enhanced thermal stability. The release of the drug active, EA from the nanohybrid was found to be sustained and therefore has good potential to be used as a drug controlled-release formulation. In vitro bioassay study showed that the EAN has a mild effect on the hepatocytes cells, similar to its counterpart, free EA.
    Matched MeSH terms: Drug Delivery Systems/methods*
  18. Abrami M, Golob S, Pontelli F, Chiarappa G, Grassi G, Perissutti B, et al.
    Int J Pharm, 2019 Mar 25;559:373-381.
    PMID: 30716402 DOI: 10.1016/j.ijpharm.2019.01.055
    Bacterial infections represent an important drawback in the orthopaedic field, as they can develop either immediately after surgery procedures or after some years. Specifically, in case of implants, they are alleged to be troublesome as their elimination often compels a surgical removal of the infected implant. A possible solution strategy could involve a local coating of the implant by an antibacterial system, which requires to be easily applicable, biocompatible and able to provide the desired release kinetics for the selected antibacterial drug. Thus, this work focusses on a biphasic system made up by a thermo-reversible gel matrix (Poloxamer 407/water system) hosting a dispersed phase (PLGA micro-particles), containing a model antibacterial drug (vancomycin hydrochloride). In order to understand the key parameters ruling the performance of this delivery system, we developed a mathematical model able to discriminate the drug diffusion inside micro-particles and within the gel phase, eventually providing to predict the drug release kinetics. The model reliability was confirmed by fitting to experimental data, proposing as a powerful theoretical approach to design and optimize such in situ delivery systems.
    Matched MeSH terms: Drug Delivery Systems/methods
  19. Chowdhury MR, Moshikur RM, Wakabayashi R, Tahara Y, Kamiya N, Moniruzzaman M, et al.
    Mol Pharm, 2018 06 04;15(6):2484-2488.
    PMID: 29762034 DOI: 10.1021/acs.molpharmaceut.8b00305
    Paclitaxel (PTX) injection (i.e., Taxol) has been used as an effective chemotherapeutic treatment for various cancers. However, the current Taxol formulation contains Cremophor EL, which causes hypersensitivity reactions during intravenous administration and precipitation by aqueous dilution. This communication reports the preliminary results on the ionic liquid (IL)-based PTX formulations developed to address the aforementioned issues. The formulations were composed of PTX/cholinium amino acid ILs/ethanol/Tween-80/water. A significant enhancement in the solubility of PTX was observed with considerable correlation with the density and viscosity of the ILs, and with the side chain of the amino acids used as anions in the ILs. Moreover, the formulations were stable for up to 3 months. The driving force for the stability of the formulation was hypothesized to be the involvement of different types of interactions between the IL and PTX. In vitro cytotoxicity and antitumor activity of the IL-based formulations were evaluated on HeLa cells. The IL vehicles without PTX were found to be less cytotoxic than Taxol, while both the IL-based PTX formulation and Taxol exhibited similar antitumor activity. Finally, in vitro hypersensitivity reactions were evaluated on THP-1 cells and found to be significantly lower with the IL-based formulation than Taxol. This study demonstrated that specially designed ILs could provide a potentially safer alternative to Cremophor EL as an effective PTX formulation for cancer treatment giving fewer hypersensitivity reactions.
    Matched MeSH terms: Drug Delivery Systems/methods*
  20. Md Moshikur R, Shimul IM, Uddin S, Wakabayashi R, Moniruzzaman M, Goto M
    ACS Appl Mater Interfaces, 2022 Dec 21;14(50):55332-55341.
    PMID: 36508194 DOI: 10.1021/acsami.2c15636
    The transdermal delivery of hydrophilic drugs remains challenging owing to their poor ability to permeate the skin; formulation with oil media is difficult without adding chemical permeation enhancers or co-solvents. Herein, we synthesized 12 oil-miscible ionic liquid (IL) drugs comprising lidocaine-, imipramine-, and levamisole (Lev)-hydrochloride with fatty acid permeation enhancers, i.e., laurate, oleate, linoleate, and stearate as counterions. A set of in vitro and in vivo studies was performed to investigate the potency and deliverability of the transdermal drug formulations. All of the synthesized compounds were freely miscible with pharmaceutically acceptable solvents/agents (i.e., ethanol, N-methyl pyrrolidone, Tween 20, and isopropyl myristate (IPM)). In vitro permeation studies revealed that the oleate-based Lev formulation had 2.6-fold higher skin permeation capability than the Lev salts and also superior ability compared with the laurate-, linoleate-, and stearate-containing samples. Upon in vivo transdermal administration to mice, the peak plasma concentration, elimination half-life, and area under the plasma concentration curve values of Lev-IL were 4.6-, 2.9-, and 5.4-fold higher, respectively, than those of the Lev salt. Furthermore, in vitro skin irritation and in vivo histological studies have demonstrated that Lev-IL has excellent biocompatibility compared with a conventional ionic liquid-based carrier. The results indicate that oil-miscible IL-based drugs provide a simple and scalable strategy for the design of effective transdermal drug delivery systems.
    Matched MeSH terms: Drug Delivery Systems/methods
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links