Displaying publications 61 - 80 of 209 in total

Abstract:
Sort:
  1. Ong ML, Hatle LK, Lai VM, Bosco J
    Int J Clin Pract, 2002 Jun;56(5):345-8.
    PMID: 12137442
    Iron deposition in the heart occurs in beta-thalassaemia major and contributes to cardiac dysfunction. Eighteen patients with beta-thalassaemia major were assessed clinically and had non-invasive investigations. They were young (15.5 +/- 3.6 years). Two patients had clinical heart failure. Doppler echocardiography demonstrated higher transmitral peak flow velocity in early and late diastole compared with controls (e: p<0.05, a: p<0.01). Transtricuspid peak late diastolic flow velocity was higher in patients (p<0.005). Isovolumic relaxation time was shortened (p<0.001). Pulmonary venous flow velocity was higher in diastole than systole (S: 0.51 +/- 0.11 m/s, D: 0.62 +/- 0.08 m/s). Reversal of pulmonary venous flow during atrial systole was seen in eight patients. These diastolic filling abnormalities did not significantly change with blood transfusion. Left ventricular ejection fraction was normal in patients. Two patients had cardiomegaly on chest X-ray. In beta-thalassaemia with iron overload, there is a restrictive pattern of diastolic dysfunction. This is not altered by recent blood transfusion. Left ventricular function remains relatively intact.
    Matched MeSH terms: Electrocardiography/standards
  2. Malarvili MB, Mesbah M
    IEEE Trans Biomed Eng, 2009 Nov;56(11):2594-603.
    PMID: 19628449 DOI: 10.1109/TBME.2009.2026908
    In this paper, we investigate the use of heart rate variability (HRV) for automatic newborn seizure detection. The proposed method consists of a sequence of processing steps, namely, obtaining HRV from the ECG, extracting a discriminating HRV feature set, selecting an optimal subset from the full feature set, and, finally, classifying the HRV into seizure/nonseizure using a supervised statistical classifier. Due to the fact that HRV signals are nonstationary, a set of time-frequency features from the newborn HRV is proposed and extracted. In order to achieve efficient HRV-based automatic newborn seizure detection, a two-phase wrapper-based feature selection technique is used to select the feature subset with minimum redundancy and maximum class discriminability. Tested on ECG recordings obtained from eight newborns with identified EEG seizure, the proposed HRV-based neonatal seizure detection algorithm achieved 85.7% sensitivity and 84.6% specificity. These results suggest that the HRV is sensitive to changes in the cardioregulatory system induced by the seizure, and therefore, can be used as a basis for an automatic seizure detection.
    Matched MeSH terms: Electrocardiography/methods
  3. Azarisman SM, Magdi YA, Noorfaizan S, Oteh M
    N Engl J Med, 2007 Nov 1;357(18):1873-4.
    PMID: 17978302 DOI: 10.1056/NEJMc070990
    Matched MeSH terms: Electrocardiography
  4. Lim MA, Yusof K
    Med J Malaysia, 1973 Dec;28(2):129-31.
    PMID: 4276231
    Matched MeSH terms: Electrocardiography
  5. Kannan P, Raman S, Ramani VS, Jeyamalar R
    Aust N Z J Obstet Gynaecol, 1993 Nov;33(4):424-6.
    PMID: 8179560
    Matched MeSH terms: Electrocardiography
  6. Gupta ED, Sakthiswary R
    Asian Cardiovasc Thorac Ann, 2014 May;22(4):397-401.
    PMID: 24771726 DOI: 10.1177/0218492313484917
    The objectives of this study were to determine the incidence of a myocardial infarction "false alarm" and evaluate the efficacy of the initial electrocardiogram and cardiac enzymes in diagnosing myocardial infarction in Malaysia.
    Matched MeSH terms: Electrocardiography*
  7. Qaisar SM, Mihoub A, Krichen M, Nisar H
    Sensors (Basel), 2021 Feb 22;21(4).
    PMID: 33671583 DOI: 10.3390/s21041511
    The usage of wearable gadgets is growing in the cloud-based health monitoring systems. The signal compression, computational and power efficiencies play an imperative part in this scenario. In this context, we propose an efficient method for the diagnosis of cardiovascular diseases based on electrocardiogram (ECG) signals. The method combines multirate processing, wavelet decomposition and frequency content-based subband coefficient selection and machine learning techniques. Multirate processing and features selection is used to reduce the amount of information processed thus reducing the computational complexity of the proposed system relative to the equivalent fixed-rate solutions. Frequency content-dependent subband coefficient selection enhances the compression gain and reduces the transmission activity and computational cost of the post cloud-based classification. We have used MIT-BIH dataset for our experiments. To avoid overfitting and biasness, the performance of considered classifiers is studied by using five-fold cross validation (5CV) and a novel proposed partial blind protocol. The designed method achieves more than 12-fold computational gain while assuring an appropriate signal reconstruction. The compression gain is 13 times compared to fixed-rate counterparts and the highest classification accuracies are 97.06% and 92.08% for the 5CV and partial blind cases, respectively. Results suggest the feasibility of detecting cardiac arrhythmias using the proposed approach.
    Matched MeSH terms: Electrocardiography
  8. Khalil A, Faisal A, Ng SC, Liew YM, Lai KW
    J Med Imaging (Bellingham), 2017 Jul;4(3):037001.
    PMID: 28840172 DOI: 10.1117/1.JMI.4.3.037001
    A registration method to fuse two-dimensional (2-D) echocardiography images with cardiac computed tomography (CT) volume is presented. The method consists of two major procedures: temporal and spatial registrations. In temporal registration, the echocardiography frames at similar cardiac phases as the CT volume were interpolated based on electrocardiogram signal information, and the noise of the echocardiography image was reduced using the speckle reducing anisotropic diffusion technique. For spatial registration, an intensity-based normalized mutual information method was applied with a pattern search optimization algorithm to produce an interpolated cardiac CT image. The proposed registration framework does not require optical tracking information. Dice coefficient and Hausdorff distance for the left atrium assessments were [Formula: see text] and [Formula: see text], respectively; for left ventricle, they were [Formula: see text] and [Formula: see text], respectively. There was no significant difference in the mitral valve annulus diameter measurement between the manually and automatically registered CT images. The transformation parameters showed small deviations ([Formula: see text] deviation in translation and [Formula: see text] for rotation) between manual and automatic registrations. The proposed method aids the physician in diagnosing mitral valve disease as well as provides surgical guidance during the treatment procedure.
    Matched MeSH terms: Electrocardiography
  9. Sze TL, Abdul Aziz YF, Abu Bakar N, Mohd Sani F, Oemar H
    Iran J Radiol, 2015 Jan;12(1):e6878.
    PMID: 25793089 DOI: 10.5812/iranjradiol.6878
    Coronary artery fistula (CAF) is a rare anomaly of the coronary artery. Patients with this condition are usually asymptomatic. However, cardiac failure may occur later in life due to progressive enlargement of the fistula. Diagnosis is traditionally made by echocardiogram and conventional angiogram. However with the advantage of new technologies such as computed tomography (CT) coronary angiography, the course and communications of these fistulae can be delineated non-invasively and with greater accuracy. We report a case of a left circumflex artery fistula to the coronary sinus which was suspected on echocardiogram and the diagnosis was clinched on ECG-gated CT.
    Matched MeSH terms: Electrocardiography
  10. Salman OH, Rasid MF, Saripan MI, Subramaniam SK
    J Med Syst, 2014 Sep;38(9):103.
    PMID: 25047520 DOI: 10.1007/s10916-014-0103-4
    The healthcare industry is streamlining processes to offer more timely and effective services to all patients. Computerized software algorithm and smart devices can streamline the relation between users and doctors by providing more services inside the healthcare telemonitoring systems. This paper proposes a multi-sources framework to support advanced healthcare applications. The proposed framework named Multi Sources Healthcare Architecture (MSHA) considers multi-sources: sensors (ECG, SpO2 and Blood Pressure) and text-based inputs from wireless and pervasive devices of Wireless Body Area Network. The proposed framework is used to improve the healthcare scalability efficiency by enhancing the remote triaging and remote prioritization processes for the patients. The proposed framework is also used to provide intelligent services over telemonitoring healthcare services systems by using data fusion method and prioritization technique. As telemonitoring system consists of three tiers (Sensors/ sources, Base station and Server), the simulation of the MSHA algorithm in the base station is demonstrated in this paper. The achievement of a high level of accuracy in the prioritization and triaging patients remotely, is set to be our main goal. Meanwhile, the role of multi sources data fusion in the telemonitoring healthcare services systems has been demonstrated. In addition to that, we discuss how the proposed framework can be applied in a healthcare telemonitoring scenario. Simulation results, for different symptoms relate to different emergency levels of heart chronic diseases, demonstrate the superiority of our algorithm compared with conventional algorithms in terms of classify and prioritize the patients remotely.
    Matched MeSH terms: Electrocardiography
  11. Mutlag AA, Ghani MKA, Mohammed MA, Lakhan A, Mohd O, Abdulkareem KH, et al.
    Sensors (Basel), 2021 Oct 19;21(20).
    PMID: 34696135 DOI: 10.3390/s21206923
    In the last decade, the developments in healthcare technologies have been increasing progressively in practice. Healthcare applications such as ECG monitoring, heartbeat analysis, and blood pressure control connect with external servers in a manner called cloud computing. The emerging cloud paradigm offers different models, such as fog computing and edge computing, to enhance the performances of healthcare applications with minimum end-to-end delay in the network. However, many research challenges exist in the fog-cloud enabled network for healthcare applications. Therefore, in this paper, a Critical Healthcare Task Management (CHTM) model is proposed and implemented using an ECG dataset. We design a resource scheduling model among fog nodes at the fog level. A multi-agent system is proposed to provide the complete management of the network from the edge to the cloud. The proposed model overcomes the limitations of providing interoperability, resource sharing, scheduling, and dynamic task allocation to manage critical tasks significantly. The simulation results show that our model, in comparison with the cloud, significantly reduces the network usage by 79%, the response time by 90%, the network delay by 65%, the energy consumption by 81%, and the instance cost by 80%.
    Matched MeSH terms: Electrocardiography*
  12. Ahmed AZ, Satyam SM, Shetty P, D'Souza MR
    Scientifica (Cairo), 2021;2021:6694340.
    PMID: 33510932 DOI: 10.1155/2021/6694340
    Doxorubicin-induced cardiotoxicity is the leading cause of morbidity and mortality among cancer survivors. The present study was aimed to investigate the cardioprotective potential of methyl gallate; an active polyphenolic nutraceutical, against doxorubicin-induced cardiotoxicity in Wistar rats. Twenty-four female Wistar rats (150-200 g) were divided into four groups (n = 6) which consist of normal control (group I), doxorubicin control (group II), test-A (group III), and test-B (group IV). Group III and group IV animals were prophylactically treated with methyl gallate 150 mg/kg/day and 300 mg/kg/day orally, respectively, for seven days. Doxorubicin (25 mg/kg; single dose) was administered through an intraperitoneal route to group II, III, and IV animals on the seventh day to induce acute cardiotoxicity. On the 8th day, besides ECG analysis, serum CK, CK-MB, LDH, AST, MDA, and GSH were assayed. Following gross examination of isolated hearts, histopathological evaluation was performed by light microscopy. A significant (p 
    Matched MeSH terms: Electrocardiography
  13. Satyam SM, Bairy LK, Shetty P, Sainath P, Bharati S, Ahmed AZ, et al.
    Cardiovasc Toxicol, 2023 Feb;23(2):107-119.
    PMID: 36790727 DOI: 10.1007/s12012-023-09784-8
    Doxorubicin is a widely used anticancer drug whose efficacy is limited due to its cardiotoxicity. There is no ideal cardioprotection available against doxorubicin-induced cardiotoxicity. This study aimed to investigate the anticipated cardioprotective potential of metformin and dapagliflozin against doxorubicin-induced acute cardiotoxicity in Wistar rats. At the beginning of the experiment, cardiac screening of experimental animals was done by recording an electrocardiogram (ECG) before allocating them into the groups. Thereafter, a total of thirty healthy adult Wistar rats (150-200 g) were randomly divided into five groups (n = 6) and treated for eight days as follows: group I (normal control), group II (doxorubicin control), group III (metformin 250 mg/kg/day), group IV (metformin 180 mg/kg/day), and group V (dapagliflozin 0.9 mg/kg/day). On the 7th day of the treatment phase, doxorubicin 20 mg/kg was administered intraperitoneal to groups II, III, IV, and V. On the 9th day (immediately after 48 h of doxorubicin administration), blood was collected from anesthetized animals for glucose, lipid profile, CK-MB & AST estimation, and ECG was recorded. Later, animals were sacrificed, and the heart was dissected for histopathological examination. We found that compared to normal control rats, CK-MB, AST, and glucose were significantly increased in doxorubicin control rats. There was a significant reversal of doxorubicin-induced hyperglycemia in the rats treated with metformin 250 mg/kg compared to doxorubicin control rats. Both metformin (180 mg/kg and 250 mg/kg) and dapagliflozin (0.9 mg/kg) significantly altered doxorubicin-induced ECG changes and reduced the levels of cardiac injury biomarkers CK-MB and AST compared to doxorubicin control rats. Metformin and dapagliflozin protected the cellular architecture of the myocardium from doxorubicin-induced myocardial injury. Current study revealed that both metformin and dapagliflozin at the FDA-recommended antidiabetic doses mitigated doxorubicin-induced acute cardiotoxicity in Wistar rats. The obtained data have opened the perspective to perform chronic studies and then to clinical studies to precisely consider metformin and dapagliflozin as potential chemoprotection in the combination of chemotherapy with doxorubicin to limit its cardiotoxicity, especially in patients with comorbid conditions like type II diabetes mellitus.
    Matched MeSH terms: Electrocardiography
  14. Mohamed AL, Yusoff K, Muttalif AR, Khalid BAk
    Med J Malaysia, 1999 Sep;54(3):338-45.
    PMID: 11045060
    Sudden cardiac death is a known complication of acromegaly. Little is known of the exact mechanism leading to sudden cardiac death in these patients. Ventricular tachyarrhythmias may be an important cause. If this is so, clinical markers of ventricular tachyarrhythmias may be more common in this group of patients. The presence of these markers allow better risk stratification among acromegalic patients.
    Matched MeSH terms: Electrocardiography
  15. Alizadehsani R, Abdar M, Roshanzamir M, Khosravi A, Kebria PM, Khozeimeh F, et al.
    Comput Biol Med, 2019 08;111:103346.
    PMID: 31288140 DOI: 10.1016/j.compbiomed.2019.103346
    Coronary artery disease (CAD) is the most common cardiovascular disease (CVD) and often leads to a heart attack. It annually causes millions of deaths and billions of dollars in financial losses worldwide. Angiography, which is invasive and risky, is the standard procedure for diagnosing CAD. Alternatively, machine learning (ML) techniques have been widely used in the literature as fast, affordable, and noninvasive approaches for CAD detection. The results that have been published on ML-based CAD diagnosis differ substantially in terms of the analyzed datasets, sample sizes, features, location of data collection, performance metrics, and applied ML techniques. Due to these fundamental differences, achievements in the literature cannot be generalized. This paper conducts a comprehensive and multifaceted review of all relevant studies that were published between 1992 and 2019 for ML-based CAD diagnosis. The impacts of various factors, such as dataset characteristics (geographical location, sample size, features, and the stenosis of each coronary artery) and applied ML techniques (feature selection, performance metrics, and method) are investigated in detail. Finally, the important challenges and shortcomings of ML-based CAD diagnosis are discussed.
    Matched MeSH terms: Electrocardiography
  16. Tan SK, Yeong CH, Raja Aman RRA, Ng KH, Abdul Aziz YF, Chee KH, et al.
    Br J Radiol, 2018 Jul;91(1088):20170874.
    PMID: 29493261 DOI: 10.1259/bjr.20170874
    OBJECTIVE: This study aimed (1) to perform a systematic review on scanning parameters and contrast medium (CM) reduction methods used in prospectively electrocardiography (ECG-triggered low tube voltage coronary CT angiography (CCTA), (2) to compare the achievable dose reduction and image quality and (3) to propose appropriate scanning techniques and CM administration methods.

    METHODS: A systematic search was performed in PubMed, the Cochrane library, CINAHL, Web of Science, ScienceDirect and Scopus, where 20 studies were selected for analysis of scanning parameters and CM reduction methods.

    RESULTS: The mean effective dose (HE) ranged from 0.31 to 2.75 mSv at 80 kVp, 0.69 to 6.29 mSv at 100 kVp and 1.53 to 10.7 mSv at 120 kVp. Radiation dose reductions of 38 to 83% at 80 kVp and 3 to 80% at 100 kVp could be achieved with preserved image quality. Similar vessel contrast enhancement to 120 kVp could be obtained by applying iodine delivery rate (IDR) of 1.35 to 1.45 g s-1 with total iodine dose (TID) of between 10.9 and 16.2 g at 80 kVp and IDR of 1.08 to 1.70 g s-1 with TID of between 18.9 and 20.9 g at 100 kVp.

    CONCLUSION: This systematic review found that radiation doses could be reduced to a rate of 38 to 83% at 80 kVp, and 3 to 80% at 100 kVp without compromising the image quality. Advances in knowledge: The suggested appropriate scanning parameters and CM reduction methods can be used to help users in achieving diagnostic image quality with reduced radiation dose.

    Matched MeSH terms: Electrocardiography*
  17. Piccini JP, Stromberg K, Jackson KP, Laager V, Duray GZ, El-Chami M, et al.
    Heart Rhythm, 2017 05;14(5):685-691.
    PMID: 28111349 DOI: 10.1016/j.hrthm.2017.01.026
    BACKGROUND: Device repositioning during Micra leadless pacemaker implantation may be required to achieve optimal pacing thresholds.

    OBJECTIVE: The purpose of this study was to describe the natural history of acute elevated Micra vs traditional transvenous lead thresholds.

    METHODS: Micra study VVI patients with threshold data (at 0.24 ms) at implant (n = 711) were compared with Capture study patients with de novo transvenous leads at 0.4 ms (n = 538). In both cohorts, high thresholds were defined as >1.0 V and very high as >1.5 V. Change in pacing threshold (0-6 months) with high (1.0 to ≤1.5 V) or very high (>1.5 V) thresholds were compared using the Wilcoxon signed-rank test.

    RESULTS: Of the 711 Micra patients, 83 (11.7%) had an implant threshold of >1.0 V at 0.24 ms. Of the 538 Capture patients, 50 (9.3%) had an implant threshold of >1.0 V at 0.40 ms. There were no significant differences in patient characteristics between those with and without an implant threshold of >1.0 V, with the exception of left ventricular ejection fraction in the Capture cohort (high vs low thresholds, 53% vs 58%; P = .011). Patients with an implant threshold of >1.0 V decreased significantly (P < .001) in both cohorts. Micra patients with high and very high thresholds decreased significantly (P < .01) by 1 month, with 87% and 85% having 6-month thresholds lower than the implant value. However, when the capture threshold at implant was >2 V, only 18.2% had a threshold of ≤1 V at 6 months and 45.5% had a capture threshold of >2 V.

    CONCLUSIONS: Pacing thresholds in most Micra patients with elevated thresholds decrease after implant. Micra device repositioning may not be necessary if the pacing threshold is ≤2 V.

    Matched MeSH terms: Electrocardiography*
  18. Acharya UR, Faust O, Sree V, Swapna G, Martis RJ, Kadri NA, et al.
    Comput Methods Programs Biomed, 2014;113(1):55-68.
    PMID: 24119391 DOI: 10.1016/j.cmpb.2013.08.017
    Coronary artery disease (CAD) is one of the dangerous cardiac disease, often may lead to sudden cardiac death. It is difficult to diagnose CAD by manual inspection of electrocardiogram (ECG) signals. To automate this detection task, in this study, we extracted the heart rate (HR) from the ECG signals and used them as base signal for further analysis. We then analyzed the HR signals of both normal and CAD subjects using (i) time domain, (ii) frequency domain and (iii) nonlinear techniques. The following are the nonlinear methods that were used in this work: Poincare plots, Recurrence Quantification Analysis (RQA) parameters, Shannon entropy, Approximate Entropy (ApEn), Sample Entropy (SampEn), Higher Order Spectra (HOS) methods, Detrended Fluctuation Analysis (DFA), Empirical Mode Decomposition (EMD), Cumulants, and Correlation Dimension. As a result of the analysis, we present unique recurrence, Poincare and HOS plots for normal and CAD subjects. We have also observed significant variations in the range of these features with respect to normal and CAD classes, and have presented the same in this paper. We found that the RQA parameters were higher for CAD subjects indicating more rhythm. Since the activity of CAD subjects is less, similar signal patterns repeat more frequently compared to the normal subjects. The entropy based parameters, ApEn and SampEn, are lower for CAD subjects indicating lower entropy (less activity due to impairment) for CAD. Almost all HOS parameters showed higher values for the CAD group, indicating the presence of higher frequency content in the CAD signals. Thus, our study provides a deep insight into how such nonlinear features could be exploited to effectively and reliably detect the presence of CAD.
    Matched MeSH terms: Electrocardiography
  19. Ng CF, Tiau PW, Tan HJ, Norlinah MI
    J R Coll Physicians Edinb, 2019 Mar;49(1):37-39.
    PMID: 30838990 DOI: 10.4997/JRCPE.2019.108
    Levodopa is the most effective medical treatment for Parkinson's disease (PD) to date. As dopamine is known to increase cardiac inotropism and vasomotor tone, peripheral dopamine decarboxylase inhibitor is coadministered to suppress the peripheral conversion of levodopa to dopamine. Levodopa poses potential cardiovascular risks, thus its use in patients with existing coronary artery disease needs to be carefully monitored. We report a case of an elderly male with newly diagnosed PD who developed non-ST-elevation myocardial infarction following levodopa (Madopar) initiation.
    Matched MeSH terms: Electrocardiography
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links