Displaying publications 61 - 80 of 118 in total

Abstract:
Sort:
  1. Whba R, Su'ait MS, Tian Khoon L, Ibrahim S, Mohamed NS, Ahmad A
    Polymers (Basel), 2021 Feb 23;13(4).
    PMID: 33672185 DOI: 10.3390/polym13040660
    The exploitation of epoxidized natural rubber (ENR) in electrochemical applications is approaching its limits because of its poor thermo-mechanical properties. These properties could be improved by chemical and/or physical modification, including grafting and/or crosslinking techniques. In this work, acrylonitrile (ACN) has been successfully grafted onto ENR- 25 by a radical photopolymerization technique. The effect of (ACN to ENR) mole ratios on chemical structure and interaction, thermo-mechanical behaviour and that related to the viscoelastic properties of the polymer was investigated. The existence of the -C≡N functional group at the end-product of ACN-g-ENR is confirmed by infrared (FT-IR) and nuclear magnetic resonance (NMR) analyses. An enhanced grafting efficiency (~57%) was obtained after ACN was grafted onto the isoprene unit of ENR- 25 and showing a significant improvement in thermal stability and dielectric properties. The viscoelastic behaviour of the sample analysis showed an increase of storage modulus up to 150 × 103 MPa and the temperature of glass transition (Tg) was between -40 and 10 °C. The loss modulus, relaxation process, and tan delta were also described. Overall, the ACN-g-ENR shows a distinctive improvement in characteristics compared to ENR and can be widely used in many applications where natural rubber is used but improved thermal and mechanical properties are required. Likewise, it may also be used in electronic applications, for example, as a polymer electrolyte in batteries or supercapacitor.
    Matched MeSH terms: Electronics
  2. Ahmad NF, Komatsu K, Iwasaki T, Watanabe K, Taniguchi T, Mizuta H, et al.
    Sci Rep, 2019 Feb 28;9(1):3031.
    PMID: 30816251 DOI: 10.1038/s41598-019-39909-5
    We report on the observation of quantum transport and interference in a graphene device that is attached with a pair of split gates to form an electrostatically-defined quantum point contact (QPC). In the low magnetic field regime, the resistance exhibited Fabry-Pérot (FP) resonances due to np'n(pn'p) cavities formed by the top gate. In the quantum Hall (QH) regime with a high magnetic field, the edge states governed the phenomena, presenting a unique condition where the edge channels of electrons and holes along a p-n junction acted as a solid-state analogue of a monochromatic light beam. We observed a crossover from the FP to QH regimes in ballistic graphene QPC under a magnetic field with varying temperatures. In particular, the collapse of the QH effect was elucidated as the magnetic field was decreased. Our high-mobility graphene device enabled observation of such quantum coherence effects up to several tens of kelvins. The presented device could serve as one of the key elements in future electronic quantum optic devices.
    Matched MeSH terms: Electronics
  3. Mohd Hassan S, Sulaiman Z, Tengku Ismail TA
    Malays Fam Physician, 2021 Mar 25;16(1):18-30.
    PMID: 33948139 DOI: 10.51866/rv0997
    Objective: This article aims to review the literature published over the past five decades related to the experiences of women who have undergone induced lactation.

    Methods: A comprehensive electronic search was conducted using PubMed, the Library of Congress, Google Scholar, SAGE, and ScienceDirect. The following search keywords were used: adoptive breastfeeding, induced lactation, non-puerperal lactation, extraordinary breastfeeding, and milk kinship. The search was restricted to articles written in English and published from 1956 to 2019. All study designs were included except for practice protocols.

    Results: A total of 50 articles about induced lactation were retrieved. Of these, 17 articles identified the experiences of women who underwent induced lactation. The articles included original papers (n=7), reviews (n=5), and case reports (n=5). Four articles were specifically related to Malaysia, and the others were international. These 17 articles concerning the experiences of women who induced lactation will be reviewed based on four themes related to inducing lactation: (a) understanding women's perception of satisfaction, (b) emotional aspects, (c) enabling factors, and (d) challenges.

    Conclusion: Identifying a total of only 17 articles on induced lactation published over the last 53 years suggests that the subject is understudied. This review provides emerging knowledge regarding the experiences of women who have induced lactation in terms of satisfaction, emotions, enabling factors and challenges related to inducing lactation.

    Matched MeSH terms: Electronics
  4. Sidhu P, Shankargouda S, Dicksit DD, Mahdey HM, Muzaffar D, Arora S
    J Endod, 2016 Apr;42(4):622-5.
    PMID: 26850688 DOI: 10.1016/j.joen.2015.12.027
    INTRODUCTION: Use of mobile phone has been prohibited in many hospitals to prevent interference with medical devices. Electromagnetic radiation emitted from cellular phones might interfere with electronic working length determination. The purpose of this in vitro study was to evaluate the effect of a smart phone (Samsung Galaxy Note Edge) on working length determination of electronic apex locators (EALs) Propex II and Rootor.

    METHODS: Fifteen intact, non-carious single-rooted teeth were decoronated at the cementoenamel junction. Visually, working length was determined by using a #15 K-file under stereomicroscope (×20). The effect of cellular phones on electronic working length (EWL) was determined under 2 experimental settings: (1) in a closed room with poor signal strength and (2) in a polyclinic set up with good signal strength and 5 conditions: (1) electronically, without cellular phone in room; (2) electronically, with cellular phone in physical contact with EAL; (3) electronically, with mobile phone in physical contact with EAL and in calling mode for a period of 25 seconds; (4) electronically, mobile phone placed at a distance of 40 cm from the EAL; and (5) electronically, mobile phone placed at a distance of 40 cm and in calling mode for a period of 25 seconds. The EWL was measured 3 times per tooth under each condition. Stability of the readings was scored from 1 to 3: (1) good stability, (2) stable reading after 1 attempt, and (3) stable reading after 2 attempts. The data were compared by using analysis of variance.

    RESULTS: The EWL measurements were not influenced by the presence of cellular phone and could be determined under all experimental conditions.

    CONCLUSIONS: Within the limitations of this study, it can be concluded that mobile phones do not interfere with the EWL determination.

    Matched MeSH terms: Electronics, Medical/instrumentation*
  5. Tan GL
    J Hum Ergol (Tokyo), 1996 Jun;25(1):49-62.
    PMID: 9551132 DOI: 10.11183/jhe1972.25.38
    The analyses of a few tasks were carried out in an electronics factory. The main objectives are to identify the ergonomic and biomechanical hazards of problem work tasks, to analyze each task systematically in order to evaluate the workers' exposures to the risk factors of force, posture pressure and repetition and to make recommendations to reduce the risks and hazards. The methodology includes objective measures--detailed analysis by going through training manuals, job description and production records. Subjective measures include interviewing the operator and supervisors informally, the operators were also required to fill in a structured questionnaire. The paper concludes by making recommendations to reduce the ergonomic hazards by engineering solutions, redesign or administrative controls or the implementation of procedures.
    Matched MeSH terms: Electronics*
  6. Fadzidah Mohd Idris, Khamirul Amin Matori, Idza Riati Ibrahim, Rodziah Nazlan, Mohd Shamsul Ezzad Shafie
    MyJurnal
    The rapid growth of electronic systems and devices operating within the gigahertz (GHz) frequency range has increased electromagnetic interference. In order to eliminate or reduce the spurious electromagnetic radiation levels more closely in different applications, there is strong research interest in electromagnetic absorber technology. Moreover, there is still a lack of ability to absorb electromagnetic radiation in a broad frequency range using thin thickness. Thus, this study examined the effect of incorporating magnetic and dielectric materials into the polymer matrix for the processing of radar absorbing materials. The experiment evaluated the sample preparation with different weight percentages of multi-walled carbon nanotubes (MWCNT) mixed with Ni0.5Zn0.5Fe2O4 (Nickel-Zinc-Ferrite) loaded into epoxy (P) as a matrix. The prepared samples were analysed by examining the reflectivity measurements in the 8 – 18 GHz frequency range and conducting a morphological study using scanning electron microscopy analyses. The correlation of the results showed that different amounts of MWCNT influenced the performance of the microwave absorber. As the amount of MWCNTs increased, the reflection loss (RL) peak shifted towards a lower frequency range and the trend was similar for all thicknesses. The highest RL was achieved when the content of MWCNTs was 2 wt% with a thickness of 2 mm with an RL of – 14 dB at 16 GHz. The 2.5 GHz bandwidth corresponded to the RL below -10 dB (90% absorption) in the range of 14.5 – 17 GHz. This study showed that the proposed experimental route provided flexible absorbers with suitable absorption values by mixing only 2 wt% of MWCNTs.

    Matched MeSH terms: Electronics
  7. Souadia Z, Bouhemadou A, Bin-Omran S, Khenata R, Al-Douri Y, Al Essa S
    J Mol Graph Model, 2019 07;90:77-86.
    PMID: 31031219 DOI: 10.1016/j.jmgm.2019.04.008
    Structural parameters, electronic structure and optical properties of the dialkali metal monotelluride M2Te (M = Li, Na, K and Rb) compounds in the cubic antifluorite structure were investigated via ab initio calculations using the all electron linearized augmented plane wave approach based on density functional theory with and without including spin-orbit coupling (SOC). The exchange-correlation interactions were described within the PBEsol version of the generalized gradient approximation and Tran-Blaha modified Becke-Johnson potential (TB-mBJ). Optimized equilibrium lattice parameters are in excellent accordance with existing measured ones. Computed energy band dispersions show that the studied compounds are large band gap materials. Inclusion of SOC reduces the band gap value compared to the corresponding one calculated without including SOC. Determination of the energy band character and interatomic bonding nature are performed using the densities of states diagrams and charge density distribution map. Linear optical function spectra are predicted for a wide energy range and the origin of the dielectric function spectrum peaks are determined.
    Matched MeSH terms: Electronics/methods
  8. Yusof MYPM, Teo CH, Ng CJ
    BMC Med Ethics, 2022 Nov 21;23(1):117.
    PMID: 36414962 DOI: 10.1186/s12910-022-00849-x
    BACKGROUND: The research shows a growing trend in using an electronic platform to supplement or replace traditional paper-based informed consent processes. Instead of the traditionally written informed consent document, electronic informed consent (eConsent) may be used to assess the research subject's comprehension of the information presented. By doing so, respect for persons as one of the research ethical principles can be upheld. Furthermore, these electronic methods may reduce potential airborne infection exposures, particularly during the pandemic, thereby adhering to the beneficence and nonmaleficence principle. This scoping review aims to identify the ethics related criteria that have been included in electronic informed consent processes and to synthesize and map these criteria to research ethics principles, in order to identify the gaps, if any, in current electronic informed consent processes.

    METHODS: The search was performed based on internet search and three main databases: PubMed, SCOPUS and EBSCO. PRISMA Extension for Scoping Reviews (PRISMA-ScR): Checklist and Explanation guideline was used to report this work.

    RESULTS: Of 34 studies that met the inclusion criteria, 242 essential original constructs were collated, and 7 concepts were derived. Digital content showed the highest percentage of collated original constructs (27%, n = 65) followed by accessibility (24%, n = 56), comprehension engagement (18%, n = 43), autonomy (14%, n = 34), confidentiality (11%, n = 25), language (5%, n = 13), and parental consent (1%, n = 2). Twenty-five new items were synthesized for eConsent criteria which may provide guidance for ethical review of research involving eConsent.

    CONCLUSION: The current study adds significant value to the corpus of knowledge in research ethics by providing ethical criteria on electronic informed consent based on evidence-based data. The new synthesized items in the criteria can be readily used as an initial guide by the IRB/REC members during a review process on electronic informed consent and useful to the future preparation of a checklist.

    Matched MeSH terms: Electronics
  9. Yang Y, Fedorov G, Shafranjuk SE, Klapwijk TM, Cooper BK, Lewis RM, et al.
    Nano Lett., 2015 Dec 09;15(12):7859-66.
    PMID: 26506109 DOI: 10.1021/acs.nanolett.5b02564
    Van Hove singularities (VHSs) are a hallmark of reduced dimensionality, leading to a divergent density of states in one and two dimensions and predictions of new electronic properties when the Fermi energy is close to these divergences. In carbon nanotubes, VHSs mark the onset of new subbands. They are elusive in standard electronic transport characterization measurements because they do not typically appear as notable features and therefore their effect on the nanotube conductance is largely unexplored. Here we report conductance measurements of carbon nanotubes where VHSs are clearly revealed by interference patterns of the electronic wave functions, showing both a sharp increase of quantum capacitance, and a sharp reduction of energy level spacing, consistent with an upsurge of density of states. At VHSs, we also measure an anomalous increase of conductance below a temperature of about 30 K. We argue that this transport feature is consistent with the formation of Cooper pairs in the nanotube.
    Matched MeSH terms: Electronics
  10. Al-Ta'ii HM, Periasamy V, Amin YM
    Sensors (Basel), 2015;15(5):11836-53.
    PMID: 26007733 DOI: 10.3390/s150511836
    Detection of nuclear radiation such as alpha particles has become an important field of research in recent history due to nuclear threats and accidents. In this context; deoxyribonucleic acid (DNA) acting as an organic semiconducting material could be utilized in a metal/semiconductor Schottky junction for detecting alpha particles. In this work we demonstrate for the first time the effect of alpha irradiation on an Al/DNA/p-Si/Al Schottky diode by investigating its current-voltage characteristics. The diodes were exposed for different periods (0-20 min) of irradiation. Various diode parameters such as ideality factor, barrier height, series resistance, Richardson constant and saturation current were then determined using conventional, Cheung and Cheung's and Norde methods. Generally, ideality factor or n values were observed to be greater than unity, which indicates the influence of some other current transport mechanism besides thermionic processes. Results indicated ideality factor variation between 9.97 and 9.57 for irradiation times between the ranges 0 to 20 min. Increase in the series resistance with increase in irradiation time was also observed when calculated using conventional and Cheung and Cheung's methods. These responses demonstrate that changes in the electrical characteristics of the metal-semiconductor-metal diode could be further utilized as sensing elements to detect alpha particles.
    Matched MeSH terms: Electronics/instrumentation*
  11. Dey D, De D, Ahmadian A, Ghaemi F, Senu N
    Nanoscale Res Lett, 2021 Jan 29;16(1):20.
    PMID: 33512575 DOI: 10.1186/s11671-020-03467-x
    Doping is the key feature in semiconductor device fabrication. Many strategies have been discovered for controlling doping in the area of semiconductor physics during the past few decades. Electrical doping is a promising strategy that is used for effective tuning of the charge populations, electronic properties, and transmission properties. This doping process reduces the risk of high temperature, contamination of foreign particles. Significant experimental and theoretical efforts are demonstrated to study the characteristics of electrical doping during the past few decades. In this article, we first briefly review the historical roadmap of electrical doping. Secondly, we will discuss electrical doping at the molecular level. Thus, we will review some experimental works at the molecular level along with we review a variety of research works that are performed based on electrical doping. Then we figure out importance of electrical doping and its importance. Furthermore, we describe the methods of electrical doping. Finally, we conclude with a brief comparative study between electrical and conventional doping methods.
    Matched MeSH terms: Electronics
  12. Ooi PC, Mohammad Haniff MAS, Mohd Razip Wee MF, Goh BT, Dee CF, Mohamed MA, et al.
    Sci Rep, 2019 May 01;9(1):6761.
    PMID: 31043694 DOI: 10.1038/s41598-019-43279-3
    In the interest of the trend towards miniaturization of electronic gadgets, this study demonstrates a high-density data storage device with a very simple three-stacking layer consisting of only one charge trapping layer. A simple solution-processed technique has been used to fabricate the tristable non-volatile memory. The three-stacking layer was constructed in between two metals to form a two-terminal metal-insulator-metal structure. The fabricated device showed a large multilevel memory hysteresis window with a measured ON/OFF current ratio of 107 that might be attributed to the high charge trapped in molybdenum disulphide (MoS2) flakes-graphene quantum dots (GQDs) heterostructure. Transmission electron microscopy was performed to examine the orientation of MoS2-GQD and mixture dispersion preparation method. The obtained electrical data was used further to speculate the possible transport mechanisms through the fabricated device by a curve fitting technique. Also, endurance cycle and retention tests were performed at room temperature to investigate the stability of the device.
    Matched MeSH terms: Electronics
  13. Mahmud I, Sultana S, Rahman A, Ramayah T, Cheng Ling T
    Waste Manag Res, 2020 Dec;38(12):1438-1449.
    PMID: 32364437 DOI: 10.1177/0734242X20914753
    Each year Bangladesh produces around 400,000 metric tonnes of e-waste. E-waste accumulation is expected to increase by 20% annually. In order to facilitate e-waste recycling, it is crucial to identify the factors. In this study, building on the stimulus-organism-response framework, we develop a research model to explore the effect of information publicity, ascription of responsibility and convenience of recycling on the recycling attitude, subjective norm, personal norm and perceived behaviour control which lead to recycling intention. Data were gathered from 127 small and medium electronics store managers. The structural equation modelling technique was used to test the paths. The result suggests a significant influence of the element of stimulus (S) on the element of organism (O). The relationship between the element of organism (O) and the element of response (R) is partial. This paper contributes to the body of work dedicated to helping us better understand the recycling behaviour from the stimulus-organism-response perspective. From the viewpoint of practice, this research sheds light on some of the challenges that the implementer might face when making strategy and policy for e-waste management in Bangladesh.
    Matched MeSH terms: Electronics
  14. Hassan H, Jin B, Dai S
    Environ Technol, 2021 Apr 01.
    PMID: 33749543 DOI: 10.1080/09593330.2021.1907451
    The interactions within microbial, chemical and electronic elements in microbial fuel cell (MFC) system can be crucial for its bio-electrochemical activities and overall performance. Therefore, this study explored polynomial models by response surface methodology (RSM) to better understand interactions among anode pH, cathode pH and inoculum size for optimising MFC system for generation of electricity and degradation of 2,4-dichlorophenol. A statistical central composite design by RSM was used to develop the quadratic model designs. The optimised parameters were determined and evaluated by statistical results and the best MFC systematic outcomes in terms of current generation and chlorophenol degradation. Statistical results revealed that the optimum current density of 106 mA/m2 could be achieved at anode pH 7.5, cathode pH 6.3-6.6 and 21-28% for inoculum size. Anode-cathode pHs interaction was found to positively influence the current generation through extracellular electron transfer mechanism. The phenolic degradation was found to have lower response using these three parameter interactions. Only inoculum size-cathode pH interaction appeared to be significant where the optimum predicted phenolic degradation could be attained at pH 7.6 for cathode pH and 29.6% for inoculum size.
    Matched MeSH terms: Electronics
  15. He Y, Kiehbadroudinezhad M, Hosseinzadeh-Bandbafha H, Gupta VK, Peng W, Lam SS, et al.
    Environ Pollut, 2024 Feb 01;342:123081.
    PMID: 38072018 DOI: 10.1016/j.envpol.2023.123081
    E-waste, encompassing discarded materials from outdated electronic equipment, often ends up intermixed with municipal solid waste, leading to improper disposal through burial and incineration. This improper handling releases hazardous substances into water, soil, and air, posing significant risks to ecosystems and human health, ultimately entering the food chain and water supply. Formal e-waste recycling, guided by circular economy models and zero-discharge principles, offers potential solutions to this critical challenge. However, implementing a circular economy for e-waste management due to chemical and energy consumption may cause environmental impacts. Consequently, advanced sustainability assessment tools, such as Life Cycle Assessment (LCA), have been applied to investigate e-waste management strategies. While LCA is a standardized methodology, researchers have employed various routes for environmental assessment of different e-waste management methods. However, to the authors' knowledge, there lacks a comprehensive study focusing on LCA studies to discern the opportunities and limitations of this method in formal e-waste management strategies. Hence, this review aims to survey the existing literature on the LCA of e-waste management under a circular economy, shedding light on the current state of research, identifying research gaps, and proposing future research directions. It first explains various methods of managing e-waste in the circular economy. This review then evaluates and scrutinizes the LCA approach in implementing the circular bioeconomy for e-waste management. Finally, it proposes frameworks and procedures to enhance the applicability of the LCA method to future e-waste management research. The literature on the LCA of e-waste management reveals a wide variation in implementing LCA in formal e-waste management, resulting in diverse results and findings in this field. This paper underscores that LCA can pinpoint the environmental hotspots for various pathways of formal e-waste recycling, particularly focusing on metals. It can help address these concerns and achieve greater sustainability in e-waste recycling, especially in pyrometallurgical and hydrometallurgical pathways. The recovery of high-value metals is more environmentally justified compared to other metals. However, biometallurgical pathways remain limited in terms of environmental studies. Despite the potential for recycling e-waste into plastic or glass, there is a dearth of robust background in LCA studies within this sector. This review concludes that LCA can offer valuable insights for decision-making and policy processes on e-waste management, promoting environmentally sound e-waste recycling practices. However, the accuracy of LCA results in e-waste recycling, owing to data requirements, subjectivity, impact category weighting, and other factors, remains debatable, emphasizing the need for more uncertainty analysis in this field.
    Matched MeSH terms: Electronics
  16. Uzir MUH, Jerin I, Al Halbusi H, Hamid ABA, Latiff ASA
    Heliyon, 2020 Dec;6(12):e05710.
    PMID: 33367128 DOI: 10.1016/j.heliyon.2020.e05710
    Customer is considered as the king in the world of business. The issue of customer satisfaction in electronics home appliances has received greater attention from academics and practitioners. In other words, customer satisfaction is a vital consideration in marketing. With the development of technology, new and innovative electronic home appliances are available in the market. Customers purchase and use the costly electronic home appliances where the satisfaction issue is an important concern. In Bangladesh, working families find the electronic home appliance very necessary. Companies offer state-of- the-art appliances for customers' household works. Therefore, the study intends to investigate the effect of product quality (PQ), quality of service (SQ) and perceived value on customer satisfaction (CS). In addition, this study also seeks this relationship shaped by customer's perceived value (CPV) as a key mechanism and interacted by social media usage. A total of 300 households were selected on a judgmental basis from Dhaka city in Bangladesh using a structured questionnaire. Collected data were CB-SEM (AMOS-v24) and SPSS. The findings showed PQ and SQ have positive effects on CS; SQ affects, but PQ does not affect CPV. CPV has a mixing mediating effect on SQ and CS relationship and PQ and CS relationship. Importantly, the positive impact of PQ, SQ and CPV is greater on customers who exhibit higher social media use. The conceptual framework was buttressed by EDT theory. The study contributed to contextual and theoretical knowledge in regards to home appliances. The practicing managers can collect an insight of customer satisfaction for their business.
    Matched MeSH terms: Electronics
  17. Noorsal E, Sooksood K, Bihr U, Becker J, Ortmanns M
    PMID: 23366775 DOI: 10.1109/EMBC.2012.6346814
    This paper describes how to employ distributed clock gating to achieve an overall low power design of a programmable waveform generator intended for a neural stimulator. The power efficiency is enabled using global timing control combined with local amplitude distribution over a bus to the local stimulator frontends. This allows the combination of local and global clock gating for complete sub-blocks of the design. A counter and a shifter employed at the local digital stimulator reduce the design complexity for the waveform generation and thus the overall power consumptions. The average power results indicate that 63% power can be saved for the global stimulator control unit and 89-96% power can be saved for the local digital stimulator by using the proposed approach. The circuit has been implemented and successfully tested in a 0.35 µm AMS HVCMOS technology.
    Matched MeSH terms: Electronics, Medical*
  18. Chiari L, Duque HV, Jones DB, Thorn PA, Pettifer Z, da Silva GB, et al.
    J Chem Phys, 2014 Jul 14;141(2):024301.
    PMID: 25028013 DOI: 10.1063/1.4885856
    We report on measurements of differential cross sections (DCSs) for electron impact excitation of a series of Rydberg electronic-states in α-tetrahydrofurfuryl alcohol (THFA). The energy range of these experiments was 20-50 eV, while the scattered electron was detected in the 10°-90° angular range. There are currently no other experimental data or theoretical computations against which we can directly compare the present measured results. Nonetheless, we are able to compare our THFA DCSs with earlier cross section measurements for Rydberg-state electronic excitation for tetrahydrofuran, a similar cyclic ether, from Do et al. [J. Chem. Phys. 134, 144302 (2011)]. In addition, "rotationally averaged" elastic DCSs, calculated using our independent atom model with screened additivity rule correction approach are also reported. Those latter results give integral cross sections consistent with the optical theorem, and supercede those from the only previous study of Milosavljević et al. [Eur. Phys. J. D 40, 107 (2006)].
    Matched MeSH terms: Electronics*
  19. Bhuiyan MS, Choudhury IA, Dahari M
    Biol Cybern, 2015 Apr;109(2):141-62.
    PMID: 25491411 DOI: 10.1007/s00422-014-0635-1
    Development of an advanced control system for prostheses (artificial limbs) is necessary to provide functionality, effectiveness, and preferably the feeling of a sound living limb. The development of the control system has introduced varieties of control strategies depending on the application. This paper reviews some control systems used for prosthetics, orthotics, and exoskeletons. The advantages and limitations of different control systems for particular applications have been discussed and presented in a comparative manner to help in deciding the appropriate method for pertinent application.
    Matched MeSH terms: Electronics, Medical
  20. Affa Rozana Abdul Rashid, Nur Insyierah Md Sarif, Khadijah Ismail
    MyJurnal
    The consumption of low-power electronic devices has increased rapidly, where almost all applications use power electronic devices. Due to the increase in portable electronic devices’ energy consumption, the piezoelectric material is proposed as one of the alternatives of the significant alternative energy harvesters. This study aims to create a prototype of “Smart Shoes” that can generate electricity using three different designs embedded by piezoelectric materials: ceramic, polymer, and a combination of both piezoelectric materials. The basic principle for smart shoes’ prototype is based on the pressure produced from piezoelectric material converted from mechanical energy into electrical energy. The piezoelectric material was placed into the shoes’ sole, and the energy produced due to the pressure from walking, jogging, and jumping was measured. The energy generated was stored in a capacitor as piezoelectric material produced a small scale of energy harvesting. The highest energy generated was produced by ceramic piezoelectric material under jumping activity, which was 1.804 mJ. Polymer piezoelectric material produced very minimal energy, which was 55.618 mJ. The combination of both piezoelectric materials produced energy, which was 1.805 mJ from jumping activity.

    Matched MeSH terms: Electronics
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links