Displaying publications 61 - 72 of 72 in total

Abstract:
Sort:
  1. Mas'ud AA, Sundaram A, Ardila-Rey JA, Schurch R, Muhammad-Sukki F, Bani NA
    Sensors (Basel), 2021 Apr 06;21(7).
    PMID: 33917472 DOI: 10.3390/s21072562
    In high-voltage (HV) insulation, electrical trees are an important degradation phenomenon strongly linked to partial discharge (PD) activity. Their initiation and development have attracted the attention of the research community and better understanding and characterization of the phenomenon are needed. They are very damaging and develop through the insulation material forming a discharge conduction path. Therefore, it is important to adequately measure and characterize tree growth before it can lead to complete failure of the system. In this paper, the Gaussian mixture model (GMM) has been applied to cluster and classify the different growth stages of electrical trees in epoxy resin insulation. First, tree growth experiments were conducted, and PD data captured from the initial to breakdown stage of the tree growth in epoxy resin insulation. Second, the GMM was applied to categorize the different electrical tree stages into clusters. The results show that PD dynamics vary with different stress voltages and tree growth stages. The electrical tree patterns with shorter breakdown times had identical clusters throughout the degradation stages. The breakdown time can be a key factor in determining the degradation levels of PD patterns emanating from trees in epoxy resin. This is important in order to determine the severity of electrical treeing degradation, and, therefore, to perform efficient asset management. The novelty of the work presented in this paper is that for the first time the GMM has been applied for electrical tree growth classification and the optimal values for the hyperparameters, i.e., the number of clusters and the appropriate covariance structure, have been determined for the different electrical tree clusters.
    Matched MeSH terms: Epoxy Resins
  2. Farea M, Masudi S, Wan Bakar WZ
    Aust Endod J, 2010 Aug;36(2):48-53.
    PMID: 20666748 DOI: 10.1111/j.1747-4477.2009.00187.x
    The aim of this study was to evaluate in vitro the apical sealing ability of cold lateral and system B root filling techniques using dye penetration. Eighty-six extracted single-rooted human teeth were prepared and randomly divided into two experimental groups to be obturated by cold lateral condensation (n = 33) and system B (n = 33). The remaining 20 teeth served as positive and negative controls. The roots were embedded for 72 h in methylene blue dye solution and sectioned transversely for dye penetration evaluation using stereomicroscope. The results of this study showed that cold lateral condensation leaked significantly more (P < 0.001) than system B technique.
    Matched MeSH terms: Epoxy Resins/therapeutic use; Epoxy Resins/chemistry
  3. Zaman MR, Islam MT, Misran N, Yatim B
    ScientificWorldJournal, 2014;2014:831435.
    PMID: 24977230 DOI: 10.1155/2014/831435
    A radio frequency (RF) resonator using glass-reinforced epoxy material for C and X band is proposed in this paper. Microstrip line technology for RF over glass-reinforced epoxy material is analyzed. Coupling mechanism over RF material and parasitic coupling performance is explained utilizing even and odd mode impedance with relevant equivalent circuit. Babinet's principle is deployed to explicate the circular slot ground plane of the proposed resonator. The resonator is designed over four materials from different backgrounds which are glass-reinforced epoxy, polyester, gallium arsenide (GaAs), and rogers RO 4350B. Parametric studies and optimization algorithm are applied over the geometry of the microstrip resonator to achieve dual band response for C and X band. Resonator behaviors for different materials are concluded and compared for the same structure. The final design is fabricated over glass-reinforced epoxy material. The fabricated resonator shows a maximum directivity of 5.65 dBi and 6.62 dBi at 5.84 GHz and 8.16 GHz, respectively. The lowest resonance response is less than -20 dB for C band and -34 dB for X band. The resonator is prototyped using LPKF (S63) drilling machine to study the material behavior.
    Matched MeSH terms: Epoxy Resins/chemistry*
  4. Mustaffa MS, Azis RS, Abdullah NH, Ismail I, Ibrahim IR
    Sci Rep, 2019 Oct 29;9(1):15523.
    PMID: 31664142 DOI: 10.1038/s41598-019-52233-2
    The enhancement of microwave absorbing properties in nickel zinc ferrite (Ni0.5Zn0.5Fe2O4) via multiwall carbon nanotubes (MWCNT) growth is studied in this research work. Ni0.5Zn0.5Fe2O4 was initially synthesized by mechanical alloying followed by sintering at 1200 °C and the microstructural, electromagnetic and microwave characteristics have been scrutinized thoroughly. The sintered powder was then used as a catalyst to grow MWCNT derived from chemical vapor deposition (CVD) method. The sample was mixed with epoxy resin and a hardener for preparation of composites. The composite of multi-walled carbon nanotubes/Ni0.5Zn0.5Fe2O4 shown a maximum reflection loss (RL) of -19.34 dB at the frequency and bandwidth of 8.46 GHz and 1.24 GHz for an absorber thickness of 3 mm for losses less than -10 dB. This acquired result indicates that multi-walled carbon nanotubes/Ni0.5Zn0.5Fe2O4 could be used as a microwave absorber application in X-band.
    Matched MeSH terms: Epoxy Resins
  5. Yap WY, Che Ab Aziz ZA, Azami NH, Al-Haddad AY, Khan AA
    Med Princ Pract, 2017;26(5):464-469.
    PMID: 28934753 DOI: 10.1159/000481623
    OBJECTIVE: To evaluate the push-out bond strength and failure modes of different sealers/obturation systems to intraradicular dentin at 2 weeks and 3 months after obturation compared to AH Plus®/gutta-percha.

    MATERIALS AND METHODS: A total of 180 root slices from 60 single-canal anterior teeth were prepared and assigned to 5 experimental groups (n = 36 in each group), designated as G1 (AH Plus®/gutta-percha), G2 (TotalFill BC™ sealer/BC-coated gutta-percha), G3 (TotalFill BC™ sealer/gutta-percha), G4 (EndoREZ® sealer/EndoREZ®-coated gutta-percha), and G5 (EndoREZ® sealer/gutta-percha). Push-out bond strengths of 18 root slices in each group were assessed at 2 weeks and the other 18 at 3 months after obturation using a universal testing machine. Data were analyzed using repeated measures ANOVA. An independent t test was used to compare the mean push-out bond strength for each group at 2 weeks and 3 months after obturation.

    RESULTS: The mean push-out bond strengths of G4 and G5 were significantly lower than those of G1, G2, and G3 (p < 0.05) at both 2 weeks (G1: 1.46 ± 0.29 MPa, G2: 1.74 ± 0.43 MPa, G3: 1.74 ± 0.43 MPa, G4: 0.66 ± 0.31 MPa, G5: 0.74 ± 0.47 MPa) and 3 months after obturation (G1: 1.70 ± 1.05 MPa, G2: 3.69 ± 1.20 MPa, G3: 2.84 ± 0.83 MPa, G4: 0.14 ± 0.05 MPa, G5: 0.24 ± 0.10 MPa). The mean push-out bond strengths of G2 (3.69 ± 1.20 MPa) and G3 (2.84 ± 0.83 MPa) were higher at 3 months compared to 2 weeks after obturation (G2: 1.74 ± 0.43 MPa, G3: 1.33 ± 0.29 MPa).

    CONCLUSION: The TotalFill BC™ obturation system (G2) and the TotalFill BC™ sealer/gutta-percha (G3) showed comparable bond strength to AH Plus®. Their bond strength increased over time, whereas the EndoREZ® obturation system (G4) and EndoREZ sealer (G5) had low push-out bond strength which decreased over time.

    Matched MeSH terms: Epoxy Resins/chemistry
  6. Aal-Saraj AB, Ariffin Z, Masudi SM
    Aust Endod J, 2012 Aug;38(2):60-3.
    PMID: 22827817 DOI: 10.1111/j.1747-4477.2010.00241.x
    The aim of this study was to evaluate the antimicrobial activity of a new experimental nano-hydroxyapatite epoxy resin-based sealer (Nanoseal) with several other commercially available sealers; AH26, Tubliseal, Sealapex and Roekoseal against Enterococcus faecalis, Pseudomonas aeruginosa, Streptococcus mutans, Streptococcus sobrinus and Escherichia coli for up to 7 days. Agar diffusion was used in this study. Fifty Muller-Hinton agar plates were prepared and divided into five experimental groups (n = 10), for each micro-organism. Another 10 agar plates were used as positive and negative controls. Endodontic sealers were tested against each micro-organism. Inhibition zones produced were recorded. The results of this study showed that all test materials exhibited inhibition zones towards the tested micro-organisms for 7 days except for Roekoseal, which showed no inhibition zones. Nanoseal and AH26 exhibited similar zones of inhibition. Significant difference was found between Nanoseal and the other tested sealers (P < 0.001).
    Matched MeSH terms: Epoxy Resins/pharmacology*
  7. NURUL AIMI NADIA IBRAHIM, MOHAMAD AWANG, SURIANI MAT JUSOH
    MyJurnal
    Renewable materials have some bearing on the environment and have since increased research works related to polymer composites. This work was conducted to investigate the effects of interwoven kenaf fibres and the use of kenaf fibres in composites. In this research, interwoven between kenaf and polyethylene terephthalate (PET) was prepared and epoxy was used as the polymer matrix to form composites. The kenaf fibre composites with various kenaf fibre contents (2, 5, 8, and 10 wt %) interwoven with (PET) fibres were prepared by using open mould method. The properties of kenaf/PET/epoxy composites (KPTE) were studied. The kenaf fibre composites characterization was determined based on their mechanical properties, water absorption, morphology and thermal properties. The tensile strength test was performed using Testometric machine. The finding shows that the strength increases as the amount of kenaf fibres in the composites increases. The composites with 10% kenaf fibres interwoven PET displayed the highest tensile strength (85.3 ± 2.9 MPa) while unfilled epoxy show the lowest tensile strength (64.1 ± 16.5 MPa). The addition of kenaf fibres minimally increases the water absorption up to about 1.4%. The increases of kenaf fibres also reduces the overall thermal stability of the composites compared to the PET and epoxy resin composites. The morphology properties of KPTE composites support the tensile properties surface of the composites. This study assists to propose the kenaf fibres as a potential filler for properties improvements in epoxy-based composites contributing to the development of another environment-friendly material.
    Matched MeSH terms: Epoxy Resins
  8. Ahmad, Z., Rohana, H., Md Tahir, P.
    ASM Science Journal, 2013;7(1):37-58.
    MyJurnal
    This study investigated the thermal properties of three room temperature curing adhesives containing nano particles which were thixotropic and shear thinning which allowed injection into overhead holes when exposed to different environmental conditions. Viscosity and shear stress of the adhesives were measured as a function of shear rate. The thermal behaviour of the adhesives were measured using dynamic mechanical thermal anylisis following exposures to different temperatures and humidities which included temperatures of 20 degrees Celcius, 30 degrees Celcius and 50 degrees Celcius, relative humidities of 65% RH, 75% RH 95% RH soaked in water at 20 degrees Celcius and placed in the oven at 50 degrees Celcius. The dynamic thermal properties reported include storage and loss modulus, the loss tangent and the glass transition temperature ( Tg ). For nano- and micro-particles filled adhesives, the Tg increased with the temperature increase, even though the adhesives was subjected to high humidity and this was due to further cross-linking. The results showed that room temperature cured epoxies were only partially cured at room temperature.
    Matched MeSH terms: Epoxy Resins
  9. Muhamad Hellmy Hussin
    MyJurnal
    This is a review of studies on various types of paper-based epoxy composites currently being designed and developed for technological use. The concept of designing composite materials is very significant for small to large industry and it is important where initiation of repairing work is now being considered for engineering applications. This composite material is of interest due to its advantages compared with others, including low environmental effects and low cost for a wide range of works. This review aims to provide an overview of morphological, physical and mechanical properties of various paper sheetsbased epoxy composites and details of achievements made. From this approach, this paper also presents the preliminary study of SEM results of paper sheets-based epoxy composites designed for repairing work applications. It has been found that a well-arranged laminated paper sheet layers could help the bond strength with epoxy matrix. Thus, this paper sheet-based epoxy composite can be considered as an easiest way, cheap and biodegradable that can be used for various small repairing works in structural and automotive applications.
    Matched MeSH terms: Epoxy Resins
  10. Ibrahim IR, Matori KA, Ismail I, Awang Z, Rusly SNA, Nazlan R, et al.
    Sci Rep, 2020 Feb 21;10(1):3135.
    PMID: 32081972 DOI: 10.1038/s41598-020-60107-1
    Microwave absorption properties were systematically studied for double-layer carbon black/epoxy resin (CB) and Ni0.6Zn0.4Fe2O4/epoxy resin (F) nanocomposites in the frequency range of 8 to 18 GHz. The Ni0.6Zn0.4Fe2O4 nanoparticles were synthesized via high energy ball milling with subsequent sintering while carbon black was commercially purchased. The materials were later incorporated into epoxy resin to fabricate double-layer composite structures with total thicknesses of 2 and 3 mm. The CB1/F1, in which carbon black as matching and ferrite as absorbing layer with each thickness of 1 mm, showed the highest microwave absorption of more than 99.9%, with minimum reflection loss of -33.8 dB but with an absorption bandwidth of only 2.7 GHz. Double layer absorbers with F1/CB1(ferrite as matching and carbon black as absorbing layer with each thickness of 1 mm) structure showed the best microwave absorption performance in which more than 99% microwave energy were absorbed, with promising minimum reflection loss of -24.0 dB, along with a wider bandwidth of 4.8 GHz and yet with a reduced thickness of only 2 mm.
    Matched MeSH terms: Epoxy Resins
  11. Islam SS, Faruque MRI, Islam MT
    Materials (Basel), 2015 Jul 29;8(8):4790-4804.
    PMID: 28793472 DOI: 10.3390/ma8084790
    The paper reveals the design of a unit cell of a metamaterial that shows more than 2 GHz wideband near zero refractive index (NZRI) property in the C-band region of microwave spectra. The two arms of the unit cell were splitted in such a way that forms a near-pi-shape structure on epoxy resin fiber (FR-4) substrate material. The reflection and transmission characteristics of the unit cell were achieved by utilizing finite integration technique based simulation software. Measured results were presented, which complied well with simulated results. The unit cell was then applied to build a single layer rectangular-shaped cloak that operates in the C-band region where a metal cylinder was perfectly hidden electromagnetically by reducing the scattering width below zero. Moreover, the unit cell shows NZRI property there. The experimental result for the cloak operation was presented in terms of S-parameters as well. In addition, the same metamaterial shell was also adopted for designing an eye-shaped and triangular-shaped cloak structure to cloak the same object, and cloaking operation is achieved in the C-band, as well with slightly better cloaking performance. The novel design, NZRI property, and single layer C-band cloaking operation has made the design a promising one in the electromagnetic paradigm.
    Matched MeSH terms: Epoxy Resins
  12. Aisyah HA, Paridah MT, Sapuan SM, Ilyas RA, Khalina A, Nurazzi NM, et al.
    Polymers (Basel), 2021 Feb 02;13(3).
    PMID: 33540731 DOI: 10.3390/polym13030471
    Over the last decade, the progressive application of natural fibres in polymer composites has had a major effect in alleviating environmental impacts. Recently, there is a growing interest in the development of green materials in a woven form by utilising natural fibres from lignocellulosic materials for many applications such as structural, non-structural composites, household utilities, automobile parts, aerospace components, flooring, and ballistic materials. Woven materials are one of the most promising materials for substituting or hybridising with synthetic polymeric materials in the production of natural fibre polymer composites (NFPCs). These woven materials are flexible, able to be tailored to the specific needs and have better mechanical properties due to their weaving structures. Seeing that the potential advantages of woven materials in the fabrication of NFPC, this paper presents a detailed review of studies related to woven materials. A variety of factors that influence the properties of the resultant woven NFRC such as yarn characteristics, fabric properties as well as manufacturing parameters were discussed. Past and current research efforts on the development of woven NFPCs from various polymer matrices including polypropylene, polylactic acid, epoxy and polyester and the properties of the resultant composites were also compiled. Last but not least, the applications, challenges, and prospects in the field also were highlighted.
    Matched MeSH terms: Epoxy Resins
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links