Displaying publications 61 - 80 of 198 in total

Abstract:
Sort:
  1. Osada N, Nakagome S, Mano S, Kameoka Y, Takahashi I, Terao K
    Genetics, 2013 Nov;195(3):1027-35.
    PMID: 24026095 DOI: 10.1534/genetics.113.156703
    The ratio of genetic diversity on X chromosomes relative to autosomes in organisms with XX/XY sex chromosomes could provide fundamental insight into the process of genome evolution. Here we report this ratio for 24 cynomolgus monkeys (Macaca fascicularis) originating in Indonesia, Malaysia, and the Philippines. The average X/A diversity ratios in these samples was 0.34 and 0.20 in the Indonesian-Malaysian and Philippine populations, respectively, considerably lower than the null expectation of 0.75. A Philippine population supposed to derive from an ancestral population by founding events showed a significantly lower ratio than the parental population, suggesting a demographic effect for the reduction. Taking sex-specific mutation rate bias and demographic effect into account, expected X/A diversity ratios generated by computer simulations roughly agreed with the observed data in the intergenic regions. In contrast, silent sites in genic regions on X chromosomes showed strong reduction in genetic diversity and the observed X/A diversity ratio in the genic regions cannot be explained by mutation rate bias and demography, indicating that natural selection also reduces the level of polymorphism near genes. Whole-genome analysis of a female cynomolgus monkey also supported the notion of stronger reduction of genetic diversity near genes on the X chromosome.
    Matched MeSH terms: Evolution, Molecular*
  2. Moretti B, Al-Sheikhly OF, Guerrini M, Theng M, Gupta BK, Haba MK, et al.
    Sci Rep, 2017 Jan 27;7:41611.
    PMID: 28128366 DOI: 10.1038/srep41611
    We investigated the phylogeography of the smooth-coated otter (Lutrogale perspicillata) to determine its spatial genetic structure for aiding an adaptive conservation management of the species. Fifty-eight modern and 11 archival (dated 1882-1970) otters sampled from Iraq to Malaysian Borneo were genotyped (mtDNA Cytochrome-b, 10 microsatellite DNA loci). Moreover, 16 Aonyx cinereus (Asian small-clawed otter) and seven Lutra lutra (Eurasian otter) were sequenced to increase information available for phylogenetic reconstructions. As reported in previous studies, we found that L. perspicillata, A. cinereus and A. capensis (African clawless otter) grouped in a clade sister to the genus Lutra, with L. perspicillata and A. cinereus being reciprocally monophyletic. Within L. perspicillata, we uncovered three Evolutionarily Significant Units and proved that L. p. maxwelli is not only endemic to Iraq but also the most recent subspecies. We suggest a revision of the distribution range limits of easternmost L. perspicillata subspecies. We show that smooth-coated otters in Singapore are L. perspicillata x A. cinereus hybrids with A. cinereus mtDNA, the first reported case of hybridization in the wild among otters. This result also provides evidence supporting the inclusion of L. perspicillata and A. cinereus in the genus Amblonyx, thus avoiding the paraphyly of the genus Aonyx.
    Matched MeSH terms: Evolution, Molecular*
  3. Jinam TA, Phipps ME, Saitou N, Hugo Pan-Asian SNP Consortium
    Hum Biol, 2013 Feb-Jun;85(1-3):173-88.
    PMID: 24297225
    Southeast Asia houses various culturally and linguistically diverse ethnic groups. In Malaysia, where the Malay, Chinese, and Indian ethnic groups form the majority, there exist minority groups such as the "negritos" who are believed to be descendants of the earliest settlers of Southeast Asia. Here we report patterns of genetic substructure and admixture in two Malaysian negrito populations (Jehai and Kensiu), using ~50,000 genome-wide single-nucleotide polymorphism (SNP) data. We found traces of recent admixture in both the negrito populations, particularly in the Jehai, with the Malay through principal component analysis and STRUCTURE analysis software, which suggested that the admixture was as recent as one generation ago. We also identified significantly differentiated nonsynonymous SNPs and haplotype blocks related to intracellular transport, metabolic processes, and detection of stimulus. These results highlight the different levels of admixture experienced by the two Malaysian negritos. Delineating admixture and differentiated genomic regions should be of importance in designing and interpretation of molecular anthropology and disease association studies.
    Matched MeSH terms: Evolution, Molecular*
  4. Gan HY, Gan HM, Lee YP, Austin CM
    Mitochondrial DNA A DNA Mapp Seq Anal, 2016 11;27(6):3985-3986.
    PMID: 25543913
    The complete mitochondrial genome of the Bass yabby Trypaea australiensis was obtained from a partial genome scan using the MiSeq sequencing system. The T. australiensis mitogenome is 16,821 bp in length (70.25% A + T content) made up of 13 protein-coding genes, 2 ribosomal subunit genes, 22 transfer RNAs and a putative 1977 bp non-coding AT-rich region. This Trypaea mitogenome sequence is the 5th for the family Callianassidae and represents a new gene order for the Decapoda involving protein-coding, rRNA and tRNA genes and the control region.
    Matched MeSH terms: Evolution, Molecular
  5. Chan KO, Wood PL, Anuar S, Muin MA, Quah ES, Sumarli AX
    Zootaxa, 2014;3764:427-40.
    PMID: 24870645 DOI: 10.11646/zootaxa.3764.4.3
    A new species of Ansonia is described based on genetic and morphological differentiation. Ansonia lumut sp. nov. is most closely related to three other Peninsular Malaysian species, A. penangensis, A. malayana, and A. jeetsukumarani but differs from these and other congeners by at least 6.9% sequence divergence at the 12S, 16S rRNA and t-RNA-val genes and the following combination of morphological characters: (1) SVL 21.0-23.6 mm in males, 27.7-31.6 mm in females; (2) first finger shorter than second; (3) interorbital and tarsal ridges absent; (4) light interscapular spot absent; (5) presence of large, yellow rictal tubercle; (6) dorsum black with greenish-yellow reticulations; (7) flanks with small yellow spots; (8) fore and hind limbs with yellow cross-bars; and (9) venter light gray with fine, white spotting.
    Matched MeSH terms: Evolution, Molecular
  6. Wilson JJ, Sing KW, Halim MR, Ramli R, Hashim R, Sofian-Azirun M
    Genet. Mol. Res., 2014;13(1):920-5.
    PMID: 24634112 DOI: 10.4238/2014.February.19.2
    Bats are important flagship species for biodiversity research; however, diversity in Southeast Asia is considerably underestimated in the current checklists and field guides. Incorporation of DNA barcoding into surveys has revealed numerous species-level taxa overlooked by conventional methods. Inclusion of these taxa in inventories provides a more informative record of diversity, but is problematic as these species lack formal description. We investigated how frequently documented, but undescribed, bat taxa are encountered in Peninsular Malaysia. We discuss whether a barcode library provides a means of recognizing and recording these taxa across biodiversity inventories. Tissue was sampled from bats trapped at Pasir Raja, Dungun Terengganu, Peninsular Malaysia. The DNA was extracted and the COI barcode region amplified and sequenced. We identified 9 species-level taxa within our samples, based on analysis of the DNA barcodes. Six specimens matched to four previously documented taxa considered candidate species but currently lacking formal taxonomic status. This study confirms the high diversity of bats within Peninsular Malaysia (9 species in 13 samples) and demonstrates how DNA barcoding allows for inventory and documentation of known taxa lacking formal taxonomic status.
    Matched MeSH terms: Evolution, Molecular
  7. Hapuarachchi HC, Bandara KB, Sumanadasa SD, Hapugoda MD, Lai YL, Lee KS, et al.
    J Gen Virol, 2010 Apr;91(Pt 4):1067-76.
    PMID: 19955565 DOI: 10.1099/vir.0.015743-0
    Chikungunya fever swept across many South and South-east Asian countries, following extensive outbreaks in the Indian Ocean Islands in 2005. However, molecular epidemiological data to explain the recent spread and evolution of Chikungunya virus (CHIKV) in the Asian region are still limited. This study describes the genetic Characteristics and evolutionary relationships of CHIKV strains that emerged in Sri Lanka and Singapore during 2006-2008. The viruses isolated in Singapore also included those imported from the Maldives (n=1), India (n=2) and Malaysia (n=31). All analysed strains belonged to the East, Central and South African (ECSA) lineage and were evolutionarily more related to Indian than to Indian Ocean Islands strains. Unique genetic characteristics revealed five genetically distinct subpopulations of CHIKV in Sri Lanka and Singapore, which were likely to have emerged through multiple, independent introductions. The evolutionary network based on E1 gene sequences indicated the acquisition of an alanine to valine 226 substitution (E1-A226V) by virus strains of the Indian sublineage as a key evolutionary event that contributed to the transmission and spatial distribution of CHIKV in the region. The E1-A226V substitution was found in 95.7 % (133/139) of analysed isolates in 2008, highlighting the widespread establishment of mutated CHIKV strains in Sri Lanka, Singapore and Malaysia. As the E1-A226V substitution is known to enhance the transmissibility of CHIKV by Aedes albopictus mosquitoes, this observation has important implications for the design of vector control strategies to fight the virus in regions at risk of chikungunya fever.
    Matched MeSH terms: Evolution, Molecular
  8. Mat Jaafar TN, Taylor MI, Mohd Nor SA, de Bruyn M, Carvalho GR
    PLoS One, 2012;7(11):e49623.
    PMID: 23209586 DOI: 10.1371/journal.pone.0049623
    DNA barcodes, typically focusing on the cytochrome oxidase I gene (COI) in many animals, have been used widely as a species-identification tool. The ability of DNA barcoding to distinguish species from a range of taxa and to reveal cryptic species has been well documented. Despite the wealth of DNA barcode data for fish from many temperate regions, there are relatively few available from the Southeast Asian region. Here, we target the marine fish Family Carangidae, one of the most commercially-important families from the Indo-Malay Archipelago (IMA), to produce an initial reference DNA barcode library.
    Matched MeSH terms: Evolution, Molecular
  9. Tan MF, Siow CC, Dutta A, Mutha NV, Wee WY, Heydari H, et al.
    BMC Genomics, 2015;16:755.
    PMID: 26444974 DOI: 10.1186/s12864-015-1959-5
    Listeria consists of both pathogenic and non-pathogenic species. Reports of similarities between the genomic content between some pathogenic and non-pathogenic species necessitates the investigation of these species at the genomic level to understand the evolution of virulence-associated genes. With Listeria genome data growing exponentially, comparative genomic analysis may give better insights into evolution, genetics and phylogeny of Listeria spp., leading to better management of the diseases caused by them.
    Matched MeSH terms: Evolution, Molecular
  10. Akib NA, Tam BM, Phumee P, Abidin MZ, Tamadoni S, Mather PB, et al.
    PLoS One, 2015;10(3):e0119749.
    PMID: 25786216 DOI: 10.1371/journal.pone.0119749
    Phylogeographic patterns and population structure of the pelagic Indian mackerel, Rastrelliger kanagurta were examined in 23 populations collected from the Indonesian-Malaysian Archipelago (IMA) and the West Indian Ocean (WIO). Despite the vast expanse of the IMA and neighbouring seas, no evidence for geographical structure was evident. An indication that R. kanagurta populations across this region are essentially panmictic. This study also revealed that historical isolation was insufficient for R. kanagurta to attain migration drift equilibrium. Two distinct subpopulations were detected between the WIO and the IMA (and adjacent populations); interpopulation genetic variation was high. A plausible explanation for the genetic differentiation observed between the IMA and WIO regions suggest historical isolation as a result of fluctuations in sea levels during the late Pleistocene. This occurrence resulted in the evolution of a phylogeographic break for this species to the north of the Andaman Sea.
    Matched MeSH terms: Evolution, Molecular
  11. Cannon CH, Manos PS
    Syst Biol, 2002 7 16;50(6):860-80.
    PMID: 12116637
    Fruit type in the genus Lithocarpus (Fagaceae) includes both classic oak acorns and novel modifications. Bornean taxa with modified fruits can be separated into two sections (Synaedrys and Lithocarpus) based on subtle shape differences. By following strict criteria for homology and representation, this variation in shape can be captured and the sections distinguished by using elliptic Fourier or eigenshape analysis. Phenograms of fruit shape, constructed by using restricted maximum likelihood techniques and these morphometric descriptors, were incorporated into combined and comparative analyses with molecular sequence data from the internal transcribed spacer (ITS) region of the nuclear rDNA, using branch-weighted matrix representation. The combined analysis strongly suggested independent derivation of the novel fruit type in the two sections from different acornlike ancestors, while the comparative analysis indicated frequent decoupling between the molecular and morphological changes as inferred at well-supported nodes. The acorn fruit type has undergone little modification between ingroup and outgroup, despite large molecular distance. Greater morphological than molecular change was inferred at critical transitions between acorn and novel fruit types, particularly for section Lithocarpus. The combination of these two different types of data improved our understanding of the macroevolution of fruit type in this difficult group, and the comparative analysis highlighted the significant incongruities in evolutionary pattern between the two datasets.
    Matched MeSH terms: Evolution, Molecular
  12. Plissonneau C, Benevenuto J, Mohd-Assaad N, Fouché S, Hartmann FE, Croll D
    Front Plant Sci, 2017;8:119.
    PMID: 28217138 DOI: 10.3389/fpls.2017.00119
    Epidemics caused by fungal plant pathogens pose a major threat to agro-ecosystems and impact global food security. High-throughput sequencing enabled major advances in understanding how pathogens cause disease on crops. Hundreds of fungal genomes are now available and analyzing these genomes highlighted the key role of effector genes in disease. Effectors are small secreted proteins that enhance infection by manipulating host metabolism. Fungal genomes carry 100s of putative effector genes, but the lack of homology among effector genes, even for closely related species, challenges evolutionary and functional analyses. Furthermore, effector genes are often found in rapidly evolving chromosome compartments which are difficult to assemble. We review how population and comparative genomics toolsets can be combined to address these challenges. We highlight studies that associated genome-scale polymorphisms with pathogen lifestyles and adaptation to different environments. We show how genome-wide association studies can be used to identify effectors and other pathogenicity-related genes underlying rapid adaptation. We also discuss how the compartmentalization of fungal genomes into core and accessory regions shapes the evolution of effector genes. We argue that an understanding of genome evolution provides important insight into the trajectory of host-pathogen co-evolution.
    Matched MeSH terms: Evolution, Molecular
  13. Liu X, Lu D, Saw WY, Shaw PJ, Wangkumhang P, Ngamphiw C, et al.
    Eur J Hum Genet, 2017 04;25(4):499-508.
    PMID: 28098149 DOI: 10.1038/ejhg.2016.181
    The Asian Diversity Project (ADP) assembled 37 cosmopolitan and ethnic minority populations in Asia that have been densely genotyped across over half a million markers to study patterns of genetic diversity and positive natural selection. We performed population structure analyses of the ADP populations and divided these populations into four major groups based on their genographic information. By applying a highly sensitive algorithm haploPS to locate genomic signatures of positive selection, 140 distinct genomic regions exhibiting evidence of positive selection in at least one population were identified. We examined the extent of signal sharing for regions that were selected in multiple populations and observed that populations clustered in a similar fashion to that of how the ancestry clades were phylogenetically defined. In particular, populations predominantly located in South Asia underwent considerably different adaptation as compared with populations from the other geographical regions. Signatures of positive selection present in multiple geographical regions were predicted to be older and have emerged prior to the separation of the populations in the different regions. In contrast, selection signals present in a single population group tended to be of lower frequencies and thus can be attributed to recent evolutionary events.
    Matched MeSH terms: Evolution, Molecular
  14. Chong YL, Ng KH
    Virus Genes, 2017 Dec;53(6):774-777.
    PMID: 28456924 DOI: 10.1007/s11262-017-1459-6
    Human bocavirus (HBoV) is a single-stranded DNA virus in Parvoviridae family, causing respiratory diseases in human. The recent identifications of genomic recombination among the four human bocavirus genotypes and related non-human primate bocaviruses have shed lights into the evolutionary processes underpinning the diversity of primate bocavirus. Among these reports, however, we found inconsistency and possible alternative interpretations of the recombination events. In this study, these recombination events were reviewed, and the related genome sequences were re-analysed, aiming to inform the research community of bocavirus with more consistent knowledge and comprehensive interpretations on the recombination history of primate bocavirus.
    Matched MeSH terms: Evolution, Molecular
  15. Zhao H, Zhao S, International Network for Bamboo and Rattan, Fei B, Liu H, Yang H, et al.
    Gigascience, 2017 07 01;6(7):1-7.
    PMID: 28637269 DOI: 10.1093/gigascience/gix046
    Bamboo and rattan are widely grown for manufacturing, horticulture, and agroforestry. Bamboo and rattan production might help reduce poverty, boost economic growth, mitigate climate change, and protect the natural environment. Despite progress in research, sufficient molecular and genomic resources to study these species are lacking. We launched the Genome Atlas of Bamboo and Rattan (GABR) project, a comprehensive, coordinated international effort to accelerate understanding of bamboo and rattan genetics through genome analysis. GABR includes 2 core subprojects: Bamboo-T1K (Transcriptomes of 1000 Bamboos) and Rattan-G5 (Genomes of 5 Rattans), and several other subprojects. Here we describe the organization, directions, and status of GABR.
    Matched MeSH terms: Evolution, Molecular
  16. Menchaca A, Rossi NA, Froidevaux J, Dias-Freedman I, Caragiulo A, Wultsch C, et al.
    BMC Genet, 2019 12 27;20(1):100.
    PMID: 31881935 DOI: 10.1186/s12863-019-0801-5
    BACKGROUND: Connectivity among jaguar (Panthera onca) populations will ensure natural gene flow and the long-term survival of the species throughout its range. Jaguar conservation efforts have focused primarily on connecting suitable habitat in a broad-scale. Accelerated habitat reduction, human-wildlife conflict, limited funding, and the complexity of jaguar behaviour have proven challenging to maintain connectivity between populations effectively. Here, we used non-invasive genetic sampling and individual-based conservation genetic analyses to assess genetic diversity and levels of genetic connectivity between individuals in the Cockscomb Basin Wildlife Sanctuary and the Maya Forest Corridor. We used expert knowledge and scientific literature to develop models of landscape permeability based on circuit theory with fine-scale landscape features as ecosystem types, distance to human settlements and roads to predict the most probable jaguar movement across central Belize.

    RESULTS: We used 12 highly polymorphic microsatellite loci to identify 50 individual jaguars. We detected high levels of genetic diversity across loci (HE = 0.61, HO = 0.55, and NA = 9.33). Using Bayesian clustering and multivariate models to assess gene flow and genetic structure, we identified one single group of jaguars (K = 1). We identified critical areas for jaguar movement that fall outside the boundaries of current protected areas in central Belize. We detected two main areas of high landscape permeability in a stretch of approximately 18 km between Sittee River Forest Reserve and Manatee Forest Reserve that may increase functional connectivity and facilitate jaguar dispersal from and to Cockscomb Basin Wildlife Sanctuary. Our analysis provides important insights on fine-scale genetic and landscape connectivity of jaguars in central Belize, an area of conservation concern.

    CONCLUSIONS: The results of our study demonstrate high levels of relatively recent gene flow for jaguars between two study sites in central Belize. Our landscape analysis detected corridors of expected jaguar movement between the Cockscomb Basin Wildlife Sanctuary and the Maya Forest Corridor. We highlight the importance of maintaining already established corridors and consolidating new areas that further promote jaguar movement across suitable habitat beyond the boundaries of currently protected areas. Continued conservation efforts within identified corridors will further maintain and increase genetic connectivity in central Belize.

    Matched MeSH terms: Evolution, Molecular
  17. Bolotov IN, Kondakov AV, Vikhrev IV, Aksenova OV, Bespalaya YV, Gofarov MY, et al.
    Sci Rep, 2017 05 18;7(1):2135.
    PMID: 28522869 DOI: 10.1038/s41598-017-02312-z
    The concept of long-lived (ancient) lakes has had a great influence on the development of evolutionary biogeography. According to this insight, a number of lakes on Earth have existed for several million years (e.g., Baikal and Tanganyika) and represent unique evolutionary hotspots with multiple intra-basin radiations. In contrast, rivers are usually considered to be variable systems, and the possibility of their long-term existence during geological epochs has never been tested. In this study, we reconstruct the history of freshwater basin interactions across continents based on the multi-locus fossil-calibrated phylogeny of freshwater mussels (Unionidae). These mussels most likely originated in Southeast and East Asia in the Jurassic, with the earliest expansions into North America and Africa (since the mid-Cretaceous) following the colonization of Europe and India (since the Paleocene). We discovered two ancient monophyletic mussel radiations (mean age ~51-55 Ma) within the paleo-Mekong catchment (i.e., the Mekong, Siam, and Malacca Straits paleo-river drainage basins). Our findings reveal that the Mekong may be considered a long-lived river that has existed throughout the entire Cenozoic epoch.
    Matched MeSH terms: Evolution, Molecular
  18. Robert R, Rodrigues KF, Waheed Z, Kumar SV
    PMID: 29521145 DOI: 10.1080/24701394.2018.1448080
    This study is aimed at establishing a baseline on the genetic diversity of the Acropora corals of Sabah, North Borneo based on variations in the partial COI and CYB nucleotide sequences. Comparison across 50 shallow-water Acropora morphospecies indicated that the low substitution rates in the two genes were due to negative selection and that rate heterogeneity between them was asymmetric. CYB appeared to have evolved faster than COI in the Acropora as indicated by differences in the rate of pairwise genetic distance, degrees of transition bias (Ts/Tv), synonymous-to-nonsynonymous rate ratio (dN/dS), and substitution patterns at the three codon positions. Despite the relatively high haplotype diversity (Hd), nucleotide diversity (π) of the haplotype datasets was low due to stringent purifying selection operating on the genes. Subsequently, we identified individual COI and CYB haplotypes that were each extensively shared across sympatrically and allopatrically distributed Indo-Pacific Acropora. These reciprocally common mtDNA types were suspected to be ancestral forms of the genes whereas other haplotypes have mostly evolved from autoapomorphic mutations which have not been fixed within the species even though they are selectively neutral. To our knowledge, this is the first report on DNA barcodes of Acropora species in North Borneo and this understanding will play an important role in the management and conservation of these important reef-building corals.
    Matched MeSH terms: Evolution, Molecular
  19. Tan MH, Gan HM, Lee YP, Bracken-Grissom H, Chan TY, Miller AD, et al.
    Sci Rep, 2019 Jul 24;9(1):10756.
    PMID: 31341205 DOI: 10.1038/s41598-019-47145-0
    The emergence of cost-effective and rapid sequencing approaches has resulted in an exponential rise in the number of mitogenomes on public databases in recent years, providing greater opportunity for undertaking large-scale comparative genomic and systematic research. Nonetheless, current datasets predominately come from small and disconnected studies on a limited number of related species, introducing sampling biases and impeding research of broad taxonomic relevance. This study contributes 21 crustacean mitogenomes from several under-represented decapod infraorders including Polychelida and Stenopodidea, which are used in combination with 225 mitogenomes available on NCBI to investigate decapod mitogenome diversity and phylogeny. An overview of mitochondrial gene orders (MGOs) reveals a high level of genomic variability within the Decapoda, with a large number of MGOs deviating from the ancestral arthropod ground pattern and unevenly distributed among infraorders. Despite the substantial morphological and ecological variation among decapods, there was limited evidence for correlations between gene rearrangement events and species ecology or lineage specific nucleotide substitution rates. Within a phylogenetic context, predicted scenarios of rearrangements show some MGOs to be informative synapomorphies for some taxonomic groups providing strong independent support for phylogenetic relationships. Additional comparisons for a range of mitogenomic features including nucleotide composition, strand asymmetry, unassigned regions and codon usage indicate several clade-specific trends that are of evolutionary and ecological interest.
    Matched MeSH terms: Evolution, Molecular
  20. Nong W, Qu Z, Li Y, Barton-Owen T, Wong AYP, Yip HY, et al.
    Commun Biol, 2021 01 19;4(1):83.
    PMID: 33469163 DOI: 10.1038/s42003-020-01637-2
    Whole genome duplication (WGD) has occurred in relatively few sexually reproducing invertebrates. Consequently, the WGD that occurred in the common ancestor of horseshoe crabs ~135 million years ago provides a rare opportunity to decipher the evolutionary consequences of a duplicated invertebrate genome. Here, we present a high-quality genome assembly for the mangrove horseshoe crab Carcinoscorpius rotundicauda (1.7 Gb, N50 = 90.2 Mb, with 89.8% sequences anchored to 16 pseudomolecules, 2n = 32), and a resequenced genome of the tri-spine horseshoe crab Tachypleus tridentatus (1.7 Gb, N50 = 109.7 Mb). Analyses of gene families, microRNAs, and synteny show that horseshoe crabs have undergone three rounds (3R) of WGD. Comparison of C. rotundicauda and T. tridentatus genomes from populations from several geographic locations further elucidates the diverse fates of both coding and noncoding genes. Together, the present study represents a cornerstone for improving our understanding of invertebrate WGD events on the evolutionary fates of genes and microRNAs, at both the individual and population level. We also provide improved genomic resources for horseshoe crabs, of applied value for breeding programs and conservation of this fascinating and unusual invertebrate lineage.
    Matched MeSH terms: Evolution, Molecular
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links