Displaying publications 61 - 80 of 180 in total

Abstract:
Sort:
  1. Torey A, Sasidharan S, Latha LY, Sudhakaran S, Ramanathan S
    Pharm Biol, 2010 Oct;48(10):1119-23.
    PMID: 20738154 DOI: 10.3109/13880200903490505
    To investigate the in vitro antioxidant activity of methanol extracts of Ixora coccinea L. (Rubiaceae) flower, leaf and stem.
    Matched MeSH terms: Flowers/chemistry
  2. Normala, H., Suhaimi, M.I.
    MyJurnal
    One of the compounds present in Pluchea indica extracts is antioxidant which plays an important role in inhibiting free radicals and thus protects humans against infections and degenerative diseases, such as cancer, arthritis, and ageing process. The main objective of this study was to investigate and determine the total phenolic compounds of Pluchea indica in different concentrations of ethanolic extracts. This species was chosen because of its high phytonutrient compounds with potential medicinal properties. There was a significant difference (P ≤ 0.05) in the total phenolic among the different parts of the tested plant. 50% of the ethanolic extract produced the highest total phenolic compounds (1775.00±86.00 to 658.95±5.00 µmol/g), followed by water extract (759.79±1.53 µmol/g) and 100% ethanol extract (352.72±22.30 to 249.29±5.37 µmol/g), respectively. In terms of the plant parts, the leaves contained the highest phenolic compounds (1775.00±86.00 µmol/g in 50% ethanol extract, 759.79±1.53 µmol/g in 100% aqueous extract and 352.72±22.30 µmol/g in 100% ethanol extract), followed by the stems (990.22±24.00 µmol/g in 50% ethanol extract, 990.22±24.59 µmol/g in 100% aqueous extract and 293.48±0.00 µmol/g in 100% ethanol extract). Meanwhile, lower total phenolic compounds were detected in the flowers (727.71±11.00 µmol/g in 50% ethanol extract, 603.81±8.46 µmol/g in 100% aqueous extract and 249.29±5.37 µmol/g in 100% ethanol extract) and roots (658.95±5.00 µmol/g in 50% ethanol extract, 450.00±10.76 µmol/g in 100% aqueous extract and 272.28±0.53 µmol/g in 100% ethanol extract). Based on these findings, Pluchea indica has potential medicinal properties that can be further developed to produce neutraceutical products, diet supplements or cosmetic products. However, further research should first be conducted on the effects of these compounds on laboratory animals.
    Matched MeSH terms: Flowers
  3. Suhaimi AH, Kobayashi MJ, Satake A, Ng CC, Lee SL, Muhammad N, et al.
    PeerJ, 2023;11:e16368.
    PMID: 38047035 DOI: 10.7717/peerj.16368
    Climatic factors have commonly been attributed as the trigger of general flowering, a unique community-level mass flowering phenomenon involving most dipterocarp species that forms the foundation of Southeast Asian tropical rainforests. This intriguing flowering event is often succeeded by mast fruiting, which provides a temporary yet substantial burst of food resources for animals, particularly frugivores. However, the physiological mechanism that triggers general flowering, particularly in dipterocarp species, is not well understood largely due to its irregular and unpredictable occurrences in the tall and dense forests. To shed light on this mechanism, we employed ecological transcriptomic analyses on an RNA-seq dataset of a general flowering species, Shorea curtisii (Dipterocarpaceae), sequenced from leaves and buds collected at multiple vegetative and flowering phenological stages. We assembled 64,219 unigenes from the transcriptome of which 1,730 and 3,559 were differentially expressed in the leaf and the bud, respectively. Differentially expressed unigene clusters were found to be enriched with homologs of Arabidopsis thaliana genes associated with response to biotic and abiotic stresses, nutrient level, and hormonal treatments. When combined with rainfall data, our transcriptome data reveals that the trees were responding to a brief period of drought prior to the elevated expression of key floral promoters and followed by differential expression of unigenes that indicates physiological changes associated with the transition from vegetative to reproductive stages. Our study is timely for a representative general flowering dipterocarp species that occurs in forests that are under the constant threat of deforestation and climate change as it pinpoints important climate sensitive and flowering-related homologs and offers a glimpse into the cascade of gene expression before and after the onset of floral initiation.
    Matched MeSH terms: Flowers/genetics
  4. Ahmed AS, Ahmed Q, Saxena AK, Jamal P
    Pak J Pharm Sci, 2017 Jan;30(1):113-126.
    PMID: 28603121
    Inhibition of intestinal α-amylase and α-glucosidase is an important strategy to regulate diabetes mellitus (DM). Antioxidants from plants are widely regarded in the prevention of diabetes. Fruits of Elettaria cardamomum (L.) Maton (Zingiberaceae) and Piper cubeba L. f. (Piperaceae) and flowers of Plumeria rubra L. (Apocynaceae) are traditionally used to cure DM in different countries. However, the role of these plants has been grossly under reported and is yet to receive proper scientific evaluation with respect to understand their traditional role in the management of diabetes especially as digestive enzymes inhibitors. Hence, methanol and aqueous extracts of the aforementioned plants were evaluated for their in vitro α-glucosidase and α-amylase inhibition at 1 mg/mL and quantification of their antioxidant properties (DPPH, FRAP tests, total phenolic and total flavonoids contents). In vitro optimization studies for the extracts were also performed to enhance in vitro biological activities. The % inhibition of α-glucosidase by the aqueous extracts of the fruits of E. cardamomum, P. cubeba and flowers of P. rubra were 10.41 (0.03), 95.19 (0.01), and -2.92 (0.03), while the methanol extracts exhibited % inhibition 13.73 (0.02), 92.77 (0.01), and -0.98 (0.01), respectively. The % inhibition of α-amylase by the aqueous extracts were 82.99 (0.01), 64.35 (0.01), and 20.28 (0.02), while the methanol extracts displayed % inhibition 39.93 (0.01), 31.06 (0.02), and 39.40 (0.01), respectively. Aqueous extracts displayed good in vitro antidiabetic and antioxidant activities. Moreover, in vitro optimization experiments helped to increase the α-glucosidase inhibitory activity of E. cardamomum. Our findings further justify the traditional claims of these plants as folk medicines to manage diabetes, however, through digestive enzymes inhibition effect.
    Matched MeSH terms: Flowers/chemistry
  5. Daud N, Taha RM
    Pak J Biol Sci, 2008 Apr 01;11(7):1055-8.
    PMID: 18810979
    Intact immature flower buds of African violet (Saintpaulia ionantha H. Wendl.) were used as explant sources for in vitro studies. The effect of exogenous hormones, NAA and BAP on the indirect organogenesis of this species was observed. Callus was formed on the cut end (base) of pedicels of floral buds where they were in contact with the medium. When maintained on the same medium, callus was differentiated into adventitious shoots after 10 weeks in culture. MS media supplemented with 2.0 mg L(-1) NAA and 1.0 mg L(-1) BAP gave the highest number of sterile or vegetative floral buds from the surface of callus of the explants, but these buds failed to develop further. The floral buds were expanded as abnormal flowers. The floral structures were smaller in size compared to intact flowers. Petals (corolla) were white to purple in colour but did not form any reproductive organs, i.e., stamens or pistils. All sterile or vegetative floral buds and abnormal flowers survived for 3 months in culture but failed to reach anthesis.
    Matched MeSH terms: Flowers/drug effects; Flowers/growth & development*; Flowers/physiology*
  6. Taha RM, Haron NW
    Pak J Biol Sci, 2008 Apr 01;11(7):1021-6.
    PMID: 18810972
    In the present study, various explants of Murraya paniculata (Jack) Linn., such as cotyledons, shoots and young stems were cultured on MS medium supplemented with various concentrations of Benzyl Amino Purine (BAP) under 25 +/- 1 degree C with 16 h light and 8 h dark and also 8 h light and 16 h dark to obtain complete plant regeneration. In vitro flowering was observed from shoot explants cultured on MS supplemented with 0.5-2.0 mg L(-1) Naphthalene Acetic Acid (NAA) and also on MS basal medium under similar conditions. The leaves and flowers obtained from both in vivo and in vitro conditions were examined and compared. Morphological studies such as leaf clearing, epidermal peeling were studied using light and scanning electron microscope. Macromorphological studies of the flowers produced from in vivo and in vitro conditions were also examined. Morphologically, there were no differences between in vivo and in vitro flowers except the flowers produced from tissue culture systems were smaller in size with protruding stigmas. Differences were also found in the number of layers of palisade cells and the presence or absence of epicuticle layer of the leaves. Leaves produced from tissue culture system were smaller in size with membranous texture. Stomata were present only on the abaxial surfaces of both in vivo and in vitro leaves but the stomata were raised above the epidermis in the latter.
    Matched MeSH terms: Flowers/anatomy & histology*; Flowers/cytology; Flowers/ultrastructure
  7. Wong KC, Hag Ali DM, Boey PL
    Nat Prod Res, 2012;26(7):609-18.
    PMID: 21834640 DOI: 10.1080/14786419.2010.538395
    The aqueous methanolic extracts of Melastoma malabathricum L. exhibited antibacterial activity when assayed against seven microorganisms by the agar diffusion method. Solvent fractionation afforded active chloroform and ethyl acetate fractions from the leaves and the flowers, respectively. A phytochemical study resulted in the identification of ursolic acid (1), 2α-hydroxyursolic acid (2), asiatic acid (3), β-sitosterol 3-O-β-D-glucopyranoside (4) and the glycolipid glycerol 1,2-dilinolenyl-3-O-β-D-galactopyanoside (5) from the chloroform fraction. Kaempferol (6), kaempferol 3-O-α-L-rhamnopyranoside (7), kaempferol 3-O-β-D-glucopyranoside (8), kaempferol 3-O-β-D-galactopyranoside (9), kaempferol 3-O-(2″,6″-di-O-E-p-coumaryl)-β-D-galactopyranoside (10), quercetin (11) and ellagic acid (12) were found in the ethyl acetate fraction. The structures of these compounds were determined by chemical and spectral analyses. Compounds 1-4, the flavonols (6 and 11) and ellagic acid (12) were found to be active against some of the tested microorganisms, while the kaempferol 3-O-glycosides (7-9) did not show any activity, indicating the role of the free 3-OH for antibacterial activity. Addition of p-coumaryl groups results in mild activity for 10 against Staphylococcus aureus and Bacillus cereus. Compounds 2-5, 7 and 9-12 are reported for the first time from M. malabathricum. Compound 10 is rare, being reported only once before from a plant, without assignment of the double bond geometry in the p-coumaryl moiety.
    Matched MeSH terms: Flowers/chemistry
  8. Chong FC, Gwee XF
    Nat Prod Res, 2015;29(15):1485-7.
    PMID: 25836369 DOI: 10.1080/14786419.2015.1027892
    The ultrasonic extraction (UE) method of anthocyanin from Clitoria ternatea flowers using response surface methodology (RSM) was performed in this study. By using RSM, the objective is to optimise the extraction yield of anthocyanin from C. ternatea which is influenced by various factors, including the extraction temperature, time, ratio of solvent to solid and ultrasonic power. The empirical model was investigated by performing first-level optimisation in a two-level factorial design with Design Expert 7 software. In comparison with the conventional solvent extraction, UE showed a 246.48% better extraction yield and produced an anthocyanin extract with a radical scavenging activity of 68.48% at the optimised factors of 50°C, 150 min, 15 mL/g and 240 W.
    Matched MeSH terms: Flowers/chemistry*
  9. Saleem H, Htar TT, Naidu R, Zengin G, Ahmad I, Ahemad N
    Nat Prod Res, 2020 Sep;34(18):2602-2606.
    PMID: 30600720 DOI: 10.1080/14786419.2018.1543684
    In this study, phytochemical composition, antioxidant, enzyme inhibition and cytotoxic activities of methanol and dichloromethane (DCM) extracts of Bougainvillea glabra (B. glabra) flowers were investigated. Methanol extract was found to have higher total bioactive contents and UHPLC-MS analysis of methanol extract revealed the presence of well-known phenolic and flavonoid compounds. Antioxidant activities were performed by radical scavenging (DPPH and ABTS), reducing power (FRAP and CUPRAC), phosphomolybdenum (TAC) and metal chelating assays. From our result, we observed that methanol extract had many antioxidant compounds. The DCM extract exhibited higher cholinesterases and α-glucosidase enzyme inhibition, while methanol extract showed significant urease inhibition. Both extracts exhibited strong to moderate cytotoxicity against MCF-7, MDA-MB-231, CaSki, DU-145 and SW-480 cancer cells with IC50 values ranging from 88.49 to 304.7 µg/mL. The findings showed the B. glabra to possess considerable antioxidant, enzyme inhibition and cytotoxic potentials and therefore has potential to discover novel bioactive molecules.
    Matched MeSH terms: Flowers/chemistry*
  10. Duangjai A, Nuengchamnong N, Lee LH, Goh BH, Saokaew S, Suphrom N
    Nat Prod Res, 2019 May;33(10):1491-1494.
    PMID: 29258345 DOI: 10.1080/14786419.2017.1416386
    Azadirachta indica has long been used in traditional medicine. This study focused on isolation and characterisation of active ingredients in the extract, its fractions (NF-EA, NF-AQ, NF-G) and its effect on the cholesterol absorption activity. The NF-EA fraction was identified by marker compounds by LC-ESI-QTOF/MS. Cholesterol absorption activity was performed by measuring the solubility and size of cholesterol micelles. The intestinal motility was also examined by isolated rat's ileum to test the contraction. The extract and its fractions consist of flavonoids and phenolic compounds, like quercetin, kaempferol and myricetin. We found that A. indica extract and NF-EA increase cholesterol micelles size, while the extract, NF-AQ, myricetin and quercetin, reduced the solubility of cholesterol in micelles. The extract and quercetin inhibited the contraction induced by KCl up to 29 and 18%, respectively, and also decreased CaCl2-induced contraction. This finding is in support to traditional uses of A. indica as cholesterol-lowering agents and regulator of gastrointestinal motility.
    Matched MeSH terms: Flowers/chemistry
  11. Hasanudin K, Hashim P, Mustafa S
    Molecules, 2012 Aug 13;17(8):9697-715.
    PMID: 22890173 DOI: 10.3390/molecules17089697
    Corn silk (Stigma maydis) is an important herb used traditionally by the Chinese, and Native Americans to treat many diseases. It is also used as traditional medicine in many parts of the world such as Turkey, United States and France. Its potential antioxidant and healthcare applications as diuretic agent, in hyperglycemia reduction, as anti-depressant and anti-fatigue use have been claimed in several reports. Other uses of corn silk include teas and supplements to treat urinary related problems. The potential use is very much related to its properties and mechanism of action of its plant's bioactive constituents such as flavonoids and terpenoids. As such, this review will cover the research findings on the potential applications of corn silk in healthcare which include its phytochemical and pharmacological activities. In addition, the botanical description and its toxicological studies are also included.
    Matched MeSH terms: Flowers/chemistry*
  12. Fakurazi S, Sharifudin SA, Arulselvan P
    Molecules, 2012 Jul 10;17(7):8334-50.
    PMID: 22781444 DOI: 10.3390/molecules17078334
    The aim of the study was to investigate the in vitro antioxidant properties Moringa oleifera Lam. (MO) extracts and its curative role in acetaminophen (APAP)-induced toxic liver injury in rats caused by oxidative damage. The total phenolic content and antioxidant properties of hydroethanolic extracts of different MO edible parts were investigated by employing an established in vitro biological assay. In the antihepatotoxic study, either flowers or leaves extract (200 mg/kg or 400 mg/kg, i.p) were administered an hour after APAP administration, respectively. N-Acetylcysteine was used as the positive control against APAP-induced hepatotoxicity. The levels of liver markers such as alanine aminotransferase (ALT) and the levels of oxidative damage markers including malondialdehyde (MDA), 4-hydroxynonenal (4-HNE) protein adduct, reduced glutathione (GSH), superoxide dismutase (SOD) and catalase (CAT) were analysed and compared between experimental groups. Among MO edible parts the flower extracts contain the highest total phenolic content and antioxidant capacity, followed by leaves extract. The oxidative marker MDA, as well as 4-HNE protein adduct levels were elevated and GSH, SOD and CAT were significantly decreased in groups treated with hepatotoxin. The biochemical liver tissue oxidative markers measured in the rats treated with MO flowers and leaves hydroethanolic extracts showed a significant (p < 0.05) reduction in the severity of the liver damage. The results of this study strongly indicate the therapeutic properties of MO hydroethanolic extracts against acute liver injury and thereby scientifically support its traditional use.
    Matched MeSH terms: Flowers/chemistry
  13. Zahra MH, Salem TAR, El-Aarag B, Yosri N, El-Ghlban S, Zaki K, et al.
    Molecules, 2019 Jul 08;24(13).
    PMID: 31288458 DOI: 10.3390/molecules24132495
    BACKGROUND/AIM: Plants play an important role in anti-cancer drug discovery, therefore, the current study aimed to evaluate the biological activity of Alpinia zerumbet (A. zerumbet) flowers.

    METHODS: The phytochemical and biological criteria of A. zerumbet were in vitro investigated as well as in mouse xenograft model.

    RESULTS: A. zerumbet extracts, specially CH2Cl2 and MeOH extracts, exhibited the highest potent anti-tumor activity against Ehrlich ascites carcinoma (EAC) cells. The most active CH2Cl2 extract was subjected to bioassay-guided fractionation leading to isolatation of the naturally occurring 5,6-dehydrokawain (DK) which was characterized by IR, MS, 1H-NMR and 13C-NMR. A. zerumbet extracts, specially MeOH and CH2Cl2 extracts, exhibited significant inhibitory activity towards tumor volume (TV). Furthermore, A. zerumbet extracts declined the high level of malonaldehyde (MDA) as well as elevated the levels of superoxide dismutase (SOD) and catalase (CAT) in liver tissue homogenate. Moreover, DK showed anti-proliferative action on different human cancer cell lines. The recorded IC50 values against breast carcinoma (MCF-7), liver carcinoma (Hep-G2) and larynx carcinoma cells (HEP-2) were 3.08, 6.8, and 8.7 µg/mL, respectively.

    CONCLUSION: Taken together, these findings open the door for further investigations in order to explore the potential medicinal properties of A. zerumbet.

    Matched MeSH terms: Flowers/chemistry
  14. Rizwan K, Khan SA, Ahmad I, Rasool N, Ibrahim M, Zubair M, et al.
    Molecules, 2019 Aug 29;24(17).
    PMID: 31470508 DOI: 10.3390/molecules24173138
    Viola betonicifolia (Violaceae) is commonly recognized as "Banafsha" and widely distributed throughout the globe. This plant is of great interest because of its traditional, pharmacological uses. This review mainly emphases on morphology, nutritional composition, and several therapeutic uses, along with pharmacological properties of different parts of this multipurpose plant. Different vegetative parts of this plant (roots, leaves, petioles, and flowers) contained a good profile of essential micro- and macronutrients and are rich source of fat, protein, carbohydrates, and vitamin C. The plant is well known for its pharmacological properties, e.g., antioxidant, antihelminthic, antidepressant, anti-inflammatory, analgesic, and has been reported in the treatment of various neurological diseases. This plant is of high economic value. The plant has potential role in cosmetic industry. This review suggests that V. betonicifolia is a promising source of pharmaceutical agents. This plant is also of significance as ornamental plant, however further studies needed to explore its phytoconstituents and their pharmacological potential. Furthermore, clinical studies are needed to use this plant for benefits of human beings.
    Matched MeSH terms: Flowers
  15. Alhawarri MB, Dianita R, Razak KNA, Mohamad S, Nogawa T, Wahab HA
    Molecules, 2021 Apr 29;26(9).
    PMID: 33946788 DOI: 10.3390/molecules26092594
    Despite being widely used traditionally as a general tonic, especially in South East Asia, scientific research on Cassia timoriensis, remains scarce. In this study, the aim was to evaluate the in vitro activities for acetylcholinesterase (AChE) inhibitory potential, radical scavenging ability, and the anti-inflammatory properties of different extracts of C. timoriensis flowers using Ellman's assay, a DPPH assay, and an albumin denaturation assay, respectively. With the exception of the acetylcholinesterase activity, to the best of our knowledge, these activities were reported for the first time for C. timoriensis flowers. The phytochemical analysis confirmed the existence of tannins, flavonoids, saponins, terpenoids, and steroids in the C. timoriensis flower extracts. The ethyl acetate extract possessed the highest phenolic and flavonoid contents (527.43 ± 5.83 mg GAE/g DW and 851.83 ± 10.08 mg QE/g DW, respectively) as compared to the other extracts. In addition, the ethyl acetate and methanol extracts exhibited the highest antioxidant (IC50 20.12 ± 0.12 and 34.48 ± 0.07 µg/mL, respectively), anti-inflammatory (92.50 ± 1.38 and 92.22 ± 1.09, respectively), and anti-AChE (IC50 6.91 ± 0.38 and 6.40 ± 0.27 µg/mL, respectively) activities. These results suggest that ethyl acetate and methanol extracts may contain bioactive compounds that can control neurodegenerative disorders, including Alzheimer's disease, through high antioxidant, anti-inflammatory, and anti-AChE activities.
    Matched MeSH terms: Flowers/chemistry*
  16. Juhari NH, Martens HJ, Petersen MA
    Molecules, 2021 Oct 16;26(20).
    PMID: 34684840 DOI: 10.3390/molecules26206260
    Fresh roselle are high in moisture and deteriorate easily, which makes drying important for extending shelf-life and increasing availability. This study investigated the influence of different drying methods (oven-drying, freeze-drying, vacuum-drying, and sun-drying) on the quality of roselle calyx expressed as physicochemical properties (moisture content, water activity, soluble solids, color), volatile compounds, and microstructure. Oven-drying and freeze-drying reduced moisture content most while vacuum-drying and sun-drying were not as efficient. All drying methods except sun-drying resulted in water activities low enough to ensure safety and quality. Vacuum-drying had no impact on color of the dry calyx and only small impact on color of water extract of calyx. Drying reduced terpenes, aldehydes, and esters but increased furans. This is expected to reduce fruity, floral, spicy, and green odors and increase caramel-like aroma. Sun-drying produced more ketones, alcohols, and esters. Scanning electron microscopy revealed that freeze-drying preserved the cell structure better, and freeze-dried samples resembled fresh samples most compared to other drying techniques. The study concludes that freeze-drying should be considered as a suitable drying method, especially with respect to preservation of structure.
    Matched MeSH terms: Flowers/chemistry*
  17. Mohamed Isa SSP, Ablat A, Mohamad J
    Molecules, 2018 Feb 13;23(2).
    PMID: 29438299 DOI: 10.3390/molecules23020400
    Plumeria rubra Linn of the family Apocynaceae is locally known in Malaysia as "Kemboja". It has been used by local traditional medicine practitioners for the treatment of arthritis-related disease. The LCMS/MS analysis of the methanol extract of flowers (PR-ME) showed that it contains 3-O-caffeyolquinic acid, 5-caffeoquinic acid, 1,3-dicaffeoquinic acid, chlorogenic acid, citric acid, 3,3-di-O-methylellagic acid, kaempferol-3-O-glucoside, kaempferol-3-rutinoside, kaempferol, quercetin 3-O-α-l-arabinopyranoside, quercetin, quinic acid and rutin. The flower PR-ME contained high amounts of phenol and flavonoid at 184.632 mg GAE/g and 203.2.2 mg QE/g, respectively. It also exhibited the highest DPPH, FRAP, metal chelating, hydrogen peroxide, nitric oxide superoxide radical scavenging activity. Similarly, the XO inhibitory activity in vitro assay possesses the highest inhibition effects at an IC50 = 23.91 μg/mL. There was no mortality or signs of toxicity in rats at a dose of 4 g/kg body weight. The administration of the flower PR-ME at doses of 400 mg/kg to the rats significantly reduced serum uric acid 43.77%. Similarly, the XO activity in the liver was significantly inhibited by flower PR-ME at doses of 400 mg/kg. These results confirm that the flower PR-ME of P. rubra contains active phytochemical compounds as detected in LCMS/MS that contribute to the inhibition of XO activity in vitro and in vivo in reducing acid uric level in serum and simultaneously scavenging the free radical to reduce the oxidative stress.
    Matched MeSH terms: Flowers/chemistry
  18. Baharara J, Namvar F, Ramezani T, Mousavi M, Mohamad R
    Molecules, 2015 Feb 05;20(2):2693-706.
    PMID: 25665064 DOI: 10.3390/molecules20022693
    Silver nanoparticles (Ag-NPs), the most popular nanoparticles, possess unique properties. Achillea biebersteinii is a plant of the Asteraceae family rich in active antitumor components. The aim of this research was the characterization and investigation of the cytotoxic properties of Ag-NPs synthesized using A. biebersteinii flower extract, on a human breast cancer cell line. The Ag-NPs were synthesized after approximately 180 min of reaction at 40 °C, then they were characterized by UV-visible spectroscopy, Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM) and dynamic light scattering (DLS). The anti-apoptosis effect of Ag-NPs on the MCF-7 cell line was investigated by MTT assay, DAPI and acridine orange staining and caspase activity. The transcriptional expression of bax, bcl-2, caspase-3, -8 and -9 were also evaluated by RT-PCR. The TEM images revealed that the Ag-NPs morphology had a different shape. The DLS indicated that the average hydrodynamic diameter of the biosynthesized Ag-NPs was around 12 nm. By UV-visible spectroscopy the strongest absorbance peak was observed at 460 nm. The FTIR results also showed interaction between the plant extract and Ag-NPs due to the similarity in the peak patterns. The EDS results showed that Ag-NPs display an absorption peak at 3 keV, indicating the presence of the element silver. The Ag-NPs caused a dose-dependent decrease in cell viability, fragmentation in nucleic acid, inhibited the proliferation and induction of apoptosis on MCF-7 by suppressing specific cell cycle genes, and simulation programmed cell dead genes. Further investigation is required to establish the potential of this novel and promising approach in cancer therapy.
    Matched MeSH terms: Flowers/chemistry*
  19. Baharara J, Namvar F, Ramezani T, Hosseini N, Mohamad R
    Molecules, 2014 Apr 15;19(4):4624-34.
    PMID: 24739926 DOI: 10.3390/molecules19044624
    Silver nanoparticles display unique physical and biological properties which have attracted intensive research interest because of their important medical applications. In this study silver nanoparticles (Ab.Ag-NPs) were synthesized for biomedical applications using a completely green biosynthetic method using Achillea biebersteinii flowers extract. The structure and properties of Ab.Ag-NPs were investigated using UV-visible spectroscopic techniques, transmission electron microscopy (TEM), zeta potential and energy dispersive X-ray spectrometers (EDS). The UV-visible spectroscopic analysis showed the absorbance peak at 460 nm, which indicates the synthesis of silver nanoparticles. The average particle diameter as determined by TEM was found to be 12±2 nm. The zeta potential analysis indicated that Ab.Ag-NPs have good stability EDX analysis also exhibits presentation of silver element. As angiogenesis is an important phenomenon and as growth factors imbalance in this process causes the acceleration of several diseases including cancer, the anti-angiogenic properties of Ab.Ag-NPs were evaluated using the rat aortic ring model. The results showed that Ab.Ag-NPs (200 μg/mL) lead to a 50% reduction in the length and number of vessel-like structures. The synthesized silver nanoparticles from the Achillea biebersteinii flowers extract, which do not involve any harmful chemicals were well-dispersed and stabilized through this green method and showed potential therapeutic benefits against angiogenesis.
    Matched MeSH terms: Flowers/chemistry*
  20. Yeoh SH, Satake A, Numata S, Ichie T, Lee SL, Basherudin N, et al.
    Mol Ecol, 2017 Oct;26(19):5074-5085.
    PMID: 28749031 DOI: 10.1111/mec.14257
    Elucidating the physiological mechanisms of the irregular yet concerted flowering rhythm of mass flowering tree species in the tropics requires long-term monitoring of flowering phenology, exogenous and endogenous environmental factors, as well as identifying interactions and dependencies among these factors. To investigate the proximate factors for floral initiation of mast seeding trees in the tropics, we monitored the expression dynamics of two key flowering genes, meteorological conditions and endogenous resources over two flowering events of Shorea curtisii and Shorea leprosula in the Malay Peninsula. Comparisons of expression dynamics of genes studied indicated functional conservation of FLOWERING LOCUS T (FT) and LEAFY (LFY) in Shorea. The genes were highly expressed at least 1 month before anthesis for both species. A mathematical model considering the synergistic effect of cool temperature and drought on activation of the flowering gene was successful in predicting the observed gene expression patterns. Requirement of both cool temperature and drought for floral transition suggested by the model implies that flowering phenologies of these species are sensitive to climate change. Our molecular phenology approach in the tropics sheds light on the conserved role of flowering genes in plants inhabiting different climate zones and can be widely applied to dissect the flowering processes in other plant species.
    Matched MeSH terms: Flowers/genetics; Flowers/physiology*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links