Displaying publications 61 - 80 of 123 in total

Abstract:
Sort:
  1. Vilhena-Franco T, Mecawi AS, Elias LL, Antunes-Rodrigues J
    J Endocrinol, 2016 Nov;231(2):167-180.
    PMID: 27613338
    Water deprivation (WD) induces changes in plasma volume and osmolality, which in turn activate several responses, including thirst, the activation of the renin-angiotensin system (RAS) and vasopressin (AVP) and oxytocin (OT) secretion. These systems seem to be influenced by oestradiol, as evidenced by the expression of its receptor in brain areas that control fluid balance. Thus, we investigated the effects of oestradiol treatment on behavioural and neuroendocrine changes of ovariectomized rats in response to WD. We observed that in response to WD, oestradiol treatment attenuated water intake, plasma osmolality and haematocrit but did not change urinary volume or osmolality. Moreover, oestradiol potentiated WD-induced AVP secretion, but did not alter the plasma OT or angiotensin II (Ang II) concentrations. Immunohistochemical data showed that oestradiol potentiated vasopressinergic neuronal activation in the lateral magnocellular PVN (PaLM) and supraoptic (SON) nuclei but did not induce further changes in Fos expression in the median preoptic nucleus (MnPO) or subfornical organ (SFO) or in oxytocinergic neuronal activation in the SON and PVN of WD rats. Regarding mRNA expression, oestradiol increased OT mRNA expression in the SON and PVN under basal conditions and after WD, but did not induce additional changes in the mRNA expression for AVP in the SON or PVN. It also did not affect the mRNA expression of RAS components in the PVN. In conclusion, our results show that oestradiol acts mainly on the vasopressinergic system in response to WD, potentiating vasopressinergic neuronal activation and AVP secretion without altering AVP mRNA expression.
    Matched MeSH terms: Gene Expression Regulation/drug effects
  2. Almabhouh FA, Osman K, Ibrahim SF, Gupalo S, Gnanou J, Ibrahim E, et al.
    Asian J Androl, 2016 10 18;19(6):647-654.
    PMID: 27748315 DOI: 10.4103/1008-682X.183379
    This study examined the effects of melatonin on leptin-induced changes in sperm parameters in adult rats. Five groups of Sprague-Dawley rats were treated with either leptin or leptin and melatonin or melatonin for 6 weeks. Leptin was given daily via the intraperitoneal route (60 μg kg-1 body weight) and melatonin was given in drinking water (10 mg kg-1 or 20 mg kg-1 body weight per day). Upon completion, sperm count, sperm morphology, 8-hydroxy-2-deoxyguanosine, Comet assay, TUNEL assay, gene expression profiles of antioxidant enzymes, respiratory chain reaction enzymes, DNA damage, and apoptosis genes were estimated. Data were analyzed using ANOVA. Sperm count was significantly lower whereas the fraction of sperm with abnormal morphology, the level of 8-hydroxy-2-deoxyguanosine, and sperm DNA fragmentation were significantly higher in rats treated with leptin only. Microarray analysis revealed significant upregulation of apoptosis-inducing factor, histone acetyl transferase, respiratory chain reaction enzyme, cell necrosis and DNA repair genes, and downregulation of antioxidant enzyme genes in leptin-treated rats. Real-time polymerase chain reaction showed significant decreases in glutathione peroxidase 1 expression with increases in the expression of apoptosis-inducing factor and histone acetyl transferase in leptin-treated rats. There was no change in the gene expression of caspase-3 (CASP-3). In conclusion, the adverse effects of leptin on sperm can be prevented by concurrent melatonin administration.
    Matched MeSH terms: Gene Expression Regulation/drug effects
  3. Mohseni J, Al-Najjar BO, Wahab HA, Zabidi-Hussin ZA, Sasongko TH
    J Hum Genet, 2016 Sep;61(9):823-30.
    PMID: 27251006 DOI: 10.1038/jhg.2016.61
    Several histone deacetylase inhibitors (HDACis) are known to increase Survival Motor Neuron 2 (SMN2) expression for the therapy of spinal muscular atrophy (SMA). We aimed to compare the effects of suberoylanilide hydroxamic acid (SAHA) and Dacinostat, a novel HDACi, on SMN2 expression and to elucidate their acetylation effects on the methylation of the SMN2. Cell-based assays using type I and type II SMA fibroblasts examined changes in transcript expressions, methylation levels and protein expressions. In silico methods analyzed the intermolecular interactions between each compound and HDAC2/HDAC7. SMN2 mRNA transcript levels and SMN protein levels showed notable increases in both cell types, except for Dacinostat exposure on type II cells. However, combined compound exposures showed less pronounced increase in SMN2 transcript and SMN protein level. Acetylation effects of SAHA and Dacinostat promoted demethylation of the SMN2 promoter. The in silico analyses revealed identical binding sites for both compounds in HDACs, which could explain the limited effects of the combined exposure. With the exception on the effect of Dacinostat in Type II cells, we have shown that SAHA and Dacinostat increased SMN2 transcript and protein levels and promoted demethylation of the SMN2 gene.
    Matched MeSH terms: Gene Expression Regulation/drug effects
  4. Jaya-Ram A, Shu-Chien AC, Kuah MK
    Fish Physiol Biochem, 2016 Aug;42(4):1107-22.
    PMID: 26842427 DOI: 10.1007/s10695-016-0201-y
    Despite the potential of vegetable oils as aquafeed ingredients, a major drawback associated with their utilization is the inferior level of beneficial n-3 long-chain polyunsaturated fatty acids (LC-PUFA). Echium oil (EO), which is rich in stearidonic acid (SDA, 18:4n-3), could potentially improve the deposition of n-3 LC-PUFA as the biosynthesis of LC-PUFA is enhanced through bypassing the rate-limiting ∆6 desaturation step. We report for the first time an attempt to investigate whether the presence of a desaturase (Fads2) capable of ∆4 desaturation activities and an elongase (Elovl5) will leverage the provision of dietary SDA to produce a higher rate of LC-PUFA bioconversion. Experimental diets were designed containing fish oil (FO), EO or linseed oil (LO) (100FO, 100EO, 100LO), and diets which comprised equal mixtures of the designated oils (50EOFO and 50EOLO) were evaluated in a 12-week feeding trial involving striped snakeheads (Channa striata). There was no significant difference in growth and feed conversion efficiency. The hepatic fatty acid composition and higher expression of fads2 and elovl5 genes in fish fed EO-based diets indicate the utilization of dietary SDA for LC-PUFA biosynthesis. Collectively, this resulted in a higher deposition of muscle eicosapentaenoic acid (EPA, 20:5n-3) and docosahexaenoic acid (DHA, 22:6n-3) compared to LO-based diets. Dietary EO improved the ratio of n-3 LC-PUFA to n-6 LC-PUFA in fish muscle, which is desirable for human populations with excessive consumption of n-6 PUFA. This study validates the contribution of SDA in improving the content of n-3 LC-PUFA and the ratio of EPA to arachidonic acid (ARA, 20:4n-6) in a freshwater carnivorous species.
    Matched MeSH terms: Gene Expression Regulation/drug effects
  5. Ramli NS, Ismail P, Rahmat A
    BMC Complement Altern Med, 2016 Jul 26;16:243.
    PMID: 27456968 DOI: 10.1186/s12906-016-1200-3
    Red pitaya (Hylocereus polyrhizus) or known as buah naga merah in Malay belongs to the cactus family, Cactaceae. Red pitaya has been shown to give protection against liver damage and may reduce the stiffness of the heart. Besides, the beneficial effects of red pitaya against obesity have been reported; however, the mechanism of this protection is not clear. Therefore, in the present study, we have investigated the red pitaya-targeted genes in obesity using high-carbohydrate, high-fat diet-induced metabolic syndrome rat model.
    Matched MeSH terms: Gene Expression Regulation/drug effects
  6. Adam SH, Giribabu N, Kassim N, Kumar KE, Brahmayya M, Arya A, et al.
    Biomed Pharmacother, 2016 Jul;81:439-452.
    PMID: 27261624 DOI: 10.1016/j.biopha.2016.04.032
    INTRODUCTION: Protective effects of Vitis Vinifera seed aqueous extract (VVSAE) against pancreatic dysfunctions and elevation of oxidative stress, inflammation and apoptosis in the pancreas in diabetes were investigated. Histopathological changes in the pancreas were examined under light microscope.

    METHODS: Blood and pancreas were collected from adult male diabetic rats receiving 28days treatment with VVSAE orally. Fasting blood glucose (FBG), glycated hemoglobin (HbA1c), insulin and lipid profile levels and activity levels of anti-oxidative enzymes (superoxide dismutase-SOD, catalase-CAT and glutathione peroxidase-GPx) in the pancreas were determined by biochemical assays. Histopathological changes in the pancreas were examined under light microscopy and levels of insulin, glucose transporter (GLUT)-2, tumor necrosis factor (TNF)-α, Ikkβ and caspase-3 mRNA and protein were analyzed by real-time PCR (qPCR) and immunohistochemistry respectively. Radical scavenging activity of VVSAE was evaluated by in-vitro anti-oxidant assay while gas chromatography-mass spectrometry (GC-MS) was used to identify the major compounds in the extract.

    RESULTS: GC-MS analyses indicated the presence of compounds that might exert anti-oxidative, anti-inflammatory and anti-apoptosis effects. Near normal FBG, HbAIc, lipid profile and serum insulin levels with lesser signs of pancreatic destruction were observed following administration of VVSAE to diabetic rats. Higher insulin, GLUT-2, SOD, CAT and GPx levels but lower TNF-α, Ikkβ and caspase-3 levels were also observed in the pancreas of VVSAE-treated diabetic rats (p<0.05 compared to non-treated diabetic rats). The extract possesses high in-vitro radical scavenging activities.

    CONCLUSION: In conclusions, administration of VVSAE to diabetic rats could help to protect the pancreas against oxidative stress, inflammation and apoptosis-induced damage while preserving pancreatic function near normal in diabetes.

    Matched MeSH terms: Gene Expression Regulation/drug effects
  7. Harith HH, Di Bartolo BA, Cartland SP, Genner S, Kavurma MM
    J Diabetes, 2016 Jul;8(4):568-78.
    PMID: 26333348 DOI: 10.1111/1753-0407.12339
    BACKGROUND: Insulin regulates glucose homeostasis but can also promote vascular smooth muscle (VSMC) proliferation, important in atherogenesis. Recently, we showed that tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) stimulates intimal thickening via accelerated growth of VSMCs. The aim of the present study was to determine whether insulin-induced effects on VSMCs occur via TRAIL.

    METHODS: Expression of TRAIL and TRAIL receptor in response to insulin and glucose was determined by polymerase chain reaction. Transcriptional activity was assessed using wild-type and site-specific mutations of the TRAIL promoter. Chromatin immunoprecipitation studies were performed. VSMC proliferation and apoptosis was measured.

    RESULTS: Insulin and glucose exposure to VSMC for 24 h stimulated TRAIL mRNA expression. This was also evident at the transcriptional level. Both insulin- and glucose-inducible TRAIL transcriptional activity was blocked by dominant-negative specificity protein-1 (Sp1) overexpression. There are five functional Sp1-binding elements (Sp1-1, Sp1-2, Sp-5/6 and Sp1-7) on the TRAIL promoter. Insulin required the Sp1-1 and Sp1-2 sites, but glucose needed all Sp1-binding sites to induce transcription. Furthermore, insulin (but not glucose) was able to promote VSMC proliferation over time, associated with increased decoy receptor-2 (DcR2) expression. In contrast, chronic 5-day exposure of VSMC to 1 µg/mL insulin repressed TRAIL and DcR2 expression, and reduced Sp1 enrichment on the TRAIL promoter. This was associated with increased cell death.

    CONCLUSIONS: The findings of the present study provide a new mechanistic insight into how TRAIL is regulated by insulin. This may have significant implications at different stages of diabetes-associated cardiovascular disease. Thus, TRAIL may offer a novel therapeutic solution to combat insulin-induced vascular pathologies.

    Matched MeSH terms: Gene Expression Regulation/drug effects
  8. Batumalaie K, Amin MA, Murugan DD, Sattar MZ, Abdullah NA
    Sci Rep, 2016 06 02;6:27236.
    PMID: 27250532 DOI: 10.1038/srep27236
    Activation of inflammatory pathways via reactive oxygen species (ROS) by free fatty acids (FFA) in obesity gives rise to insulin resistance and endothelial dysfunction. Withaferin A (WA), possesses both antioxidant and anti-inflammatory properties and therefore would be a good strategy to suppress palmitic acid (PA)-induced oxidative stress and inflammation and hence, insulin resistance and dysfunction in the endothelium. Effect of WA on PA-induced insulin resistance in human umbilical vein endothelial cells (HUVECs) was determined by evaluating insulin signaling mechanisms whilst effect of this drug on PA-induced endothelial dysfunction was determined in acetylcholine-mediated relaxation in isolated rat aortic preparations. WA significantly inhibited ROS production and inflammation induced by PA. Furthermore, WA significantly decreased TNF-α and IL-6 production in endothelial cells by specifically suppressing IKKβ/NF-κβ phosphorylation. WA inhibited inflammation-stimulated IRS-1 serine phosphorylation and improved the impaired insulin PI3-K signaling, and restored the decreased nitric oxide (NO) production triggered by PA. WA also decreased endothelin-1 and plasminogen activator inhibitor type-1 levels, and restored the impaired endothelium-mediated vasodilation in isolated aortic preparations. These findings suggest that WA inhibited both ROS production and inflammation to restore impaired insulin resistance in cultured endothelial cells and improve endothelial dysfunction in rat aortic rings.
    Matched MeSH terms: Gene Expression Regulation/drug effects
  9. Pandurangan AK, Mohebali N, Hasanpourghadi M, Looi CY, Mustafa MR, Mohd Esa N
    Biofactors, 2016 May;42(3):247-58.
    PMID: 26891685 DOI: 10.1002/biof.1267
    Ulcerative colitis (UC) is a nonspecific inflammatory disorder characterized by oxidative and nitrosative stress, leucocyte infiltration, and upregulation of inflammatory mediators. Boldine is an alkaloid compound found in Boldo tree, with multiple pharmacological actions, mainly anti-inflammatory, antioxidant, antitumor, and immunomodulatory activities. Hence, the effect of boldine for its anti-inflammatory properties against dextran sulfate sodium (DSS)-induced UC in BALB/c mice was studied. Administration of boldine to DSS-induced mice protects colon damage by reduced disease activity index, spleen weight, and increased colon length. Also administration of boldine showed a reduction in the activity of myeloperoxidase (MPO) and CD 68+ expression. Boldine reduced the colon damage, with significant reductions in both the extent and the severity of the inflammation as well as in crypt damage and leukocyte infiltration in the mucosa. Analysis in vivo showed clear decrease in the production of tumor necrosis factor (TNF)-α, Interleukin (IL)-6, IL-17, and signal transducer and activator of transcription-(p-STAT3)(Y705) with nuclear factor (p65-NF-κB) production being reduced significantly. Moreover, p65-NF-κB activation was reduced in mouse macrophage RAW 264.7 cells in vitro. The data demonstrated that boldine may be beneficial in colitis through selective immunomodulatory effects, which may be mediated, at least in part, by inhibition of p65-NF-κB and STAT3 signaling pathways. © 2016 BioFactors, 42(3):247-258, 2016.
    Matched MeSH terms: Gene Expression Regulation/drug effects
  10. Tan JW, Kim MK
    Molecules, 2016 Apr 25;21(5).
    PMID: 27120593 DOI: 10.3390/molecules21050548
    Alzheimer's disease is considered one of the major neurodegenerative diseases and is characterized by the production of β-amyloid (Aβ) proteins and progressive loss of neurons. Biochanin A, a phytoestrogen compound found mainly in Trifolium pratense, was used in the present study as a potential alternative to estrogen replacement therapy via the investigation of its neuroprotective effects against Aβ25-35-induced toxicity, as well as of its potential mechanisms of action in PC12 cells. Exposure of these cells to the Aβ25-35 protein significantly increased cell viability loss and apoptosis. However, the effects induced by Aβ25-35 were markedly reversed in the present of biochanin A. Pretreatment with biochanin A attenuated the cytotoxic effect of the Aβ25-35 protein by decreasing viability loss, LDH release, and caspase activity in cells. Moreover, we found that expression of cytochrome c and Puma were reduced, alongside with the restoration of Bcl-2/Bax and Bcl-xL/Bax ratio in the presence of biochanin A, which led to a decrease in the apoptotic rate. These data demonstrate that mitochondria are involved in the protective effect of biochanin A against Aβ25-35 and that this drug attenuated Aβ25-35-induced PC12 cell injury and apoptosis by preventing mitochondrial dysfunction. Thus, biochanin A might raise a possibility as a potential therapeutic agent for Alzheimer's disease and other related neurodegenerative diseases.
    Matched MeSH terms: Gene Expression Regulation/drug effects
  11. Greenwood MP, Greenwood M, Mecawi AS, Antunes-Rodrigues J, Paton JF, Murphy D
    Mol Brain, 2016 Jan 07;9:1.
    PMID: 26739966 DOI: 10.1186/s13041-015-0182-2
    BACKGROUND: Rasd1 is a member of the Ras family of monomeric G proteins that was first identified as a dexamethasone inducible gene in the pituitary corticotroph cell line AtT20. Using microarrays we previously identified increased Rasd1 mRNA expression in the rat supraoptic nucleus (SON) and paraventricular nucleus (PVN) of the hypothalamus in response to increased plasma osmolality provoked by fluid deprivation and salt loading. RASD1 has been shown to inhibit adenylyl cyclase activity in vitro resulting in the inhibition of the cAMP-PKA-CREB signaling pathway. Therefore, we tested the hypothesis that RASD1 may inhibit cAMP stimulated gene expression in the brain.

    RESULTS: We show that Rasd1 is expressed in vasopressin neurons of the PVN and SON, within which mRNA levels are induced by hyperosmotic cues. Dexamethasone treatment of AtT20 cells decreased forskolin stimulation of c-Fos, Nr4a1 and phosphorylated CREB expression, effects that were mimicked by overexpression of Rasd1, and inhibited by knockdown of Rasd1. These effects were dependent upon isoprenylation, as both farnesyltransferase inhibitor FTI-277 and CAAX box deletion prevented Rasd1 inhibition of cAMP-induced gene expression. Injection of lentiviral vector into rat SON expressing Rasd1 diminished, whereas CAAX mutant increased, cAMP inducible genes in response to osmotic stress.

    CONCLUSIONS: We have identified two mechanisms of Rasd1 induction in the hypothalamus, one by elevated glucocorticoids in response to stress, and one in response to increased plasma osmolality resulting from osmotic stress. We propose that the abundance of RASD1 in vasopressin expressing neurons, based on its inhibitory actions on CREB phosphorylation, is an important mechanism for controlling the transcriptional responses to stressors in both the PVN and SON. These effects likely occur through modulation of cAMP-PKA-CREB signaling pathway in the brain.

    Matched MeSH terms: Gene Expression Regulation/drug effects
  12. Tan XW, Bhave M, Fong AY, Matsuura E, Kobayashi K, Shen LH, et al.
    Oxid Med Cell Longev, 2016;2016:6943053.
    PMID: 27239253 DOI: 10.1155/2016/6943053
    This study was aimed at preliminarily assessing the cytoprotective and antioxidative effects of rice bran extracts (RBEs) from a Sarawak local rice variety (local name: "BJLN") and a commercial rice variety, "MR219," on oxidative stress in rat H9c2(2-1) cardiomyocytes. The cardiomyocytes were incubated with different concentrations of RBE and hydrogen peroxide (H2O2), respectively, to identify their respective IC50 values and safe dose ranges. Two nonlethal and close-to-IC50 doses of RBE were selected to evaluate their respective effects on H2O2 induced oxidative stress in cardiomyocytes. Both RBEs showed dose-dependent cytotoxicity effects on cardiomyocytes. H2O2 induction of cardiomyocytes pretreated with RBE further revealed the dose-dependent cytoprotective and antioxidative effects of RBE via an increase in IC50 values of H2O2. Preliminary analyses of induction effects of RBE and H2O2 on cellular antioxidant enzyme, catalase (CAT), also revealed their potential in regulating these activities and expression profile of related gene on oxidative stress in cardiomyocytes. Pretreated cardiomyocytes significantly upregulated the enzymatic activity and expression level of CAT under the exposure of H2O2 induced oxidative stress. This preliminary study has demonstrated the potential antioxidant effects of RBE in alleviating H2O2-mediated oxidative injuries via upregulation in enzymatic activities and expression levels of CAT.
    Matched MeSH terms: Gene Expression Regulation/drug effects
  13. Gopal K, Gowtham M, Sachin S, Ravishankar Ram M, Shankar EM, Kamarul T
    Sci Rep, 2015 Dec 16;5:18300.
    PMID: 26670291 DOI: 10.1038/srep18300
    Angiotensin II is one of the key regulatory peptides implicated in the pathogenesis of liver disease. The mechanisms underlying the salubrious role of α-tocopherol and β-carotene on liver pathology have not been comprehensively assessed. Here, we investigated the mechanisms underlying the role of Angiotensin II on hepatic damage and if α-tocopherol and β-carotene supplementation attenuates hepatic damage. Hepatic damage was induced in Apoe(-/-)mice by infusion of Angiotensin II followed by oral administration with α-tocopherol and β-carotene-enriched diet for 60 days. Investigations showed fibrosis, kupffer cell hyperplasia, hepatocyte degeneration and hepatic cell apoptosis; sinusoidal dilatation along with haemorrhages; evidence of fluid accumulation; increased ROS level and increased AST and ALT activities. In addition, tPA and uPA were down-regulated due to 42-fold up-regulation of PAI-1. MMP-2, MMP-9, MMP-12, and M-CSF were down-regulated in Angiotensin II-treated animals. Notably, α-tocopherol and β-carotene treatment controlled ROS, fibrosis, hepatocyte degeneration, kupffer cell hyperplasia, hepatocyte apoptosis, sinusoidal dilatation and fluid accumulation in the liver sinusoids, and liver enzyme levels. In addition, PAI-1, tPA and uPA expressions were markedly controlled by β-carotene treatment. Thus, Angiotensin II markedly influenced hepatic damage possibly by restraining fibrinolytic system. We concluded that α-tocopherol and β-carotene treatment has salubrious role in repairing hepatic pathology.
    Matched MeSH terms: Gene Expression Regulation/drug effects
  14. Salleh N, Mokhtar HM, Kassim NM, Giribabu N
    J. Membr. Biol., 2015 Dec;248(6):1097-105.
    PMID: 26198330 DOI: 10.1007/s00232-015-9823-8
    Testosterone has been reported to cause a decrease in uterine fluid volume in which this could involve the aquaporins (AQPs). This study aimed to investigate effect of testosterone on uterine AQP-1, 5, and 7 expressions in order to explain the reported reduction in uterine fluid volume under testosterone influence. Ovariectomized adult female rats received peanut oil, testosterone (1 mg/kg/day), estrogen (0.2 µg/kg/day), or combined estrogen plus testosterone for three consecutive days. Other groups received 3 days estrogen followed by 2 days either peanut oil or testosterone with or without flutamide or finasteride. A day after last injection, uteri were harvested, and the levels of AQP-1, 5, and 7 messenger RNA (mRNA) in uterine tissue homogenates were analyzed by real-time PCR (qPCR). Distributions of AQP-1, 5, and 7 proteins in uterus were observed by immunofluorescence. Levels of AQP-1 mRNA were elevated in rats receiving either estrogen or testosterone-only treatment; however, levels of AQP-5 and 7 mRNAs were elevated in rats receiving testosterone-only treatment. In rats pre-treated with estrogen, testosterone treatment resulted in higher AQP-1, 5, and 7 mRNA levels compared to vehicle treatment. Testosterone effects were antagonized by flutamide but not finasteride. Immunofluorescence study showed that AQP-1 was highly distributed in uterine lumenal epithelium following estrogen or testosterone-only treatment. However, AQP-5 and 7 distributions were high in uterine lumenal epithelium following testosterone-only treatment. Testosterone-induced up-regulation of AQP-1, 5, and 7 expressions in uterus could explain the observed reduction in uterine fluid volume as reported under this condition.
    Matched MeSH terms: Gene Expression Regulation/drug effects*
  15. Stone EL, Citossi F, Singh R, Kaur B, Gaskell M, Farmer PB, et al.
    Bioorg Med Chem, 2015 Nov 01;23(21):6891-9.
    PMID: 26474663 DOI: 10.1016/j.bmc.2015.09.052
    Potent, selective antitumour AhR ligands 5F 203 and GW 610 are bioactivated by CYPs 1A1 and 2W1. Herein we reason that DNA adducts' generation resulting in lethal DNA double strand breaks (DSBs) underlies benzothiazoles' activity. Treatment of sensitive carcinoma cell lines with GW 610 generated co-eluting DNA adducts (R(2)>0.7). Time-dependent appearance of γ-H2AX foci revealed subsequent DNA double strand breaks. Propensity for systemic toxicity of benzothiazoles steered development of prodrugs' hydrogels for localised delivery. Clinical applications of targeted therapies include prevention or treatment of recurrent disease after surgical resection of solid tumours. In vitro evaluation of 5F 203 prodrugs' activity demonstrated nanomolar potency against MCF-7 breast and IGROV-1 ovarian carcinoma cell lines.
    Matched MeSH terms: Gene Expression Regulation/drug effects
  16. Greenwood M, Greenwood MP, Mecawi AS, Loh SY, Rodrigues JA, Paton JF, et al.
    Mol Brain, 2015 Oct 26;8(1):68.
    PMID: 26503226 DOI: 10.1186/s13041-015-0159-1
    BACKGROUND: Arginine vasopressin (AVP), a neuropeptide hormone that functions in the regulation of water homeostasis by controlling water re-absorption at kidneys, is synthesised in supraoptic nucleus and paraventricular nucleus of the hypothalamus. An increase in plasma osmolality stimulates secretion of AVP to blood circulation and induces AVP synthesis in these nuclei. Although studies on mechanism of AVP transcriptional regulation in hypothalamus proposed that cAMP and glucocorticoids positively and negatively regulate Avp expression, respectively, the molecular mechanisms have remained elusive. Recently, we identified CREB3L1 (cAMP-responsive element binding protein 3 like 1) as a putative transcription factor of Avp transcription in the rat hypothalamus. However the mechanism of how CREB3L1 is regulated in response of hyperosmotic stress in the neurons of hypothalamus has never been reported. This study aims to investigate effect of previously reported regulators (cAMP and glucocorticoid) of Avp transcription on transcription factor CREB3L1 in order to establish a molecular explanation for cAMP and glucocorticoids effect on AVP expression.

    RESULTS: The effect of cAMP and glucocorticoid treatment on Creb3l1 was investigated in both AtT20 cells and hypothalamic organotypic cultures. The expression of Creb3l1 was increased in both mRNA and protein level by treatment with forskolin, which raises intracellular cAMP levels. Activation of cAMP by forskolin also increased Avp promoter activity in AtT20 cells and this effect was blunted by shRNA mediated silencing of Creb3l1. The forskolin induced increase in Creb3l1 expression was diminished by combined treatment with dexamethasone, and, in vivo, intraperitoneal dexamethasone injection blunted the increase in Creb3l1 and Avp expression induced by hyperosmotic stress.

    CONCLUSION: Here we shows that cAMP and glucocorticoid positively and negatively regulate Creb3l1 expression in the rat hypothalamus, respectively, and regulation of cAMP on AVP expression is mediated through CREB3L1. This data provides the connection between CREB3L1, a newly identified transcription factor of AVP expression, with the previously proposed mechanism of Avp transcription which extends our understanding in transcription regulation of Avp in the hypothalamus.

    Matched MeSH terms: Gene Expression Regulation/drug effects*
  17. Ismail N, Giribabu N, Muniandy S, Salleh N
    Mol. Reprod. Dev., 2015 Jun;82(6):463-74.
    PMID: 26018621 DOI: 10.1002/mrd.22496
    The consistency of the cervical mucus changes with the reproductive cycle, which we hypothesized involved changing levels of cystic fibrosis transmembrane regulator (CFTR), adenylate cyclase (AC), and cyclic adenosine mono-phosphate (cAMP). We therefore measured the abundance of each in the rat cervix under estrogen and progesterone influence to determine if the activity of these components could explain the changes in the consistency of cervical mucus. Ovariectomised adult female rats were treated with three days of either estrogen (1 μg/kg/day) or progesterone (20 mg/kg/day), or three days of estrogen followed by two days of either vehicle or progesterone or estrogen plus progesterone. In some groups, mifepristone (7 mg/kg/day) was concurrently given with progesterone. Animals were then sacrificed, and the cervix was harvested for protein and mRNA expression analyses by Western blot and real-time PCR, respectively. The distribution of proteins was investigated by immunohistochemistry, and levels of cAMP were determined by enzyme-linked immunosorbent assay (ELISA). Cftr mRNA, AC protein, and cAMP levels in cervical homogenates as well as the tissue distribution of CFTR and AC in endocervical epithelia were highest under estrogen influence; the opposite pattern was seen under progesterone influence. Cervical lumen circumference was highest under estrogen and lowest under progesterone. The effects of progesterone were antagonized by mifepristone. Therefore, increased abundance of CFTR, AC, and cAMP under estrogen influence could account for the increased fluid accumulation within the cervical lumen, which would contribute to lower cervical mucus consistency, whereas progesterone reverses this effect at the molecular and organ level.
    Matched MeSH terms: Gene Expression Regulation/drug effects
  18. Hang CY, Kitahashi T, Parhar IS
    J Neurochem, 2015 May;133(4):501-10.
    PMID: 25727787 DOI: 10.1111/jnc.13084
    Zebrafish possess two isoforms of vertebrate ancient long (VAL)-opsin, val-opsinA (valopa) and val-opsinB (valopb), which probably mediate non-visual responses to light. To understand the diurnal and light-sensitive regulation of the valop genes in different cell groups, the current study used real-time quantitative PCR to examine the diurnal changes of valopa and b mRNA levels in different brain areas of adult male zebrafish. Furthermore, effects of the extended exposure to light or dark condition, luminous levels and the treatment with a melatonin receptor agonist or antagonist on valop transcription were examined. In the thalamus, valop mRNA levels showed significant diurnal changes; valopa peaked in the evening, while valopb peaked in the morning. The diurnal change of valopa mRNA levels occurred independent of light conditions, whereas that of valopb mRNA levels were regulated by light. A melatonin receptor agonist or antagonist did not affect the changes of valop mRNA levels. In contrast, the midbrain and hindbrain showed arrhythmic valop mRNA levels under light and dark cycles. The differential diurnal regulation of the valopa and b genes in the thalamus and the arrhythmic expression in the midbrain and hindbrain suggest involvement of deep brain VAL-opsin in time- and light-dependent physiology. We show diurnal expression changes of vertebrate ancient long (VAL) opsin genes (valopa and valopb), depending on brain area, time of day and light condition, in the adult male zebrafish. Differential regulation of the valop genes in the thalamus and arrhythmic expression in the midbrain and hindbrain suggest their involvement in time- and light-dependent physiology to adjust to environmental changes.
    Matched MeSH terms: Gene Expression Regulation/drug effects
  19. Lee CY
    J Anim Physiol Anim Nutr (Berl), 2015 Apr;99(2):317-25.
    PMID: 25196093 DOI: 10.1111/jpn.12247
    This study investigated the effect of repeated acute restraint stress and high-fat diet (HFD) on intestinal expression of nutrient transporters, concomitant to intestinal inflammation. The ability of adenosine to reverse any change was examined. Six-week-old male Sprague Dawley rats were divided into eight groups: control or non-stressed (C), rats exposed to restraint stress for 6 h per day for 14 days (S), control rats fed with HFD (CHF) and restraint-stressed rats fed with HFD (SHF); four additional groups received the same treatments and were also given 50 mg/l adenosine dissolved in drinking water. Fasting blood glucose, plasma insulin, adiponectin and corticosterone were measured. Intestinal expression of SLC5A1, SLC2A2, NPC1L1 and TNF-α was analysed. Histological evaluation was conducted to observe for morphological and anatomical changes in the intestinal tissues. Results showed that HFD feeding increased glucose and insulin levels, and repeated acute restraint stress raised the corticosterone level by 22%. Exposure to both stress and HFD caused a further increase in corticosterone to 41%, while decreasing plasma adiponectin level. Restraint stress altered intestinal expression of SLC5A1, SLC2A2 and NPC1L1. These changes were enhanced in SHF rats. Adenosine was found to alleviate HFD-induced increase in glucose and insulin levels, suppress elevation of corticosterone in S rats and improve the altered nutrient transporters expression profiles. It also prevented upregulation of TNF-α in the intestine of SHF rats. In summary, a combination of stress and HFD exaggerated stress- and HFD-induced pathophysiological changes in the intestine, and biochemical parameters related to obesity. Adenosine attenuated the elevation of corticosterone and altered expression of SLC5A1, NPC1L1 and TNF-α.
    Matched MeSH terms: Gene Expression Regulation/drug effects
  20. Fung SY, Lee ML, Tan NH
    Toxicon, 2015 Mar;96:38-45.
    PMID: 25615711 DOI: 10.1016/j.toxicon.2015.01.012
    Snake venom LAAOs have been reported to exhibit a wide range of pharmacological activities, including cytotoxic, edema-inducing, platelet aggregation-inducing/platelet aggregation-inhibiting, bactericidal and antiviral activities. A heat-stable form of l-amino acid oxidase isolated from king cobra (Ophiophagus hannah) venom (OH-LAAO) has been shown to exhibit very potent cytotoxicity against human tumorigenic cells but not in their non-tumorigenic counterparts, and the cytotoxicity was due to the apoptosis-inducing effect of the enzyme. In this work, the molecular mechanism of cell death induced by OH-LAAO was investigated. The enzyme exerts its apoptosis-inducing effect presumably via both intrinsic and extrinsic pathways as suggested by the increase in caspase-8 and -9 activities. Oligonucleotide microarray analysis showed that the expression of a total of 178 genes was significantly altered as a result of oxidative stress induced by the hydrogen peroxide generated by the enzyme. Of the 178 genes, at least 27 genes are involved in apoptosis and cell death. These alterations of gene expression was presumably caused by the direct cytotoxic effect of H2O2 generated during the enzymatic reaction, as well as the non-specific oxidative modifications of signaling molecules that eventually lead to apoptosis and cell death. The very substantial up-regulation of cytochrome P450 genes may also contribute to the potent cytotoxic action of OH-LAAO by producing excessive reactive oxygen species (ROS). In conclusion, the potent apoptosis inducing activity of OH-LAAO was likely due to the direct cytotoxic effect of H2O2 generated during the enzymatic reaction, as well as the non-specific oxidation of signalling molecules.
    Matched MeSH terms: Gene Expression Regulation/drug effects*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links