Displaying publications 61 - 80 of 154 in total

Abstract:
Sort:
  1. Walker PJ, Widen SG, Firth C, Blasdell KR, Wood TG, Travassos da Rosa AP, et al.
    Am J Trop Med Hyg, 2015 Nov;93(5):1041-51.
    PMID: 26324724 DOI: 10.4269/ajtmh.15-0344
    The genus Nairovirus of arthropod-borne bunyaviruses includes the important emerging human pathogen, Crimean-Congo hemorrhagic fever virus (CCHFV), as well as Nairobi sheep disease virus and many other poorly described viruses isolated from mammals, birds, and ticks. Here, we report genome sequence analysis of six nairoviruses: Thiafora virus (TFAV) that was isolated from a shrew in Senegal; Yogue (YOGV), Kasokero (KKOV), and Gossas (GOSV) viruses isolated from bats in Senegal and Uganda; Issyk-Kul virus (IKV) isolated from bats in Kyrgyzstan; and Keterah virus (KTRV) isolated from ticks infesting a bat in Malaysia. The S, M, and L genome segments of each virus were found to encode proteins corresponding to the nucleoprotein, polyglycoprotein, and polymerase protein of CCHFV. However, as observed in Leopards Hill virus (LPHV) and Erve virus (ERVV), polyglycoproteins encoded in the M segment lack sequences encoding the double-membrane-spanning CCHFV NSm protein. Amino acid sequence identities, complement-fixation tests, and phylogenetic analysis indicated that these viruses cluster into three groups comprising KKOV, YOGV, and LPHV from bats of the suborder Yingochiroptera; KTRV, IKV, and GOSV from bats of the suborder Yangochiroptera; and TFAV and ERVV from shrews (Soricomorpha: Soricidae). This reflects clade-specific host and vector associations that extend across the genus.
    Matched MeSH terms: Genome, Viral/genetics*
  2. Geoghegan JL, Tan le V, Kühnert D, Halpin RA, Lin X, Simenauer A, et al.
    J Virol, 2015 Sep;89(17):8871-9.
    PMID: 26085170 DOI: 10.1128/JVI.00706-15
    Enterovirus A71 (EV-A71) is a major cause of hand, foot, and mouth disease (HFMD) and is particularly prevalent in parts of Southeast Asia, affecting thousands of children and infants each year. Revealing the evolutionary and epidemiological dynamics of EV-A71 through time and space is central to understanding its outbreak potential. We generated the full genome sequences of 200 EV-A71 strains sampled from various locations in Viet Nam between 2011 and 2013 and used these sequence data to determine the evolutionary history and phylodynamics of EV-A71 in Viet Nam, providing estimates of the effective reproduction number (Re) of the infection through time. In addition, we described the phylogeography of EV-A71 throughout Southeast Asia, documenting patterns of viral gene flow. Accordingly, our analysis reveals that a rapid genogroup switch from C4 to B5 likely took place during 2012 in Viet Nam. We show that the Re of subgenogroup C4 decreased during the time frame of sampling, whereas that of B5 increased and remained >1 at the end of 2013, corresponding to a rise in B5 prevalence. Our study reveals that the subgenogroup B5 virus that emerged into Viet Nam is closely related to variants that were responsible for large epidemics in Malaysia and Taiwan and therefore extends our knowledge regarding its associated area of endemicity. Subgenogroup B5 evidently has the potential to cause more widespread outbreaks across Southeast Asia.

    IMPORTANCE: EV-A71 is one of many viruses that cause HFMD, a common syndrome that largely affects infants and children. HFMD usually causes only mild illness with no long-term consequences. Occasionally, however, severe infection may arise, especially in very young children, causing neurological complications and even death. EV-A71 is highly contagious and is associated with the most severe HFMD cases, with large and frequent epidemics of the virus recorded worldwide. Although major advances have been made in the development of a potential EV-A71 vaccine, there is no current prevention and little is known about the patterns and dynamics of EV-A71 spread. In this study, we utilize full-length genome sequence data obtained from HFMD patients in Viet Nam, a geographical region where the disease has been endemic since 2003, to characterize the phylodynamics of this important emerging virus.

    Matched MeSH terms: Genome, Viral/genetics*
  3. Shirako Y, Yamaguchi Y
    J Gen Virol, 2000 May;81(Pt 5):1353-60.
    PMID: 10769079
    Sagiyama virus (SAG) is a member of the genus Alphavirus in the family Togaviridae, isolated in Japan from mosquitoes in 1956. We determined the complete nucleotide sequence of the SAG genomic RNA from the original stock virus which formed a mixture of plaques with different sizes, and that from a full-length cDNA clone, pSAG2, infectious RNA transcripts from which formed uniform large plaques on BHK-21 cells. The SAG genome was 11698 nt in length exclusive of the 3' poly(A) tail. Between the complete nucleotide sequences of the full-length cDNA clone, pSAG2, and the consensus sequence from the original stock virus, there were nine amino acid differences; two each in nsP1, nsP2 and E1, and three in E2, some of which may be responsible for plaque phenotypic variants in the original virus stock. SAG was most closely related to Ross River virus among other alphaviruses fully sequenced, with amino acid sequence identities of 86% in the nonstructural proteins and of 83% in the structural proteins. The 3' terminal 280 nt region of SAG was 82% identical to that of Barmah Forest virus, which was otherwise not closely related to SAG. Comparison of the nucleotide sequence of SAG with partial nucleotide sequences of Getah virus (GET), which was originally isolated in Malaysia in 1955 and is closely related to SAG in serology and in biology, showed near identity between the two viruses, suggesting that SAG is a strain of GET.
    Matched MeSH terms: Genome, Viral*
  4. Kong LL, Omar AR, Hair-Bejo M, Aini I, Seow HF
    Arch Virol, 2004 Feb;149(2):425-34.
    PMID: 14745606
    The deduced amino acid sequences of segment A and B of two very virulent Infectious bursal disease virus (vvIBDV) isolates, UPM94/273 and UPM97/61 were compared with 25 other IBDV strains. Twenty amino acid residues (8 in VP1, 5 in VP2, 2 in VP3, 4 in VP4, 1 in VP5) that were common to vvIBDV strains were detected. However, UPM94/273 is an exceptional vvIBDV with usual amino acid substitutions. The differences in the divergence of segment A and B indicated that the vvIBDV strains may have been derived from genetic reassortment of a single ancestral virus or both segments have different ability to undergo genetic variation due to their different functional constraints.
    Matched MeSH terms: Genome, Viral*
  5. Lam TT, Jia N, Zhang YW, Shum MH, Jiang JF, Zhu HC, et al.
    Nature, 2020 07;583(7815):282-285.
    PMID: 32218527 DOI: 10.1038/s41586-020-2169-0
    The ongoing outbreak of viral pneumonia in China and across the world is associated with a new coronavirus, SARS-CoV-21. This outbreak has been tentatively associated with a seafood market in Wuhan, China, where the sale of wild animals may be the source of zoonotic infection2. Although bats are probable reservoir hosts for SARS-CoV-2, the identity of any intermediate host that may have facilitated transfer to humans is unknown. Here we report the identification of SARS-CoV-2-related coronaviruses in Malayan pangolins (Manis javanica) seized in anti-smuggling operations in southern China. Metagenomic sequencing identified pangolin-associated coronaviruses that belong to two sub-lineages of SARS-CoV-2-related coronaviruses, including one that exhibits strong similarity in the receptor-binding domain to SARS-CoV-2. The discovery of multiple lineages of pangolin coronavirus and their similarity to SARS-CoV-2 suggests that pangolins should be considered as possible hosts in the emergence of new coronaviruses and should be removed from wet markets to prevent zoonotic transmission.
    Matched MeSH terms: Genome, Viral/genetics*
  6. Schuh AJ, Guzman H, Tesh RB, Barrett AD
    Vector Borne Zoonotic Dis, 2013 Jul;13(7):479-88.
    PMID: 23590316 DOI: 10.1089/vbz.2011.0870
    Five genotypes (GI-V) of Japanese encephalitis virus (JEV) have been identified, all of which have distinct geographical distributions and epidemiologies. It is thought that JEV originated in the Indonesia-Malaysia region from an ancestral virus. From that ancestral virus GV diverged, followed by GIV, GIII, GII, and GI. Genotype IV appears to be confined to the Indonesia-Malaysia region, as GIV has been isolated in Indonesia from mosquitoes only, while GV has been isolated on three occasions only from a human in Malaysia and mosquitoes in China and South Korea. In contrast, GI-III viruses have been isolated throughout Asia and Australasia from a variety of hosts. Prior to this study only 13 JEV isolates collected from the Indonesian archipelago had been studied genetically. Therefore the sequences of the envelope (E) gene of 24 additional Indonesian JEV isolates, collected throughout the archipelago between 1974 and 1987, were determined and a series of molecular adaptation analyses were performed. Phylogenetic analysis indicated that over a 14-year time span three genotypes of JEV circulated throughout Indonesia, and a statistically significant association between the year of virus collection and genotype was revealed: isolates collected between 1974 and 1980 belonged to GII, isolates collected between 1980 and 1981 belonged to GIV, and isolates collected in 1987 belonged to GIII. Interestingly, three of the GII Indonesian isolates grouped with an isolate that was collected during the JE outbreak that occurred in Australia in 1995, two of the GIII Indonesian isolates were closely related to a Japanese isolate collected 40 years previously, and two Javanese GIV isolates possessed six amino acid substitutions within the E protein when compared to a previously sequenced GIV isolate collected in Flores. Several amino acids within the E protein of the Indonesian isolates were found to be under directional evolution and/or co-evolution. Conceivably, the tropical climate of the Indonesia/Malaysia region, together with its plethora of distinct fauna and flora, may have driven the emergence and evolution of JEV. This is consistent with the extensive genetic diversity seen among the JEV isolates observed in this study, and further substantiates the hypothesis that JEV originated in the Indonesia-Malaysia region.
    Matched MeSH terms: Genome, Viral/genetics*
  7. Hansen TA, Mollerup S, Nguyen NP, White NE, Coghlan M, Alquezar-Planas DE, et al.
    Emerg Microbes Infect, 2016 Aug 17;5(8):e90.
    PMID: 27530749 DOI: 10.1038/emi.2016.90
    Outbreaks of zoonotic diseases in humans and livestock are not uncommon, and an important component in containment of such emerging viral diseases is rapid and reliable diagnostics. Such methods are often PCR-based and hence require the availability of sequence data from the pathogen. Rattus norvegicus (R. norvegicus) is a known reservoir for important zoonotic pathogens. Transmission may be direct via contact with the animal, for example, through exposure to its faecal matter, or indirectly mediated by arthropod vectors. Here we investigated the viral content in rat faecal matter (n=29) collected from two continents by analyzing 2.2 billion next-generation sequencing reads derived from both DNA and RNA. Among other virus families, we found sequences from members of the Picornaviridae to be abundant in the microbiome of all the samples. Here we describe the diversity of the picornavirus-like contigs including near-full-length genomes closely related to the Boone cardiovirus and Theiler's encephalomyelitis virus. From this study, we conclude that picornaviruses within R. norvegicus are more diverse than previously recognized. The virome of R. norvegicus should be investigated further to assess the full potential for zoonotic virus transmission.
    Matched MeSH terms: Genome, Viral*
  8. Hossain MG, Mahmud MM, Nazir KHMNH, Ueda K
    Int J Mol Sci, 2020 Jan 15;21(2).
    PMID: 31952213 DOI: 10.3390/ijms21020546
    Mutations in the hepatitis B virus (HBV) genome can potentially lead to vaccination failure, diagnostic escape, and disease progression. However, there are no reports on viral gene expression and large hepatitis B surface antigen (HBsAg) antigenicity alterations due to mutations in HBV isolated from a Bangladeshi population. Here, we sequenced the full genome of the HBV isolated from a clinically infected patient in Bangladesh. The open reading frames (ORFs) (P, S, C, and X) of the isolated HBV strain were successfully amplified and cloned into a mammalian expression vector. The HBV isolate was identified as genotype C (sub-genotype C2), serotype adr, and evolutionarily related to strains isolated in Indonesia, Malaysia, and China. Clinically significant mutations, such as preS1 C2964A, reverse transcriptase domain I91L, and small HBsAg N3S, were identified. The viral P, S, C, and X genes were expressed in HEK-293T and HepG2 cells by transient transfection with a native subcellular distribution pattern analyzed by immunofluorescence assay. Western blotting of large HBsAg using preS1 antibody showed no staining, and preS1 ELISA showed a significant reduction in reactivity due to amino acid mutations. This mutated preS1 sequence has been identified in several Asian countries. To our knowledge, this is the first report investigating changes in large HBsAg antigenicity due to preS1 mutations.
    Matched MeSH terms: Genome, Viral/genetics
  9. Ngwe Tun MM, Muthugala R, Nabeshima T, Soe AM, Dumre SP, Rajamanthri L, et al.
    PLoS One, 2020;15(6):e0234508.
    PMID: 32555732 DOI: 10.1371/journal.pone.0234508
    Dengue virus (DENV) infection remains a major public health concern in many parts of the world, including Southeast Asia and the Americas. Sri Lanka experienced its largest dengue outbreak in 2017. Neurological symptoms associated with DENV infection have increasingly been reported in both children and adults. Here, we characterize DENV type 2 (DENV-2) strains, which were isolated from cerebrospinal fluid (CSF) and/or serum of patients with dengue encephalitis. Acute serum and CSF samples from each patient were subjected to dengue-specific non-structural protein 1 (NS1) antigen test, IgM and IgG enzyme-linked immunosorbent assay (ELISA), virus isolation, conventional and real-time polymerase chain reaction (PCR), and next-generation sequencing (NGS). Among the 5 dengue encephalitis patients examined, 4 recovered and 1 died. DENV-2 strains were isolated from serum and/or CSF samples of 3 patients. The highest viral genome levels were detected in the CSF and serum of the patient who succumbed to the illness. A phylogenetic tree revealed that the DENV-2 isolates belonged to a new clade of cosmopolitan genotype and were genetically close to strains identified in China, South Korea, Singapore, Malaysia, Thailand, and the Philippines. According to the NGS analysis, greater frequencies of nonsynonymous and synonymous mutations per gene were identified in the nonstructural genes. The full genomes of serum- and CSF-derived DENV-2 from the same patient shared 99.7% similarity, indicating that the virus spread across the blood-brain barrier. This is the first report to describe neurotropic DENV-2 using whole-genome analysis and to provide the clinical, immunological, and virological characteristics of dengue encephalitis patients during a severe dengue outbreak in Sri Lanka in 2017.
    Matched MeSH terms: Genome, Viral/genetics*
  10. Chow WZ, Takebe Y, Syafina NE, Prakasa MS, Chan KG, Al-Darraji HA, et al.
    PLoS One, 2014;9(1):e85250.
    PMID: 24465513 DOI: 10.1371/journal.pone.0085250
    The HIV epidemic is primarily characterised by the circulation of HIV-1 group M (main) comprising of 11 subtypes and sub-subtypes (A1, A2, B-D, F1, F2, G, H, J, and K) and to date 55 circulating recombinant forms (CRFs). In Southeast Asia, active inter-subtype recombination involving three main circulating genotypes--subtype B (including subtype B', the Thai variant of subtype B), CRF01_AE, and CRF33_01B--have contributed to the emergence of novel unique recombinant forms. In the present study, we conducted the molecular epidemiological surveillance of HIV-1 gag-RT genes among 258 people who inject drugs (PWIDs) in Kuala Lumpur, Malaysia, between 2009 and 2011 whereby a novel CRF candidate was recently identified. The near full-length genome sequences obtained from six epidemiologically unlinked individuals showed identical mosaic structures consisting of subtype B' and CRF01_AE, with six unique recombination breakpoints in the gag-RT, pol, and env regions. Among the high-risk population of PWIDs in Malaysia, which was predominantly infected by CRF33_01B (>70%), CRF58_01B circulated at a low but significant prevalence (2.3%, 6/258). Interestingly, the CRF58_01B shared two unique recombination breakpoints with other established CRFs in the region: CRF33_01B, CRF48_01B, and CRF53_01B in the gag gene, and CRF15_01B (from Thailand) in the env gene. Extended Bayesian Markov chain Monte Carlo sampling analysis showed that CRF58_01B and other recently discovered CRFs were most likely to have originated in Malaysia, and that the recent spread of recombinant lineages in the country had little influence from neighbouring countries. The isolation, genetic characterization, and evolutionary features of CRF58_01B among PWIDs in Malaysia signify the increasingly complex HIV-1 diversity in Southeast Asia that may hold an implication on disease treatment, control, and prevention.
    Matched MeSH terms: Genome, Viral/genetics
  11. Gan HM, Sieo CC, Tang SG, Omar AR, Ho YW
    Virol J, 2013;10:308.
    PMID: 24134834 DOI: 10.1186/1743-422X-10-308
    Bacteriophage EC1-UPM is an N4-like bacteriophage which specifically infects Escherichia coli O78:K80, an avian pathogenic strain that causes colibacillosis in poultry. The complete genome sequence of bacteriophage EC1-UPM was analysed and compared with other closely related N4-like phage groups to assess their genetic similarities and differences.
    Matched MeSH terms: Genome, Viral*
  12. Sharman M, Thomas JE, Skabo S, Holton TA
    Arch Virol, 2008;153(1):135-47.
    PMID: 17978886 DOI: 10.1007/s00705-007-1077-z
    Two isolates of a novel babuvirus causing "bunchy top" symptoms were characterised, one from abacá (Musa textilis) from the Philippines and one from banana (Musa sp.) from Sarawak (Malaysia). The name abacá bunchy top virus (ABTV) is proposed. Both isolates have a genome of six circular DNA components, each ca. 1.0-1.1 kb, analogous to those of isolates of Banana bunchy top virus (BBTV). However, unlike BBTV, both ABTV isolates lack an internal ORF in DNA-R, and the ORF in DNA-U3 found in some BBTV isolates is also absent. In all phylogenetic analyses of nanovirid isolates, ABTV and BBTV fall in the same clade, but on separate branches. However, ABTV and BBTV isolates shared only 79-81% amino acid sequence identity for the putative coat protein and 54-76% overall nucleotide sequence identity across all components. Stem-loop and major common regions were present in ABTV, but there was less than 60% identity with the major common region of BBTV. ABTV and BBTV were also shown to be serologically distinct, with only two out of ten BBTV-specific monoclonal antibodies reacting with ABTV. The two ABTV isolates may represent distinct strains of the species as they are less closely related to each other than are isolates of the two geographic subgroups (Asian and South Pacific) of BBTV.
    Matched MeSH terms: Genome, Viral*
  13. Murulitharan K, Yusoff K, Omar AR, Molouki A
    Virus Genes, 2013 Jun;46(3):431-40.
    PMID: 23306943 DOI: 10.1007/s11262-012-0874-y
    Newcastle disease virus (NDV) strain AF2240 is a viscerotropic velogenic strain that is used as a vaccine challenge virus in Malaysia. The identification of the full length genome will be a crucial platform for further studies of this isolate. In this study, we fully sequenced the genome of a derivative of this strain named AF2240-I. The 15,192 nt long genome contains a 55-nt leader sequence at the 3' whereas the trailer region consists of 114 nt at the 5'. The intergenic sequences between the NP-P, P-M, M-F, F-HN, and HN-L genes comprise 1, 1, 1, 31, and 47 nt, respectively. The acknowledged cleavage site of fusion protein showed amino acid sequence of 112-R-R-Q-K-R-F-117, which corresponds to those of virulent NDV strains. Phylogenetic analysis of the whole virus genome shows that the strain AF2240-I belongs to genotype VIII and is more closely related to velogenic strains QH1, QH4, Fontana, Largo, and Italienas compared to other strains of NDV. Differences are noticed in the hemagglutinin-neuraminidase (HN) and matrix (M) gene between AF2240 and its derivative AF2240-I. This is the first report of a complete genome sequence of an NDV strain isolated in Malaysia.
    Matched MeSH terms: Genome, Viral*
  14. Tan KK, Sy AK, Tandoc AO, Khoo JJ, Sulaiman S, Chang LY, et al.
    Sci Rep, 2015 Jul 23;5:12279.
    PMID: 26201250 DOI: 10.1038/srep12279
    Outbreaks involving the Asian genotype Chikungunya virus (CHIKV) caused over one million infections in the Americas recently. The outbreak was preceded by a major nationwide outbreak in the Philippines. We examined the phylogenetic and phylogeographic relationships of representative CHIKV isolates obtained from the 2012 Philippines outbreak with other CHIKV isolates collected globally. Asian CHIKV isolated from the Philippines, China, Micronesia and Caribbean regions were found closely related, herein denoted as Cosmopolitan Asian CHIKV (CACV). Three adaptive amino acid substitutions in nsP3 (D483N), E1 (P397L) and E3 (Q19R) were identified among CACV. Acquisition of the nsP3-483N mutation in Compostela Valley followed by E1-397L/E3-19R in Laguna preceded the nationwide spread in the Philippines. The China isolates possessed two of the amino acid substitutions, nsP3-D483N and E1-P397L whereas the Micronesian and Caribbean CHIKV inherited all the three amino acid substitutions. The unique amino acid substitutions observed among the isolates suggest multiple independent virus dissemination events. The possible biological importance of the specific genetic signatures associated with the rapid global of the virus is not known and warrant future in-depth study and epidemiological follow-up. Molecular evidence, however, supports the Philippines outbreak as the possible origin of the CACV.
    Matched MeSH terms: Genome, Viral/genetics*
  15. He C, Ding N, Li J, Li Y
    Wei Sheng Wu Xue Bao, 2002 Aug;42(4):436-41.
    PMID: 12557549
    A Chicken anemia virus has been isolated from a chicken flock in Harbin of China. The genome of the ivrus was cloned through polymerase chain reaction(PCR) and sequence of the genome was analyzed. The cycle genome is made of 2298 base pairs including three overlapping open reading frames(vp1, vp2, vp3) and a regulative region. Comparing sequence of the genome through BLAST in GenBank, this sequence exhibits 96.9% identity with other genome of CA Vs and least. Multiple alignment of this genome of this virus, 26p4, strain isolated in Germany, strain isolated in Malaysia and Cux-1 found that this sequence exhibits 98.2% (42/2298), 98.2% (42/2298), 96.9% (72/2298) and 97.5% (60/2319) identify with them, respectively. A new CAV strain was isolated and it has better identify with CAV isolated in Europe countries than is Asia country Malaysia. Multiple alignment of VP1, VP2, VP3 of 26p4, strain isolated in Germany, strain isolated in Malaysia, Cux-1 and strain isolated in Harbin of China found the VP2 the most conservative.
    Matched MeSH terms: Genome, Viral*
  16. Ong CC, Lam SK, AbuBakar S
    Malays J Pathol, 1998 Jun;20(1):11-7.
    PMID: 10879258
    In vitro generated cloned full length dengue 2 virus untranslated regions (UTRs) were used in RNA gel mobility shift assays to examine cellular factors binding to the virus genomes. Cellular factors in lysates of Vero (monkey) and C6/36 (mosquito) cells bound specifically and non-specifically to the dengue 2 virus 3' UTR. Non-specific interaction with the 5' UTR, resulting in formation of at least 4 band shift complexes was noted with lysate of the C6/36 cells only. Pre-treating the cell lysates with proteinase K affected binding of cellular factors to the dengue 2 virus UTRs, suggesting that the cellular factors were proteins. These findings suggest that cellular proteins could interact with specific sites on the dengue virus genomes.
    Matched MeSH terms: Genome, Viral*
  17. Harcourt BH, Tamin A, Halpin K, Ksiazek TG, Rollin PE, Bellini WJ, et al.
    Virology, 2001 Aug 15;287(1):192-201.
    PMID: 11504554
    In 1998, Nipah virus (NV) emerged in peninsular Malaysia, causing fatal encephalitis in humans and a respiratory disease in swine. NV is most closely related to Hendra virus (HV), a paramyxovirus that was identified in Australia in 1994, and it has been proposed that HV and NV represent a new genus within the family Paramyxoviridae. This report describes the analysis of the sequences of the polymerase gene (L) and genomic termini of NV as well as a comparison of the full-length, genomic sequences of HV and NV. The L gene of NV is predicted to be 2244 amino acids in size and contains the six domains found within the L proteins of all nonsegmented, negative-stranded (NNS) RNA viruses. However, the GDNQ motif found in most NNS RNA viruses was replaced by GDNE in both NV and HV. The 3' and 5' termini of the NV genome are nearly identical to the genomic termini of HV and share sequence homology with the genomic termini of other members of the subfamily Paramyxovirinae. At 18,246 nucleotides, the genome of NV is 12 nucleotides longer than the genome of HV and they have the largest genomes within the family Paramyxoviridae. The comparison of the structures of the genomes of HV and NV is now complete and this information will help to establish the taxonomic position of these novel viruses within the family Paramyxoviridae.
    Matched MeSH terms: Genome, Viral*
  18. Chua BH, McMinn PC, Lam SK, Chua KB
    J Gen Virol, 2001 Nov;82(Pt 11):2629-39.
    PMID: 11602774
    The complete nucleotide sequences are reported of two strains of echovirus 7, the prototype Wallace strain (Eo7-Wallace) and a recent Malaysian strain isolated from the cerebrospinal fluid of a child with fatal encephalomyelitis (Eo7-UMMC strain). The molecular findings corroborate the serological placement of the UMMC strain as echovirus 7. Both Eo7-Wallace and Eo7-UMMC belong to the species human enterovirus B and are most closely related to echovirus 11. Eo7-UMMC has undergone significant genetic drift from the prototype strain in the 47 years that separate the isolation of the two viruses. Phylogenetic analysis revealed that Eo7-UMMC did not arise from recombination with another enterovirus serotype. The molecular basis for the severely neurovirulent phenotype of Eo7-UMMC remains unknown. However, it is shown that mutations in the nucleotide sequence of the 5' untranslated region (UTR) of Eo7-UMMC result in changes to the putative structure of the 5' UTR. It is possible that these changes contribute to the neurovirulence of Eo7-UMMC.
    Matched MeSH terms: Genome, Viral*
  19. Tajima S, Nakayama E, Kotaki A, Moi ML, Ikeda M, Yagasaki K, et al.
    Jpn J Infect Dis, 2017 Jan 24;70(1):45-49.
    PMID: 27169954 DOI: 10.7883/yoken.JJID.2016.086
    Cases of autochthonous infections of dengue virus type 1 (DENV-1) were detected in Japan after a 70-year period devoid of dengue outbreaks. We previously showed that E gene sequences are identical in 11 of the 12 DENV-1 strains autochthonous to Japan. However, the E sequence represents only 14% of the DENV-1 genome. In the present study, we have sequenced the entire genome of 6 autochthonous DENV-1 strains that were isolated from patients during the 2014 outbreak. Sequencing of 5 Yoyogi group strains with identical E sequences and 1 Shizuoka strain with a different E sequence revealed that the first Yoyogi group strain differed from the Shizuoka strain by 18 amino acid residues. Furthermore, 2 Yoyogi group strains had different genomic sequences while the other 3 had identical genomes. Phylogenetic analyses indicated that the Hyogo strain, a Yoyogi group strain, was the first to diverge from the other 4 Yoyogi group strains. The E gene sequence of the Yoyogi group strains exhibits the highest homology to those of the strains isolated in Malaysia and Singapore between 2013 and 2014. The patient infected with the Hyogo strain visited Malaysia before the onset of dengue fever, suggesting that this was a case of dengue infection imported from Malaysia.
    Matched MeSH terms: Genome, Viral*
  20. Lee CC, Lin CY, Hsu HW, Yang CS
    Arch Virol, 2020 Nov;165(11):2715-2719.
    PMID: 32776255 DOI: 10.1007/s00705-020-04769-2
    We report two novel RNA viruses from yellow crazy ants, (Anoplolepis gracilipes) detected using next-generation sequencing. The complete genome sequences of the two viruses were 10,662 and 8,238 nucleotides in length, respectively, with both possessing two open reading frames with three conserved protein domains. The genome organization is characteristic of members of the genus Triatovirus in the family Dicistroviridae. The two novel viruses were tentatively named "Anoplolepis gracilipes virus 1" and "Anoplolepis gracilipes virus 2" (AgrV-1 and AgrV-2). Phylogenetic analyses based on amino acid sequences of the non-structural polyprotein (ORF1) suggest that the two viruses are triatovirus-like viruses. This is the first report on the discovery of novel triatovirus-like viruses in yellow crazy ants with a description of their genome structure (two ORFs and conserved domains of RNA helicase, RNA-dependent RNA polymerase, and capsid protein), complete sequences, and viral prevalence across the Asia-Pacific region.
    Matched MeSH terms: Genome, Viral*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links