Displaying publications 61 - 80 of 737 in total

Abstract:
Sort:
  1. Uthumporn U, Shariffa YN, Karim AA
    Appl Biochem Biotechnol, 2012 Mar;166(5):1167-82.
    PMID: 22203397 DOI: 10.1007/s12010-011-9502-x
    The effect of heat treatment below the gelatinization temperature on the susceptibility of corn, mung bean, sago, and potato starches towards granular starch hydrolysis (35°C) was investigated. Starches were hydrolyzed in granular state and after heat treatment (50°C for 30 min) by using granular starch hydrolyzing enzyme for 24 h. Hydrolyzed heat-treated starches showed a significant increase in the percentage of dextrose equivalent compared to native starches, respectively, with corn 53% to 56%, mung bean 36% to 47%, sago 15% to 26%, and potato 12% to 15%. Scanning electron microscopy micrographs showed the presence of more porous granules and surface erosion in heat-treated starch compared to native starch. X-ray analysis showed no changes but with sharper peaks for all the starches, suggested that hydrolysis occurred on the amorphous region. The amylose content and swelling power of heat-treated starches was markedly altered after hydrolysis. Evidently, this enzyme was able to hydrolyze granular starches and heat treatment before hydrolysis significantly increased the degree of hydrolysis.
    Matched MeSH terms: Hot Temperature*
  2. Usman MG, Rafii MY, Ismail MR, Malek MA, Abdul Latif M
    ScientificWorldJournal, 2014;2014:308042.
    PMID: 25478590 DOI: 10.1155/2014/308042
    High temperature tolerance is an important component of adaptation to arid and semiarid cropping environment in chili pepper. Two experiments were carried out to study the genetic variability among chili pepper for heat tolerance and morphophysiological traits and to estimate heritability and genetic advance expected from selection. There was a highly significant variation among the genotypes in response to high temperature (CMT), photosynthesis rate, plant height, disease incidence, fruit length, fruit weight, number of fruits, and yield per plant. At 5% selection intensity, high genetic advance as percent of the mean (>20%) was observed for CMT, photosynthesis rate, fruit length, fruit weight, number of fruits, and yield per plant. Similarly, high heritability (>60%) was also observed indicating the substantial effect of additive gene more than the environmental effect. Yield per plant showed strong to moderately positive correlations (r = 0.23-0.56) at phenotypic level while at genotypic level correlation coefficient ranged from 0.16 to 0.72 for CMT, plant height, fruit length, and number of fruits. Cluster analysis revealed eight groups and Group VIII recorded the highest CMT and yield. Group IV recorded 13 genotypes while Groups II, VII, and VIII recorded one each. The results showed that the availability of genetic variance could be useful for exploitation through selection for further breeding purposes.
    Matched MeSH terms: Hot Temperature
  3. Urbieta MS, Donati ER, Chan KG, Shahar S, Sin LL, Goh KM
    Biotechnol Adv, 2015 Nov 1;33(6 Pt 1):633-47.
    PMID: 25911946 DOI: 10.1016/j.biotechadv.2015.04.007
    Thermophiles and hyperthermophiles are present in various regions of the Earth, including volcanic environments, hot springs, mud pots, fumaroles, geysers, coastal thermal springs, and even deep-sea hydrothermal vents. They are also found in man-made environments, such as heated compost facilities, reactors, and spray dryers. Thermophiles, hyperthermophiles, and their bioproducts facilitate various industrial, agricultural, and medicinal applications and offer potential solutions to environmental damages and the demand for biofuels. Intensified efforts to sequence the entire genome of hyperthermophiles and thermophiles are increasing rapidly, as evidenced by the fact that over 120 complete genome sequences of the hyperthermophiles Aquificae, Thermotogae, Crenarchaeota, and Euryarchaeota are now available. In this review, we summarise the major current applications of thermophiles and thermozymes. In addition, emphasis is placed on recent progress in understanding the biodiversity, genomes, transcriptomes, metagenomes, and single-cell sequencing of thermophiles in the genomic era.
    Matched MeSH terms: Hot Temperature*
  4. Umi Nadrah Amran, Farah Wahida Ahmad Zaiki
    MyJurnal
    Introduction: Doppler mode ultrasound is widely used in prenatal scanning and known to produce a higher acoustic
    output which later leads to higher heat energy conversion compared to other ultrasound modes. It has been reported
    that the use of Doppler imaging might increase the temperature of tissues, thus, when Doppler is used in combination with 2D ultrasound, the risks of bioeffects tend to increase more. It is also known that prolonged exposure to
    ultrasound during pregnancy can cause irreversible biological destructions to the fetus. Despite the benefits of using
    Doppler ultrasound, its potential adverse effects have received scant attention in the research literature. Therefore,
    this study aimed to examine a correlation between gestational stages (GS) and newborn rabbit’s body weight at different prenatal Doppler ultrasound exposure durations. Methods: Twelve pregnant New Zealand white rabbits (NZWR)
    were exposed once using three different Doppler ultrasound exposure durations (30, 60, 90 minutes exposure) at
    three different GSs (1st, 2nd, and 3rd GS). After delivery, the mean weights of the 62 newborns were statistically analysed. Results: Strong negative and positive correlation between newborn’s body weight at different GSs and Doppler
    ultrasound exposure durations with a significant result found in 60 minutes exposure (p =
    Matched MeSH terms: Hot Temperature
  5. Umar S, Sulaiman F, Abdullah N, Mohamad SN
    J Nanosci Nanotechnol, 2020 12 01;20(12):7569-7576.
    PMID: 32711628 DOI: 10.1166/jnn.2020.18616
    Conventional thermal fluids with suspended nanoparticles, known as nanofluids, have been developed for heat transfer applications. Heat transfer loss could be reduced significantly if the thermophysical properties of the heat transfer fluid are improved, which to some extent, could reduce the present global environmental challenges associated with energy utilization, such as climate change and global warming. In this work, the role of the concentration of sodium dodecyl-benzene sulfonate (SDBS) in the stability of Al₂O₃/bio-oil nanofluid is investigated the zeta potential value, and its implications to the viscosity and thermal conductivity of the nanofluid are explored. The bio-oil based nanofluid is fixed using a two-step method in which the prepared base fluid is added with 13-nm alumina nanoparticles powder. Various weight fractions of SDBS (0.1, 0.2, 0.4, 0.6, and 1.0 wt%) are used for both 0.1 and 0.2 wt% Al₂O₃ to investigate the significance of the stability of a nanofluid on its thermal conductivity and viscosity. Results indicate that a stable nanofluid has reduced viscosity and increased thermal conductivity.
    Matched MeSH terms: Hot Temperature
  6. Ullah I, Khan I, Shafie S
    Sci Rep, 2017 04 25;7(1):1113.
    PMID: 28442747 DOI: 10.1038/s41598-017-01205-5
    Unsteady mixed convection flow of Casson fluid towards a nonlinearly stretching sheet with the slip and convective boundary conditions is analyzed in this work. The effects of Soret Dufour, viscous dissipation and heat generation/absorption are also investigated. After using some suitable transformations, the unsteady nonlinear problem is solved by using Keller-box method. Numerical solutions for wall shear stress and high temperature transfer rate are calculated and compared with previously published work, an excellent arrangement is followed. It is noticed that fluid velocity reduces for both local unsteadiness and Casson parameters. It is likewise noticed that the influence of a Dufour number of dimensionless temperature is more prominent as compared to species concentration. Furthermore, the temperature was found to be increased in the case of nonlinear thermal radiation.
    Matched MeSH terms: Hot Temperature
  7. Ullah I, Bhattacharyya K, Shafie S, Khan I
    PLoS One, 2016;11(10):e0165348.
    PMID: 27776174 DOI: 10.1371/journal.pone.0165348
    Numerical results are presented for the effect of first order chemical reaction and thermal radiation on mixed convection flow of Casson fluid in the presence of magnetic field. The flow is generated due to unsteady nonlinearly stretching sheet placed inside a porous medium. Convective conditions on wall temperature and wall concentration are also employed in the investigation. The governing partial differential equations are converted to ordinary differential equations using suitable transformations and then solved numerically via Keller-box method. It is noticed that fluid velocity rises with increase in radiation parameter in the case of assisting flow and is opposite in the case of opposing fluid while radiation parameter has no effect on fluid velocity in the forced convection. It is also seen that fluid velocity and concentration enhances in the case of generative chemical reaction whereas both profiles reduces in the case of destructive chemical reaction. Further, increase in local unsteadiness parameter reduces fluid velocity, temperature and concentration. Over all the effects of physical parameters on fluid velocity, temperature and concentration distribution as well as on the wall shear stress, heat and mass transfer rates are discussed in detail.
    Matched MeSH terms: Hot Temperature*
  8. Uddin MJ, Khan WA, Amin NS
    PLoS One, 2014;9(6):e99384.
    PMID: 24927277 DOI: 10.1371/journal.pone.0099384
    The unsteady two-dimensional laminar g-Jitter mixed convective boundary layer flow of Cu-water and Al2O3-water nanofluids past a permeable stretching sheet in a Darcian porous is studied by using an implicit finite difference numerical method with quasi-linearization technique. It is assumed that the plate is subjected to velocity and thermal slip boundary conditions. We have considered temperature dependent viscosity. The governing boundary layer equations are converted into non-similar equations using suitable transformations, before being solved numerically. The transport equations have been shown to be controlled by a number of parameters including viscosity parameter, Darcy number, nanoparticle volume fraction, Prandtl number, velocity slip, thermal slip, suction/injection and mixed convection parameters. The dimensionless velocity and temperature profiles as well as friction factor and heat transfer rates are presented graphically and discussed. It is found that the velocity reduces with velocity slip parameter for both nanofluids for fluid with both constant and variable properties. It is further found that the skin friction decreases with both Darcy number and momentum slip parameter while it increases with viscosity variation parameter. The surface temperature increases as the dimensionless time increases for both nanofluids. Nusselt numbers increase with mixed convection parameter and Darcy numbers and decreases with the momentum slip. Excellent agreement is found between the numerical results of the present paper with published results.
    Matched MeSH terms: Hot Temperature
  9. Uddin MJ, Khan WA, Ismail AI
    PLoS One, 2012;7(11):e49499.
    PMID: 23166688 DOI: 10.1371/journal.pone.0049499
    Steady two dimensional MHD laminar free convective boundary layer flows of an electrically conducting Newtonian nanofluid over a solid stationary vertical plate in a quiescent fluid taking into account the Newtonian heating boundary condition is investigated numerically. A magnetic field can be used to control the motion of an electrically conducting fluid in micro/nano scale systems used for transportation of fluid. The transport equations along with the boundary conditions are first converted into dimensionless form and then using linear group of transformations, the similarity governing equations are developed. The transformed equations are solved numerically using the Runge-Kutta-Fehlberg fourth-fifth order method with shooting technique. The effects of different controlling parameters, namely, Lewis number, Prandtl number, buoyancy ratio, thermophoresis, Brownian motion, magnetic field and Newtonian heating on the flow and heat transfer are investigated. The numerical results for the dimensionless axial velocity, temperature and nanoparticle volume fraction as well as the reduced Nusselt and Sherwood number have been presented graphically and discussed. It is found that the rate of heat and mass transfer increase as Newtonian heating parameter increases. The dimensionless velocity and temperature distributions increase with the increase of Newtonian heating parameter. The results of the reduced heat transfer rate is compared for convective heating boundary condition and found an excellent agreement.
    Matched MeSH terms: Hot Temperature
  10. Uddin MJ, Khan WA, Ismail AI
    PLoS One, 2015;10(5):e0122663.
    PMID: 25933066 DOI: 10.1371/journal.pone.0122663
    Taking into account the effect of constant convective thermal and mass boundary conditions, we present numerical solution of the 2-D laminar g-jitter mixed convective boundary layer flow of water-based nanofluids. The governing transport equations are converted into non-similar equations using suitable transformations, before being solved numerically by an implicit finite difference method with quasi-linearization technique. The skin friction decreases with time, buoyancy ratio, and thermophoresis parameters while it increases with frequency, mixed convection and Brownian motion parameters. Heat transfer rate decreases with time, Brownian motion, thermophoresis and diffusion-convection parameters while it increases with the Reynolds number, frequency, mixed convection, buoyancy ratio and conduction-convection parameters. Mass transfer rate decreases with time, frequency, thermophoresis, conduction-convection parameters while it increases with mixed convection, buoyancy ratio, diffusion-convection and Brownian motion parameters. To the best of our knowledge, this is the first paper on this topic and hence the results are new. We believe that the results will be useful in designing and operating thermal fluids systems for space materials processing. Special cases of the results have been compared with published results and an excellent agreement is found.
    Matched MeSH terms: Hot Temperature
  11. Tuan Zainazor, T. C., Afsah-Hejri, L., Noor Hidayah, M. S., Noor Eliza, M. R., Naziehah, M. D., Tang, J. Y. H., et al.
    MyJurnal
    Presence of Norovirus in food can cause viral gasteroenteritis. Recently, lots of reports relating to Norovirus in food have been published. Special attention must be paid to the raw foods as they are not subjected to further heat treatment. In this study, pegaga, kesum, tauge and ulam raja (popular salad vegetables in Malaysia) were investigated for Norovirus. A total of 32 samples from each type of salad vegetables were purchased from local market and analyzed using One-step RT-PCR (Reverse Transcriptase-Polymerase Chain Reaction) for both genogroups namely Norovirus Genogroup I and Genogroup II. Results showed that tauge had the highest contamination with Norovirus Genogroup I (15.6%) comparing to pegaga (9.4%), kesum (12.5%)
    and ulam raja (0%). Samples were free from Norovirus Genogroup II. The study showed that raw vegetables are high-risk foods and can be contaminated with Norovirus.
    Matched MeSH terms: Hot Temperature
  12. Tsukahara Y, Oishi K, Hirooka H
    J Anim Sci, 2011 Dec;89(12):3890-907.
    PMID: 21705639 DOI: 10.2527/jas.2011-3997
    A deterministic simulation model was developed to estimate biological production efficiency and to evaluate goat crossbreeding systems under tropical conditions. The model involves 5 production systems: pure indigenous, first filial generations (F1), backcross (BC), composite breeds of F1 (CMP(F1)), and BC (CMP(BC)). The model first simulates growth, reproduction, lactation, and energy intakes of a doe and a kid on a 1-d time step at the individual level and thereafter the outputs are integrated into the herd dynamics program. The ability of the model to simulate individual performances was tested under a base situation. The simulation results represented daily BW changes, ME requirements, and milk yield and the estimates were within the range of published data. Two conventional goat production scenarios (an intensive milk production scenario and an integrated goat and oil palm production scenario) in Malaysia were examined. The simulation results of the intensive milk production scenario showed the greater production efficiency of the CMP(BC) and CMP(F1) systems and decreased production efficiency of the F1 and BC systems. The results of the integrated goat and oil palm production scenario showed that the production efficiency and stocking rate were greater for the indigenous goats than for the crossbreeding systems.
    Matched MeSH terms: Hot Temperature
  13. Tie HO, Che Man H, Koyama M, Syukri F, Md Yusoff F, Toda T, et al.
    Waste Manag, 2023 Jul 01;166:194-202.
    PMID: 37178588 DOI: 10.1016/j.wasman.2023.04.046
    A modified outdoor large-scale nutrient recycling system was developed to compost organic sludge and aimed to recover clean nitrogen for the cultivation of high-value-added microalgae. This study investigated the effect of calcium hydroxide addition on enhancing NH3 recovery in a pilot-scale reactor self-heated by metabolic heat of microorganisms during thermophilic composting of dewatered cow dung. 350 kg-ww of compost was prepared at the ratio of 5: 14: 1 (dewatered cowdung: rice husk: compost-seed) in a 4 m3 cylindrical rotary drum composting reactor for 14 days of aerated composting. High compost temperature up to 67 °C was observed from day 1 of composting, proving that thermophilic composting was achieved through the self-heating process. The temperature of compost increases as microbial activity increases and temperature decreases as organic matter decreases. The high CO2 evolution rate on day 0-2 (0.02-0.08 mol/min) indicated that microorganisms are most active in degrading organic matter. The increasing conversion of carbon demonstrated that organic carbon was degraded by microbial activity and emitted as CO2. The nitrogen mass balance revealed that adding calcium hydroxide to the compost and increasing the aeration rate on day 3 volatilized 9.83 % of the remaining ammonium ions in the compost, thereby improving the ammonia recovery. Moreover, Geobacillus was found to be the most dominant bacteria under elevated temperature that functions in the hydrolysis of non-dissolved nitrogen for better NH3 recovery. The presented results show that by thermophilic composting 1 ton-ds of dewatered cowdung for NH3 recovery, up to 11.54 kg-ds of microalgae can be produced.
    Matched MeSH terms: Hot Temperature*
  14. Tiang KL, Ooi EH
    Med Eng Phys, 2016 Aug;38(8):776-84.
    PMID: 27340100 DOI: 10.1016/j.medengphy.2016.05.011
    The majority of the eye models developed in the late 90s and early 00s considers only heat conduction inside the eye. This assumption is not entirely correct, since the anterior and posterior chambers are filled aqueous humor (AH) that is constantly in motion due to thermally-induced buoyancy. In this paper, a three-dimensional model of the human eye is developed to investigate the effects AH hydrodynamics have on the human eye temperature under exposure to external heat sources. If the effects of AH flow are negligible, then future models can be developed without taking them into account, thus simplifying the modeling process. Two types of external thermal loads are considered; volumetric and surface irradiation. Results showed that heat convection due to AH flow contributes to nearly 95% of the total heat flow inside the anterior chamber. Moreover, the circulation inside the anterior chamber can cause an upward shift of the location of hotspot. This can have significant consequences to our understanding of heat-induced cataractogenesis.
    Matched MeSH terms: Hot Temperature*
  15. Thong QX, Biabanikhankahdani R, Ho KL, Alitheen NB, Tan WS
    Sci Rep, 2019 03 08;9(1):3945.
    PMID: 30850643 DOI: 10.1038/s41598-019-40388-x
    Multifunctional nanocarriers displaying specific ligands and simultaneously response to stimuli offer great potentials for targeted and controlled drug delivery. Several synthetic thermally-responsive nanocarriers have been studied extensively for hyperthermia incorporated chemotherapy. However, no information is available on the application of virus-like particle (VLP) in thermally-controlled drug delivery systems. Here, we describe the development of a novel multifunctional nanovehicle based on the VLP of Macrobrachium rosenbergii nodavirus (MrNVLP). Folic acid (FA) was covalently conjugated to lysine residues located on the surface of MrNVLP, while doxorubicin (Dox) was loaded inside the VLP using an infusion method. This thermally-responsive nanovehicle, namely FA-MrNVLP-Dox, released Dox in a sustained manner and the rate of drug release increased in response to a hyperthermia temperature at 43 °C. The FA-MrNVLP-Dox enhanced the delivery of Dox to HT29 cancer cells expressing high level of folate receptor (FR) as compared to CCD841CoN normal cells and HepG2 cancer cells, which express low levels of FR. As a result, FA-MrNVLP-Dox increased the cytotoxicity of Dox on HT29 cells, and decreased the drug's cytotoxicity on CCD841CoN and HepG2 cells. This study demonstrated the potential of FA-MrNVLP-Dox as a thermally-responsive nanovehicle for targeted delivery of Dox to cancer cells rich in FR.
    Matched MeSH terms: Hot Temperature
  16. Thio TH, Ibrahim F, Al-Faqheri W, Moebius J, Khalid NS, Soin N, et al.
    Lab Chip, 2013 Aug 21;13(16):3199-209.
    PMID: 23774994 DOI: 10.1039/c3lc00004d
    A technique known as thermo-pneumatic (TP) pumping is used to pump fluids on a microfluidic compact disc (CD) back towards the CD center against the centrifugal force that pushes liquids from the center to the perimeter of the disc. Trapped air expands in a TP air chamber during heating, and this creates positive pressure on liquids located in chambers connected to that chamber. While the TP air chamber and connecting channels are easy to fabricate in a one-level CD manufacturing technique, this approach provides only one way pumping between two chambers, is real-estate hungry and leads to unnecessary heating of liquids in close proximity to the TP chamber. In this paper, we present a novel TP push and pull pumping method which allows for pumping of liquid in any direction between two connected liquid chambers. To ensure that implementation of TP push and pull pumping also addresses the issue of space and heating challenges, a multi-level 3D CD design is developed, and localized forced convection heating, rather than infra-red (IR) is applied. On a multi-level 3D CD, the TP features are placed on a top level separate from the rest of the microfluidic processes that are implemented on a lower separate level. This approach allows for heat shielding of the microfluidic process level, and efficient usage of space on the CD for centrifugal handling of liquids. The use of localized forced convection heating, rather than infra-red (IR) or laser heating in earlier implementations allows not only for TP pumping of liquids while the CD is spinning but also makes heat insulation for TP pumping and other fluidic functions easier. To aid in future implementations of TP push and pull pumping on a multi-level 3D CD, study on CD surface heating is also presented. In this contribution, we also demonstrate an advanced application of pull pumping through the implementation of valve-less switch pumping.
    Matched MeSH terms: Hot Temperature
  17. Tham L, Roslindar Nazar
    Sains Malaysiana, 2012;41:1643-1649.
    A steady laminar mixed convection boundary layer flow about an isothermal solid sphere embedded in a porous medium filled with a nanofluid has been studied for both cases of assisting and opposing flows. The transformed boundary layer equations were solved numerically using an implicit finite-difference scheme. Three different types of nanoparticles, namely Cu, Al2O3 and TiO2 in water-based fluid were considered. Numerical solutions were obtained for the skin friction coefficient, the velocity and temperature profiles. The features of the flow and heat transfer characteristics for various values of the nanoparticle volume fraction and the mixed convection parameters were analyzed and discussed.
    Matched MeSH terms: Hot Temperature
  18. Terry LM, Wee MXJ, Chew JJ, Khaerudini DS, Darsono N, Aqsha A, et al.
    Environ Res, 2023 May 01;224:115550.
    PMID: 36841526 DOI: 10.1016/j.envres.2023.115550
    Pyrolysis oil from oil palm biomass can be a sustainable alternative to fossil fuels and the precursor for synthesizing petrochemical products due to its carbon-neutral properties and low sulfur and nitrogen content. This work investigated the effect of applying mesoporous acidic catalysts, Ni-Mo/TiO2 and Ni/Al2O3, in a catalytic co-pyrolysis of oil palm trunk (OPT) and polypropylene (PP) from 500 to 700 °C. The obtained oil yields varied between 12.67 and 19.50 wt.% and 12.33-17.17 wt.% for Ni-Mo/TiO2 and Ni/Al2O3, respectively. The hydrocarbon content in oil significantly increased up to 54.07-58.18% and 37.28-68.77% after adding Ni-Mo/TiO2 and Ni/Al2O3, respectively. The phenolic compounds content was substantially reduced to 8.46-20.16% for Ni-Mo/TiO2 and 2.93-14.56% for Ni/Al2O3. Minor reduction in oxygenated compounds was noticed from catalytic co-pyrolysis, though the parametric effects of temperature and catalyst type remain unclear. The enhanced deoxygenation and cracking of phenolic and oxygenated compounds and the PP decomposition resulted in increased hydrocarbon production in oil during catalytic co-pyrolysis. Catalyst addition also promoted the isomerization and oligomerization reactions, enhancing the formation of cyclic relative to aliphatic hydrocarbon.
    Matched MeSH terms: Hot Temperature
  19. Teh, Chiew Peng, Tan, Aileen Shau Hwai, Vengatesen, Thiyagarajan
    Trop Life Sci Res, 2016;27(11):111-116.
    MyJurnal
    The influence of the cool and warm temperatures on early life development and
    survival of tropical oyster, Crassostrea iredalei was studied. D-hinged larvae (day 1 larvae)
    were reared to three different temperatures (20°C, 27°C, and 34°C) for nine days. Oyster
    larvae reared in temperature 27°C, acted as control (ambient temperature). The highest
    survival rate occurred when the larvae were reared in 20°C and 27°C. Larvae reared at
    34°C exhibited reduced survival but increase in the growth rate. The growth rate in larvae
    reared in high temperature (34°C) was significantly higher compared to larvae reared in
    20°C and 27°C (p
    Matched MeSH terms: Hot Temperature
  20. Tee HS, Saad AR, Lee CY
    J Econ Entomol, 2010 Oct;103(5):1770-4.
    PMID: 21061978
    The objective of this study was to evaluate the suitability of heat- and freeze-killed oothecae of Periplaneta americana (L.) (Dictyoptera: Blattidae) as hosts for parasitoid Aprostocetus hagenowii (Ratzeburg) (Hymenoptera: Eulophidae). The oothecae were subjected to -20, 45, 48, 50, and 55 degrees C at different exposure times (15, 30, 45, and 60 min). The effects of heat- and freeze-killed oothecae on several biological parameters (e.g., parasitism and emergence rates, developmental times, progeny number, and sex ratio) ofA. hagenowii were determined. Embryonic development of 2-d-old oothecae was terminated by either freezing at -20 degrees C or heating at > or = 48 degrees C for > or =30 min. A. hagenowii parasitized live oothecae as well as both heat- and freeze-killed oothecae. Percentage parasitism, emergence rates, and developmental times ofA. hagenowii in both heat- and freeze-killed oothecae were not significantly different from those of the live oothecae. Both heating and freezing did not influence progeny number (male and female) and sex ratio of A. hagenowii emerged from killed oothecae.
    Matched MeSH terms: Hot Temperature
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links