Displaying publications 61 - 80 of 147 in total

Abstract:
Sort:
  1. Ashri A, Amalina N, Kamil A, Fazry S, Sairi MF, Nazar MF, et al.
    Int J Biol Macromol, 2018 Feb;107(Pt B):2412-2421.
    PMID: 29056465 DOI: 10.1016/j.ijbiomac.2017.10.125
    Starch-based hydrogels are promising smart materials for biomedical and pharmaceutical applications, which offer exciting perspectives in biophysical research at molecular level. This work was intended to develop, characterize and explore the properties of hydrogel from starch extracted from new source, Dioscorea hispida Dennst. Starch-mediated hydrogels were successfully synthesized via free radical polymerization method with varying concentrations of acrylic acid (AA),N,N'-methylenebisacrylamide (MBA) and sodium hydroxide (NaOH) in aqueous system. The grafting reaction between starch and AA was examined by observing the decline in intensity peak of hydrogel FTIR spectrum at 3291cm-1 and peak around 1600-1680cm-1, indicating the stretching of hydroxyl group (OH) and stretching of carbon-carbon double bond (CC) respectively. The effects of cross-linker, monomer and NaOH concentration on swelling ratio and gel content in different medium and conditions were also evaluated. The thermal stability and structural morphology of as-synthesized hydrogels were studied by thermogravimetry analysis (TGA) and scanning electron microscopy (SEM). In-vitro cytotoxicity study using small intestine cell line (FHS-74 Int) revealed that the as-formulated eco-friendly-hydrogel was free from any harmful material and safe to use for future product development.
    Matched MeSH terms: Hydrogels/chemical synthesis; Hydrogels/pharmacology; Hydrogels/chemistry*
  2. Loh EYX, Mohamad N, Fauzi MB, Ng MH, Ng SF, Mohd Amin MCI
    Sci Rep, 2018 02 13;8(1):2875.
    PMID: 29440678 DOI: 10.1038/s41598-018-21174-7
    Bacterial cellulose (BC)/acrylic acid (AA) hydrogel has successfully been investigated as a wound dressing for partial-thickness burn wound. It is also a promising biomaterial cell carrier because it bears some resemblance to the natural soft tissue. This study assessed its ability to deliver human epidermal keratinocytes (EK) and dermal fibroblasts (DF) for the treatment of full-thickness skin lesions. In vitro studies demonstrated that BC/AA hydrogel had excellent cell attachment, maintained cell viability with limited migration, and allowed cell transfer. In vivo wound closure, histological, immunohistochemistry, and transmission electron microscopy evaluation revealed that hydrogel alone (HA) and hydrogel with cells (HC) accelerated wound healing compared to the untreated controls. Gross appearance and Masson's trichrome staining indicated that HC was better than HA. This study suggests the potential application of BC/AA hydrogel with dual functions, as a cell carrier and wound dressing, to promote full-thickness wound healing.
    Matched MeSH terms: Hydrogels/chemistry*
  3. Rasib SZM, Ahmad Z, Khan A, Akil HM, Othman MBH, Hamid ZAA, et al.
    Int J Biol Macromol, 2018 Mar;108:367-375.
    PMID: 29222015 DOI: 10.1016/j.ijbiomac.2017.12.021
    In this study, chitosan-poly(methacrylic acid-co-N-isopropylacrylamide) [chitosan-p(MAA-co-NIPAM)] hydrogels were synthesized by emulsion polymerization. In order to be used as a carrier for drug delivery systems, the hydrogels had to be biocompatible, biodegradable and multi-responsive. The polymerization was performed by copolymerize MAA and NIPAM with chitosan polymer to produce a chitosan-based hydrogel. Due to instability during synthesis and complexity of components to produce the hydrogel, further study at different times of reaction is important to observe the synthesis process, the effect of end product on swelling behaviour and the most important is to find the best way to control the hydrogel synthesis in order to have an optimal swelling behaviour for drug release application. Studied by using Fourier transform infra-red (FTIR) spectroscopy found that, the synthesized was successfully produced stable chitosan-based hydrogel with PNIPAM continuously covered the outer surface of hydrogel which influenced much on the stability during synthesis. The chitosan and PMAA increased the zeta potential of the hydrogel and the chitosan capable to control shrinkage above human body temperature. The chitosan-p(MAA-co-NIPAM) hydrogels also responses to pH and temperature thus improved the ability to performance as a drug carrier.
    Matched MeSH terms: Hydrogels/chemical synthesis; Hydrogels/chemistry*
  4. Ullah F, Javed F, Othman MBH, Khan A, Gul R, Ahmad Z, et al.
    J Biomater Sci Polym Ed, 2018 03;29(4):376-396.
    PMID: 29285989 DOI: 10.1080/09205063.2017.1421347
    Addressing the functional biomaterials as next-generation therapeutics, chitosan and alginic acid were copolymerized in the form of chemically crosslinked interpenetrating networks (IPNs). The native hydrogel was functionalized via carbodiimide (EDC), catalyzed coupling of soft ligand (1,2-Ethylenediamine) and hard ligand (4-aminophenol) to replace -OH groups in alginic acid units for extended hydrogel- interfaces with the aqueous and sparingly soluble drug solutions. The chemical structure, Lower solution critical temperature (LCST ≈ 37.88 °C), particle size (Zh,app ≈ 150-200 nm), grain size (160-360 nm), surface roughness (85-250 nm), conductivity (37-74 mv) and zeta potential (16-32 mv) of native and functionalized hydrogel were investigated by using FT-IR, solid state-13C-NMR, TGA, DSC, FESEM, AFM and dynamic light scattering (DLS) measurements. The effective swelling, drug loading (47-78%) and drug release (53-86%) profiles were adjusted based on selective functionalization of hydrophobic IPNs due to electrostatic complexation and extended interactions of hydrophilic ligands with the aqueous and drug solutions. Drug release from the hydrogel matrices with diffusion coefficient n ≈ 0.7 was established by Non- Fickian diffusion mechanism. In vitro degradation trials of the hydrogel with a 20% loss of wet mass in simulated gastric fluid (SGF) and 38% loss of wet mass in simulated intestinal fluid (SIF), were investigated for 400 h through bulk erosion. Consequently, a slower rate of drug loading and release was observed for native hydrogel, due to stronger H-bonding, interlocking and entanglement within the IPNs, which was finely tuned and extended by the induced hydrophilic and functional ligands. In the light of induced hydrophilicity, such functional hydrogel could be highly attractive for extended release of sparingly soluble drugs.
    Matched MeSH terms: Hydrogels/chemical synthesis; Hydrogels/chemistry*
  5. Yu Z, Liu J, Tan CSY, Scherman OA, Abell C
    Angew Chem Int Ed Engl, 2018 03 12;57(12):3079-3083.
    PMID: 29377541 DOI: 10.1002/anie.201711522
    The ability to construct self-healing scaffolds that are injectable and capable of forming a designed morphology offers the possibility to engineer sustainable materials. Herein, we introduce supramolecular nested microbeads that can be used as building blocks to construct macroscopic self-healing scaffolds. The core-shell microbeads remain in an "inert" state owing to the isolation of a pair of complementary polymers in a form that can be stored as an aqueous suspension. An annealing process after injection effectively induces the re-construction of the microbead units, leading to supramolecular gelation in a preconfigured shape. The resulting macroscopic scaffold is dynamically stable, displaying self-recovery in a self-healing electronic conductor. This strategy of using the supramolecular assembled nested microbeads as building blocks represents an alternative to injectable hydrogel systems, and shows promise in the field of structural biomaterials and flexible electronics.
    Matched MeSH terms: Hydrogels
  6. Zulfakar MH, Chan LM, Rehman K, Wai LK, Heard CM
    AAPS PharmSciTech, 2018 Apr;19(3):1116-1123.
    PMID: 29181705 DOI: 10.1208/s12249-017-0923-x
    Coenzyme Q10 (CoQ10) is a vitamin-like oil-soluble molecule that has anti-oxidant and anti-ageing effects. To determine the most optimal CoQ10 delivery vehicle, CoQ10 was solubilised in both water and fish oil, and formulated into hydrogel, oleogel and bigel. Permeability of CoQ10 from each formulation across porcine ear skin was then evaluated. Furthermore, the effects of the omega-3 fatty eicosapentaenoic (EPA) and docosahexaenoic (DHA) acids from fish oil on skin permeation were investigated by means of nuclear magnetic resonance (NMR) and computerised molecular modelling docking experiments. The highest drug permeation was achieved with the bigel formulation that proved to be the most effective vehicle in delivering CoQ10 across the skin membrane due to a combination of its adhesive, viscous and lipophilic properties. Furthermore, the interactions between CoQ10 and fatty acids revealed by NMR and molecular modelling experiments likely accounted for skin permeability of CoQ10. NMR data showed dose-dependent changes in proton chemical shifts in EPA and DHA. Molecular modelling revealed complex formation and large binding energies between fatty acids and CoQ10. This study advances the knowledge about bigels as drug delivery vehicles and highlights the use of NMR and molecular docking studies for the prediction of the influence of drug-excipient relationships at the molecular level.
    Matched MeSH terms: Hydrogels
  7. Kuche K, Maheshwari R, Tambe V, Mak KK, Jogi H, Raval N, et al.
    Nanoscale, 2018 May 17;10(19):8911-8937.
    PMID: 29722421 DOI: 10.1039/c8nr01383g
    The search for effective and non-invasive delivery modules to transport therapeutic molecules across skin has led to the discovery of a number of nanocarriers (viz.: liposomes, ethosomes, dendrimers, etc.) in the last few decades. However, available literature suggests that these delivery modules face several issues including poor stability, low encapsulation efficiency, and scale-up hurdles. Recently, carbon nanotubes (CNTs) emerged as a versatile tool to deliver therapeutics across skin. Superior stability, high loading capacity, well-developed synthesis protocol as well as ease of scale-up are some of the reason for growing interest in CNTs. CNTs have a unique physical architecture and a large surface area with unique surface chemistry that can be tailored for vivid biomedical applications. CNTs have been thus largely engaged in the development of transdermal systems such as tuneable hydrogels, programmable nonporous membranes, electroresponsive skin modalities, protein channel mimetic platforms, reverse iontophoresis, microneedles, and dermal buckypapers. In addition, CNTs were also employed in the development of RNA interference (RNAi) based therapeutics for correcting defective dermal genes. This review expounds the state-of-art synthesis methodologies, skin penetration mechanism, drug liberation profile, loading potential, characterization techniques, and transdermal applications along with a summary on patent/regulatory status and future scope of CNT based skin therapeutics.
    Matched MeSH terms: Hydrogels
  8. Chellappan DK, Panneerselvam J, Madheswaran T, Chellian J, Ambar Jeet Singh BJ, Jia Yee N, et al.
    Minerva Med, 2018 06;109(3):254-255.
    PMID: 29849021 DOI: 10.23736/S0026-4806.18.05462-9
    Matched MeSH terms: Hydrogels
  9. Younis LT, Abu Hassan MI, Taiyeb Ali TB, Bustami TJ
    Asian J Pharm Sci, 2018 Jul;13(4):317-325.
    PMID: 32104405 DOI: 10.1016/j.ajps.2017.12.003
    This study was designed to investigate the effect of 3D TECA hydrogel on the inflammatory-induced senescence marker, and to assess the influence of the gel on the periodontal ligament fibroblasts (PDLFs) migration in wound healing in vitro. PDLFs were cultured with 20 ng/ml TNF-α to induce inflammation in the presence and absence of 50 µM 3D TECA gel for 14 d. The gel effect on the senescence maker secretory associated-β-galactosidase (SA-β-gal) activity was measured by a histochemical staining. Chromatin condensation and DNA synthesis of the cells were assessed by 4',6-diamidino-2-phenylindole and 5-ethynyl-2'-deoxyuridine fluorescent staining respectively. For evaluating fibroblasts migration, scratch wound healing assay and Pro-Plus Imaging software were used. The activity of senescence marker, SA-β-gal, was positive in the samples with TNF-α-induced inflammation. SA-β-gal percentage is suppressed (>65%, P 
    Matched MeSH terms: Hydrogels
  10. Wahid MNA, Abd Razak SI, Abdul Kadir MR, Hassan R, Nayan NHM, Mat Amin KA
    J Biomater Appl, 2018 07;33(1):94-102.
    PMID: 29716417 DOI: 10.1177/0885328218771195
    This work reports the modification of freeze/thaw poly(vinyl alcohol) hydrogel using citric acid as the bioactive molecule for hydroxyapatite formation in simulated body fluid. Inclusion of 1.3 mM citric acid into the poly(vinyl alcohol) hydrogel showed that the mechanical strength, crystalline phase, functional groups and swelling ability were still intact. Adding citric acid at higher concentrations (1.8 and 2.3 mM), however, resulted in physically poor hydrogels. Presence of 1.3 mM of citric acid showed the growth of porous hydroxyapatite crystals on the poly(vinyl alcohol) surface just after one day of immersion in simulated body fluid. Meanwhile, a fully covered apatite layer on the poly(vinyl alcohol) surface plus the evidence of apatite forming within the hydrogel were observed after soaking for seven days. Gel strength of the soaked poly(vinyl alcohol)/citric acid-1.3 mM hydrogel revealed that the load resistance was enhanced compared to that of the neat poly(vinyl alcohol) hydrogel. This facile method of inducing rapid growth of hydroxyapatite on the hydrogel surface as well as within the hydrogel network can be useful for guided bone regenerative materials.
    Matched MeSH terms: Hydrogels/chemistry*
  11. Liu J, Tan CSY, Scherman OA
    Angew Chem Int Ed Engl, 2018 07 16;57(29):8854-8858.
    PMID: 29663607 DOI: 10.1002/anie.201800775
    Supramolecular building blocks, such as cucurbit[n]uril (CB[n])-based host-guest complexes, have been extensively studied at the nano- and microscale as adhesion promoters. Herein, we exploit a new class of CB[n]-threaded highly branched polyrotaxanes (HBP-CB[n]) as aqueous adhesives to macroscopically bond two wet surfaces, including biological tissue, through the formation of CB[8] heteroternary complexes. The dynamic nature of these complexes gives rise to adhesion with remarkable toughness, displaying recovery and reversible adhesion upon mechanical failure at the interface. Incorporation of functional guests, such as azobenzene moieties, allows for stimuli-activated on-demand adhesion/de-adhesion. Macroscopic interfacial adhesion through dynamic host-guest molecular recognition represents an innovative strategy for designing the next generation of functional interfaces, biomedical devices, tissue adhesives, and wound dressings.
    Matched MeSH terms: Hydrogels/chemistry
  12. Ahmed AS, Mandal UK, Taher M, Susanti D, Jaffri JM
    Pharm Dev Technol, 2018 Oct;23(8):751-760.
    PMID: 28378604 DOI: 10.1080/10837450.2017.1295067
    The development of hydrogel films as wound healing dressings is of a great interest owing to their biological tissue-like nature. Polyvinyl alcohol/polyethylene glycol (PVA/PEG) hydrogels loaded with asiaticoside, a standardized rich fraction of Centella asiatica, were successfully developed using the freeze-thaw method. Response surface methodology with Box-Behnken experimental design was employed to optimize the hydrogels. The hydrogels were characterized and optimized by gel fraction, swelling behavior, water vapor transmission rate and mechanical strength. The formulation with 8% PVA, 5% PEG 400 and five consecutive freeze-thaw cycles was selected as the optimized formulation and was further characterized by its drug release, rheological study, morphology, cytotoxicity and microbial studies. The optimized formulation showed more than 90% drug release at 12 hours. The rheological properties exhibited that the formulation has viscoelastic behavior and remains stable upon storage. Cell culture studies confirmed the biocompatible nature of the optimized hydrogel formulation. In the microbial limit tests, the optimized hydrogel showed no microbial growth. The developed optimized PVA/PEG hydrogel using freeze-thaw method was swellable, elastic, safe, and it can be considered as a promising new wound dressing formulation.
    Matched MeSH terms: Hydrogels/chemistry*
  13. Bashir S, Teo YY, Ramesh S, Ramesh K, Mushtaq MW
    Int J Biol Macromol, 2018 Oct 01;117:454-466.
    PMID: 29807081 DOI: 10.1016/j.ijbiomac.2018.05.182
    Novel pH sensitive N-succinyl chitosan-g-poly (acrylic acid) hydrogels were synthesized through free radical mechanism. Rheometer was used to observe the mechanical strength of the hydrogels. In vitro degradation was conducted in SIF (pH 7.4). The effect of concentration of monomers, initiator, and crosslinking agent and pH and ionic strength of NaCl, CaCl2, and AlCl3 on swelling of the hydrogels was observed. The results showed that equilibrium swelling ratio was highly influenced by concentration of monomers, initiator, and crosslinking agent concentration, and pH and salt solutions of NaCl, CaCl2, and AlCl3. The swelling kinetics revealed that swelling followed non-Fickian anomalous transport. Furthermore, theophylline loading (DL %) and encapsulation efficiency (EE %) of the hydrogels was in the range of 15.5 ± 0.15-22.8 ± 0.06% and 62 ± 0.15-91 ± 0.26%, respectively. The release of theophylline in physiological mediums was strongly influenced by the pH. The theophylline release was in the range of 51 ± 0.20-92 ± 0.12% in SIF and 7.4 ± 0.02-14.9 ± 0.03% in SGF (pH 1.2), respectively. The release data fitted well to Korsmeyer-Peppas model. The chemical activity of the theophylline suggested that drug maintained its chemical activity after release in vitro. The results suggest that synthesized hydrogels are excellent drug carriers.
    Matched MeSH terms: Hydrogels/chemical synthesis; Hydrogels/chemistry*
  14. Umbreen N, Sohni S, Ahmad I, Khattak NU, Gul K
    J Colloid Interface Sci, 2018 Oct 01;527:356-367.
    PMID: 29843021 DOI: 10.1016/j.jcis.2018.05.010
    Herein, self-assembled three-dimensional reduced graphene oxide (RGO)-based hydrogels were synthesized and characterized in detail. A thorough investigation on the uptake of three widely used pharmaceutical drugs, viz. Naproxen (NPX), Ibuprofen (IBP) and Diclofenac (DFC) was carried out from aqueous solutions. To ensure the sustainability of developed hydrogel assembly, practically important parameters such as desorption, recyclability and applicability to real samples were also evaluated. Using the developed 3D hydrogels as adsorptive platforms, excellent decontamination for the above mentioned persistent pharmaceutical drugs was achieved in acidic pH with a removal efficiency in the range of 70-80%. These hydrogels showed fast adsorption kinetics and experimental findings were fitted to different kinetic models, such as pseudo-first order, pseudo-second order, intra-particle and the Elovich models in an attempt to better understand the adsorption kinetics. Furthermore, equilibrium adsorption data was fitted to the Langmuir and Freundlich models, where relatively higher R2 values obtained in case of former one suggested that monolayer adsorption played an important part in drug uptake. Thermodynamic aspects were also studied and negative ΔG0 values obtained indicated the spontaneous nature of adsorption process. The study was also extended to check practical utility of as-prepared hydrogels by spiking real aqueous samples with drug solution, where high % recoveries obtained for NPX, IBP and DFC were of particular importance with regard to prospective application in wastewater treatment systems. We advocate RGO-based hydrogels as environmentally benign, readily recoverable/recyclable material with excellent adsorption capacity for application in wastewater purification.
    Matched MeSH terms: Hydrogels/chemistry*
  15. Abdullah MF, Azfaralariff A, Lazim AM
    J Biomater Sci Polym Ed, 2018 10;29(14):1745-1763.
    PMID: 29989528 DOI: 10.1080/09205063.2018.1489023
    This research aims to compare the ability of smart hydrogel in removing the methylene blue prepared by using two different radiation methods. The extracted pectin from the dragon fruit peel (Hylocereus polyrhizus) was used with acrylic acid (AA) to produce a polymerized hydrogel through gamma and microwave radiation. The optimum hydrogel swelling capacity was obtained by varying the dose of radiation, pectin to AA ratio and pH used. From the array of samples, the ideal hydrogel was obtained at pH 8 with a ratio of 2:3 (pectin: AA) using 10 kGy and 400 W radiated gamma and microwave respectively. The performance of both hydrogels namely as Pc/AA(G) (gamma) and Pc/AA(Mw) (microwave) were investigated using methylene blue (MB) adsorption studies. In this study, three variables were manipulated, pH and MB concentration and hydrogel mass in order to find the optimum condition for the adsorption. Results showed that 20 mg of Pc/AA(G) performed the highest MB removal which was about 45% of 20 mg/L MB at pH 8. While 30 mg of Pc/AA(Mw) able to remove up to 35% of 20 mg/L MB at the same pH condition. To describe the adsorption mechanism, both kinetic models pseudo-first-order, pseudo-second-order were employed. The results from kinetic data showed that it fitted the pseudo-first-order as compared to pseudo-second-order model equation. This study provides alternative of green, facile and affective biomaterial for dye absorbents that readily available.
    Matched MeSH terms: Hydrogels/chemistry*
  16. Supramaniam J, Adnan R, Mohd Kaus NH, Bushra R
    Int J Biol Macromol, 2018 Oct 15;118(Pt A):640-648.
    PMID: 29894784 DOI: 10.1016/j.ijbiomac.2018.06.043
    Magnetic nanocellulose alginate hydrogel beads are produced from the assembly of alginate and magnetic nanocellulose (m-CNCs) as a potential drug delivery system. The m-CNCs were synthesized from cellulose nanocrystals (CNCs) that were isolated from rice husks (RH) by co-precipitation method and were incorporated into alginate-based hydrogel beads with the aim of enhancing mechanical strength and regulating drug release behavior. Ibuprofen was chosen as a model drug. The prepared CNCs, m-CNCs and the alginate hydrogel beads were characterized by various physicochemical techniques such as Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscope (SEM) and vibrating sample magnetometer studies (VSM). Besides the magnetic property, the presence of m-CNCs increased the integrity of the alginate hydrogel beads and the swelling percentage. The drug release study exhibited a controlled release profiles and based on the drug release data, the drug release mechanism was analyzed and discussed based on mathematical models such as Korsmeyer-Peppas and Peppas-Sahlin.
    Matched MeSH terms: Hydrogels/chemistry*
  17. Sampath Udeni Gunathilake TM, Ching YC, Chuah CH, Illias HA, Ching KY, Singh R, et al.
    Int J Biol Macromol, 2018 Oct 15;118(Pt A):1055-1064.
    PMID: 30001596 DOI: 10.1016/j.ijbiomac.2018.06.147
    Nanocellulose reinforced chitosan hydrogel was synthesized using chemical crosslinking method for the delivery of curcumin which is a poorly water-soluble drug. Curcumin extracted from the dried rhizomes of Curcuma longa was incorporated to the hydrogel via in situ loading method. A nonionic surfactant (Tween 20) was incorporated into the hydrogel to improve the solubility of curcumin. After the gas foaming process, hydrogel showed large interconnected pore structures. The release studies in gastric medium showed that the cumulative release of curcumin increased from 0.21% ± 0.02% to 54.85% ± 0.77% with the increasing of Tween 20 concentration from 0% to 30% (w/v) after 7.5 h. However, the entrapment efficiency percentage decreased with the addition of Tween 20. The gas foamed hydrogel showed higher initial burst release within the first 120 min compared to hydrogel formed at atmospheric condition. The solubility of curcumin would increase to 3.014 ± 0.041 mg/mL when the Tween 20 concentration increased to 3.2% (w/v) in simulated gastric medium. UV-visible spectra revealed that the drug retained its chemical activity after in vitro release. From these findings, it is believed that the nonionic surfactant incorporated chitosan/nanocellulose hydrogel can provide a platform to overcome current problems associated with curcumin delivery.
    Matched MeSH terms: Hydrogels/chemistry*
  18. Salleh KM, Zakaria S, Sajab MS, Gan S, Chia CH, Jaafar SNS, et al.
    Int J Biol Macromol, 2018 Oct 15;118(Pt B):1422-1430.
    PMID: 29964115 DOI: 10.1016/j.ijbiomac.2018.06.159
    Dissolved oil palm empty fruit bunch (EFB) cellulose in NaOH/urea solvent was mixed with sodium carboxymethylcellulose (NaCMC) to form a green regenerated superabsorbent hydrogel. The effect of concentration of epichlorohydrin (ECH) as the crosslinker on the formation, physical, and chemical properties of hydrogel was studied. Rapid formation and higher gel content of hydrogel were observed at 10% concentration of ECH. The superabsorbent hydrogel was successfully fabricated in this study with the swelling ability >100,000%. Hydrogel with higher concentration of ECH showed opposite trend by having higher superabsorbent property than that of lower concentration. The covalent bond of COC was observed with Attenuated total reflectance fourier transform infrared (ATR-FT-IR) spectroscopy to confirm the occurrence of crosslinking. The physical and chemical properties of hydrogel were affected by swelling phenomenon. Hydrogel with higher degree of swelling exhibited lower moisture retention and higher transparency. Moreover, the weight of the superabsorbent hydrogel increased with the decrement of pH value of external media (distilled water). This study provided substantial information on the effect of different percentage of ECH as crosslinker on hydrogel basic properties. Furthermore, this study affords correlation of many essential driving forces that affected hydrogel superabsorbent property.
    Matched MeSH terms: Hydrogels/chemistry*
  19. Sabbagh F, Muhamad II, Nazari Z, Mobini P, Taraghdari SB
    Mater Sci Eng C Mater Biol Appl, 2018 Nov 01;92:20-25.
    PMID: 30184743 DOI: 10.1016/j.msec.2018.06.022
    This study conducted on the structure of modified acrylamide-based hydrogel by synthesizing the nano composites. The hydrogels employed in this study were provided through a combination of acrylamide monomers, sodium carboxymethyl cellulose (NaCMC) and magnesium oxide (MgO) nanoparticles by crosslinking polymerization. N,N,N',N'-tetramethylethylenediamine and ammonium persulfate as the initiator was applied in the structure of the polymer. Findings of the study considered the nano composites consisting of MgO have the highest swelling ratio compared to pure Aam hydrogels. Thus, MgO is an appropriate nanoparticle to be used in the nano composites. Response surface methodology (RSM) based on a central composite design (CCD Design) was applied to optimize the preparation variables of a hydrogel consisted of MgO, NaCMC. With the swelling ratio for acrylamide-based hydrogel as the response, the effects of two variables, i.e. MgO and NaCMC were investigated. The effects of pH, temperature, MgO, and NaCMC on the drug release were investigated using the CCD design. The predicted appropriate drug release conditions for the hydrogel at the highest rate of temperature (37.50 °C) and pH: 4.10, is at its highest value, while the lower drug release is at temperature 38 °C and pH 3.50. With the desired value of MgO (0.01 g) and amount of NaCMC (0.1 g).
    Matched MeSH terms: Hydrogels/chemistry*
  20. Xi Loh EY, Fauzi MB, Ng MH, Ng PY, Ng SF, Ariffin H, et al.
    ACS Appl Mater Interfaces, 2018 Nov 21;10(46):39532-39543.
    PMID: 30372014 DOI: 10.1021/acsami.8b16645
    The evaluation of the interaction of cells with biomaterials is fundamental to establish the suitability of the biomaterial for a specific application. In this study, the properties of bacterial nanocellulose/acrylic acid (BNC/AA) hydrogels fabricated with varying BNC to AA ratios and electron-beam irradiation doses were determined. The manner these hydrogel properties influence the behavior of human dermal fibroblasts (HDFs) at the cellular and molecular levels was also investigated, relating it to its application both as a cell carrier and wound dressing material. Swelling, hardness, adhesive force (wet), porosity, and hydrophilicity (dry) of the hydrogels were dependent on the degree of cross-linking and the amount of AA incorporated in the hydrogels. However, water vapor transmission rate, pore size, hydrophilicity (semidry), and topography were similar between all formulations, leading to a similar cell attachment and proliferation profile. At the cellular level, the hydrogel demonstrated rapid cell adhesion, maintained HDFs viability and morphology, restricted cellular migration, and facilitated fast transfer of cells. At the molecular level, the hydrogel affected nine wound-healing genes (IL6, IL10, MMP2, CTSK, FGF7, GM-CSF, TGFB1, COX2, and F3). The findings indicate that the BNC/AA hydrogel is a potential biomaterial that can be employed as a wound-dressing material to incorporate HDFs for the acceleration of wound healing.
    Matched MeSH terms: Hydrogels/chemistry*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links