Affiliations 

  • 1 Tissue Engineering Centre , Universiti Kebangsaan Malaysia Medical Centre , Jalan Yaacob Latif , Bandar Tun Razak, 56000 Kuala Lumpur , Malaysia
  • 2 Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences , Universiti Putra Malaysia , 43400 UPM Serdang , Selangor , Malaysia
  • 3 IDEA-UKM , Universiti Kebangsaan Malaysia , 43600 UKM Bangi , Selangor , Malaysia
ACS Appl Mater Interfaces, 2018 Nov 21;10(46):39532-39543.
PMID: 30372014 DOI: 10.1021/acsami.8b16645

Abstract

The evaluation of the interaction of cells with biomaterials is fundamental to establish the suitability of the biomaterial for a specific application. In this study, the properties of bacterial nanocellulose/acrylic acid (BNC/AA) hydrogels fabricated with varying BNC to AA ratios and electron-beam irradiation doses were determined. The manner these hydrogel properties influence the behavior of human dermal fibroblasts (HDFs) at the cellular and molecular levels was also investigated, relating it to its application both as a cell carrier and wound dressing material. Swelling, hardness, adhesive force (wet), porosity, and hydrophilicity (dry) of the hydrogels were dependent on the degree of cross-linking and the amount of AA incorporated in the hydrogels. However, water vapor transmission rate, pore size, hydrophilicity (semidry), and topography were similar between all formulations, leading to a similar cell attachment and proliferation profile. At the cellular level, the hydrogel demonstrated rapid cell adhesion, maintained HDFs viability and morphology, restricted cellular migration, and facilitated fast transfer of cells. At the molecular level, the hydrogel affected nine wound-healing genes (IL6, IL10, MMP2, CTSK, FGF7, GM-CSF, TGFB1, COX2, and F3). The findings indicate that the BNC/AA hydrogel is a potential biomaterial that can be employed as a wound-dressing material to incorporate HDFs for the acceleration of wound healing.

* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.