Displaying publications 1 - 20 of 853 in total

  1. Rajaratanam DD, Ariffin H, Hassan MA, Nik Abd Rahman NMA, Nishida H
    PLoS One, 2018;13(6):e0199742.
    PMID: 29944726 DOI: 10.1371/journal.pone.0199742
    In order to clarify the in vitro cytotoxicity effect of superheated steam (SHS) treated poly((R)-3-hydroxybutyrate-co-(R)-3-hydroxyhexanoate) (PHBHHx) for biomaterial applications, SHS-treated PHBHHx oligoester samples: P(HB-co-6%-HHx) and P(HB-co-11%-HHx) with low and high percentages of unsaturated chain ends were evaluated for their cytotoxicity effects toward the growth of mouse fibroblast cell line NIH 3T3. From the results obtained after 24 and 48 h of the growth test, the SHS-treated PHBHHx oligoesters were found to be nontoxic to the growth of mouse fibroblast NIH 3T3 cell line with cell viability percentages of more than 95%. In order to serve as a potential resorbable medical suture, PHBHHx oligoesters were blended with poly(L-lactic acid) (PLLA) with a weight ratio of PHBHHx oligoester/PLLA = 20:80 (wt/wt) to improve mechanical properties of PHBHHx oligoesters. The PHBHHx oligoesters/PLLA blend films were evaluated for their thermal, mechanical, and surface wetting properties. Thermal properties of the blend films suggested a good compatibility between PHBHHx oligoesters and PLLA components. Mechanical properties of the blend films were determined to be close enough to a desirable strength range of medical sutures. Moreover, contact angle range of 65 < θ < 70° for the blend samples could provide desirable cell adhesion when used as biomaterials. Therefore, the blend of SHS-treated PHBHHx oligoesters and PLLA would be an ideal choice to be used as biomedical materials.
    Matched MeSH terms: Cell Survival/drug effects
  2. Malagobadan S, Nagoor NH
    Biomed Res Int, 2015;2015:716816.
    PMID: 26587543 DOI: 10.1155/2015/716816
    Dysregulation of microRNAs (miRNAs) has been implicated in almost every known survival mechanisms utilized by cancer cells. One of such mechanisms, anoikis resistance, plays a pivotal role in enabling metastasis by allowing cancer cells to circumvent cell death induced by lack of attachment. Understanding how miRNAs regulate the various anoikis pathways has become the research question of increasing number of studies published in the past years. Through these studies, a growing list of miRNAs has been identified to be important players in promoting either anoikis or resistance to anoikis. In this review, we will be focusing on these miRNAs and how the findings from those studies can contribute to novel therapeutic strategies against cancer progression. We will be examining miRNAs that have been found to promote anoikis sensitivity in numerous cancer types followed by miRNAs that inhibit anoikis. In addition, we will also be taking a look at major signaling pathways involved in the action of the each of these miRNAs to gain a better understanding on how miRNAs regulate anoikis.
    Matched MeSH terms: Cell Survival
  3. Mokhtar SMA, Derrick-Roberts ALK, Evans DR, Strudwick XL
    ACS Appl Bio Mater, 2023 Nov 20;6(11):4662-4671.
    PMID: 37902811 DOI: 10.1021/acsabm.3c00416
    Recently, transdermal monitoring and drug delivery have gained much interest, owing to the introduction of the minimally invasive microneedle (MN) device. The advancement of electroactive MNs electrically assisted in the capture of biomarkers or the triggering of drug release. Recent works have combined conducting polymers (CPs) onto MNs owing to the soft nature of the polymers and their tunable ionic and electronic conductivity. Though CPs are reported to work safely in the body, their biocompatibility in the skin has been insufficiently investigated. Furthermore, during electrical biasing of CPs, they undergo reduction or oxidation, which in practical terms leads to release/exchange of ions, which could pose biological risks. This work investigates the viability and proliferation of skin cells upon exposure to an electrochemically biased MN pair comprising two differently doped poly(3,4-ethylenedioxy-thiophene) (PEDOT) polymers that have been designed for skin sampling use. The impact of biasing on human keratinocytes and dermal fibroblasts was determined at different initial cell seeding densities and incubation periods. Indirect testing was employed, whereby the culture media was first exposed to PEDOTs prior to the addition of this extract to cells. In all conditions, both unbiased and biased PEDOT extracts showed no cytotoxicity, but the viability and proliferation of cells cultured at a low cell seeding density were lower than those of the control after 48 h of incubation.
    Matched MeSH terms: Cell Survival
  4. Wong CC, Periasamy N, Sagineedu SR, Sidik S, Sumon SH, Loadman P, et al.
    Invest New Drugs, 2014 Oct;32(5):806-14.
    PMID: 24875131 DOI: 10.1007/s10637-014-0105-6
    Limited tumor penetrability of anti-cancer drugs is recognized as one of the major factors that lead to poor anti-tumor activity. SRJ09 (3,19-(2-bromobenzylidene) andrographolide) has been identified as a lead anti-cancer agent for colon cancer. Recently, this compound was shown by us to be a mutant K-Ras binder. In this present study, the penetrability of SRJ09 through the DLD-1 colon cancer multicell layer (MCL) was evaluated. The amount of SRJ09 that penetrated through the MCL was quantitated by utilizing high performance liquid chromatography (HPLC). Histopathological staining was used to visualize the morphology of MCL. A chemosensitivity assay was performed to assess the anti-cancer activity of SRJ09 in DLD-1 cells. SRJ09 was able to penetrate through DLD-1 MCL and is inversely proportional with the MCL thickness. The flow rates for SRJ09 through MCL were 0.90 ± 0.20 μM/min/cm(2) and 0.56 ± 0.06 μM/min/cm(2) for days 1 and 5, respectively, which are better than doxorubicin. Histopathological examination revealed that the integrity of the DLD-1 MCL was retained and no visible damage was inflicted on the cell membrane, confirming the penetration of SRJ09 was by diffusion. Short term exposure (1 h) in DLD-1 cells demonstrated SRJ09 had IC50 of 41 μM which was approximately 4-folds lower than andrographolide, the parent compound of SRJ09. In conclusion, SRJ09 successfully penetrated through DLD-1 MCL by diffusion and emerged as a potential candidate to be developed as a clinically viable anti-colon cancer drug.
    Matched MeSH terms: Cell Survival/drug effects
  5. Ahmad AF, Heaselgrave W, Andrew PW, Kilvington S
    J. Eukaryot. Microbiol., 2013 Sep-Oct;60(5):539-43.
    PMID: 23869955 DOI: 10.1111/jeu.12062
    The free-living amoeba Balamuthia mandrillaris causes usually fatal encephalitis in humans and animals. Only limited studies have investigated the efficacy of antimicrobial agents against the organism. Assay methods were developed to assess antimicrobial efficacy against both the trophozoite and cyst stage of B. mandrillaris (ATCC 50209). Amphotericin B, ciclopirox olamine, miltefosine, natamycin, paromomycin, pentamidine isethionate, protriptyline, spiramycin, sulconazole and telithromycin had limited activity with amoebacidal levels of > 135-500 μM. However, diminazene aceturate (Berenil(®) ) was amoebacidal at 7.8 μM and 31.3-61.5 μM for trophozoites and cysts, respectively. Assays for antimicrobial testing may improve the prognosis for infection and aid in the development of primary selective culture isolation media.
    Matched MeSH terms: Cell Survival/drug effects
  6. Yue TH, Hock AH, Kiang LC, Mooi LY
    Nat Prod Commun, 2012 Jun;7(6):775-8.
    PMID: 22816305
    Phytochemical studies of the leaves and rhizomes of Paraboea pa niculata (Gesneriaceae) are reported for the first time. Three phenylethanoid glycosides were isolated and characterized as 3,4-dihydroxyphenethyl-(3"-O-beta-D-apiofuranosyl)-beta-D-glucopyranoside, calceoralarioside E, and acteoside. These isolates exhibited weak cytotoxic activity against the K-562 cell line with a 50% of cell killing rate of 40.18 microM, 27.05 microM, and 27.24 microM, respectively. In the DPPH free radical scavenging assay, their IC50 values were determined as 75.89 microM, 25.00 microM, and 26.04 microM, respectively.
    Matched MeSH terms: Cell Survival/drug effects
  7. Qader SW, Abdulla MA, Chua LS, Najim N, Zain MM, Hamdan S
    Molecules, 2011 Apr 21;16(4):3433-43.
    PMID: 21512451 DOI: 10.3390/molecules16043433
    Aqueous and ethanol extracts of different traditional Malaysian plants (Polygonum minus, Andrographis paniculata, Curcuma xanthorrhiza, Momordica charantia and Strobilanthes crispus) were evaluated for their antioxidant properties, total phenolic content and cytotoxic activity. Antioxidant activity was evaluated by using 1,1-diphenyl-1-picrylhydrazyl (DPPH) and ferric reducing antioxidant power (FRAP) assays. The results showed that ethanol extracts contain high antioxidant activities compared to aqueous extracts. The findings exhibited a strong correlation between antioxidant activity and the total phenol contents. In addition, all the plant extracts showed non-toxic effects against a normal human lung fibroblast cell line (Hs888Lu). Although traditionally aqueous extracts are used, we determined that ethanol extracts usually achieved better activity in the assays.
    Matched MeSH terms: Cell Survival/drug effects
  8. Shadid KA, Shaari K, Abas F, Israf DA, Hamzah AS, Syakroni N, et al.
    Phytochemistry, 2007 Oct;68(20):2537-44.
    PMID: 17602714
    Phytochemical studies on the leaves and trunk bark of Garcinia cantleyana yielded five caged-xanthonoids including one tetra- and four tri-prenylated xanthones, cantleyanone A (1), 7-hydroxyforbesione (2) and cantleyanones B-D (4-6), as well as a simple xanthone, 4-(1,1-dimethylprop-2-enyl)-1,3,5,8-tetrahydroxyxanthone (3). Eight other known compounds, deoxygaudichaudione A, gaudichaudione H, friedelin, garbogiol, macranthol, glutin-5-en-3beta-ol, and a mixture of sitosterol and stigmasterol were also isolated. Their structures were elucidated by means of spectroscopic data and comparison of their NMR data with literature values. Significant cytotoxicity against MDA-MB-231, CaOV-3, MCF-7 and HeLa cancer cell-lines was demonstrated by cantleyanones B-D, 7-hydroxyforbesione, deoxygaudichaudione A and macranthol, with IC(50) values ranging from 0.22 to 17.17 microg/ml.
    Matched MeSH terms: Cell Survival/drug effects
  9. Raouf AA, Samsudin AR, Al-Joudi FS, Shamsuria O
    Med J Malaysia, 2004 May;59 Suppl B:101-2.
    PMID: 15468838
    The human fibroblast MRC-5 cells incubated with PHB granules (TM) added at a final concentration of 4 mg/ml showed a time-course pattern of survival. The percentages of dead cells obtained were at the rate of 3.8% after 7 days, respectively. When the MRC-5 cells grown in different material, using the test concentration of 4 mg/ml PCM, they were found to show a similar time-course increasing pattern of death as that obtained with PHB. However, the death was noted in the cells incubated for 7 days, the death rates obtained was 40.54% respectively.
    Matched MeSH terms: Cell Survival/drug effects*
  10. Thong QX, Wong CL, Ooi MK, Kueh CL, Ho KL, Alitheen NB, et al.
    J Gen Virol, 2018 09;99(9):1227-1238.
    PMID: 30041713 DOI: 10.1099/jgv.0.001116
    Macrobrachium rosenbergii nodavirus (MrNv) causes white tail disease (WTD) in giant freshwater prawns, which leads to devastating economic losses in the aquaculture industry. Despite extensive research on MrNv, there is still no antiviral agent to treat WTD. Thus, the main aim of this study was to identify potential anti-MrNv molecules. A 12-mer phage-displayed peptide library was biopanned against the MrNv virus-like particle (VLP). After four rounds of biopanning, two dominant phages harbouring the amino acid sequences HTKQIPRHIYSA and VSRHQSWHPHDL were selected. An equilibrium binding assay in solution was performed to determine the relative dissociation constant (KDrel) of the interaction between the MrNv VLP and the selected fusion phages. Phage-HTKQIPRHIYSA has a KDrel value of 92.4±22.8 nM, and phage-VSRHQSWHPHDL has a KDrel value of 12.7±3.8 nM. An in-cell elisa was used to determine the inhibitory effect of the synthetic peptides towards the entry of MrNv VLP into Spodoptera frugiperda (Sf9) cells. Peptides HTKQIPRHIYSA and VSRHQSWHPHDL inhibited the entry of the MrNv VLP into Sf9 cells with IC50 values of 30.4±3.6 and 26.5±8.8 µM, respectively. Combination of both peptides showed a significantly higher inhibitory effect with an IC50 of 4.9±0.4 µM. An MTT assay revealed that the viability of MrNv-infected cells increased to about 97 % in the presence of both peptides. A real-time RT-PCR assay showed that simultaneous application of both peptides significantly reduced the number of MrNv per infected cell, from 97±9 to 11±4. These peptides are lead compounds which can be further developed into potent anti-MrNv agents.
    Matched MeSH terms: Cell Survival/drug effects
  11. Busra FM, Chowdhury SR, Saim AB, Idrus RB
    Saudi Med J, 2011 Dec;32(12):1311-2.
    PMID: 22159390
    Matched MeSH terms: Cell Survival/drug effects*
  12. Akhtar MN, Zareen S, Yeap SK, Ho WY, Lo KM, Hasan A, et al.
    Molecules, 2013 Aug 20;18(8):10042-55.
    PMID: 23966087 DOI: 10.3390/molecules180810042
    Naturally occurring anthraquinones, damnacanthal (1) and nordamnacanthal (2) were synthesized with modified reaction steps and investigated for their cytotoxicity against the MCF-7 and K-562 cancer cell lines, respectively. Intermediate analogues 2-bromomethyl-1,3-dimethoxyanthraquinone (5, IC50 = 5.70 ± 0.21 and 8.50 ± 1.18 mg/mL), 2-hydroxymethyl-1,3-dimethoxyanthraquinone (6, IC50 = 12.10 ± 0.14 and 14.00 ± 2.13), 2-formyl-1,3-dimethoxyantharquinone (7, IC50 = 13.10 ± 1.02 and 14.80 ± 0.74), 1,3-dimethoxy-2-methylanthraquinone (4, IC50 = 9.40 ± 3.51 and 28.40 ± 2.33), and 1,3-dihydroxy-2-methylanthraquinone (3, IC50 = 25.60 ± 0.42 and 28.40 ± 0.79) also exhibited moderate cytotoxicity against MCF-7 and K-562 cancer cell lines, respectively. Other structurally related compounds like 1,3-dihydroxyanthraquinone (13a, IC50 = 19.70 ± 0.35 and 14.50 ± 1.28), 1,3-dimethoxyanthraquinone (13b, IC50 = 6.50 ± 0.66 and 5.90 ± 0.95) were also showed good cytotoxicity. The target compound damnacanthal (1) was found to be the most cytotoxic against the MCF-7 and K-562 cancer cell lines, with IC50 values of 3.80 ± 0.57 and 5.50 ± 1.26, respectively. The structures of all compounds were elucidated with the help of detailed spectroscopic techniques.
    Matched MeSH terms: Cell Survival/drug effects
  13. Lye, H.M., Chiew, J.C., Siddique, M.M.
    The increasing and widespread use of synthetic food dyes raises health concerns and earlier reports suggest that certain food dyes might be harmful for human health. In this study, we have investigated the effect of three commonly used food dyes on human liver cell line, HepG2. Our findings suggest that these experimental food dyes significantly affect cell viability and this effect can be worsen in hyperglycemic condition. Accumulation of cellular fat was significantly higher in presence of these dyes. Expression pattern of the gene involved in regulating apoptosis suggests that that the observed cell death could be attributed to the activation of apoptotic pathway. These findings suggest that these experimental dyes might exert synergistic toxicity in hyperglycemia that need to be confirmed using suitable in vivo models.
    Matched MeSH terms: Cell Survival
  14. Mohd N, Razali M, Fauzi MB, Abu Kasim NH
    Int J Mol Sci, 2023 Aug 17;24(16).
    PMID: 37629064 DOI: 10.3390/ijms241612881
    Three-dimensional (3D) bioprinting is a unique combination of technological advances in 3D printing and tissue engineering. It has emerged as a promising approach to address the dilemma in current dental treatments faced by clinicians in order to repair or replace injured and diseased tissues. The exploration of 3D bioprinting technology provides high reproducibility and precise control of the bioink containing the desired cells and biomaterial over the architectural and dimensional features of the scaffolds in fabricating functional tissue constructs that are specific to the patient treatment need. In recent years, the dental applications of different 3D bioprinting techniques, types of novel bioinks, and the types of cells used have been extensively explored. Most of the findings noted significant challenges compared to the non-biological 3D printing approach in constructing the bioscaffolds that mimic native tissues. Hence, this review focuses solely on the implementation of 3D bioprinting techniques and strategies based on cell-laden bioinks. It discusses the in vitro applications of 3D-bioprinted scaffolds on cell viabilities, cell functionalities, differentiation ability, and expression of the markers as well as the in vivo evaluations of the implanted bioscaffolds on the animal models for bone, periodontal, dentin, and pulp tissue regeneration. Finally, it outlines some perspectives for future developments in dental applications.
    Matched MeSH terms: Cell Survival
  15. Thwe PN, Yeong KY, Choo WS
    Plant Foods Hum Nutr, 2023 Sep;78(3):613-619.
    PMID: 37466824 DOI: 10.1007/s11130-023-01081-7
    Betacyanin-rich extract from red beet (Beta vulgaris) was recently reported to inhibit amyloid β (Aβ) aggregation, a main pathological event in Alzheimer's disease. However, the anti-Aβ aggregation effect of individual betacyanin isolates has not been reported before. This study investigated the anti-Aβ aggregation activity and cytotoxicity of betacyanins from red pitahaya or red dragon fruit (Hylocereus polyrhizus). Betacyanin fraction (IC50 = 16.02 ± 1.15 µg/mL) and individual betacyanin isolates exhibited anti-Aβ aggregation activity in a concentration-dependent manner using a thioflavin T fluorescence assay. The highest to lowest IC50 was in the order of betanin (426.30 ± 29.55 µM), phyllocactin (175.22 ± 1.52 µM), and hylocerenin (131.73 ± 5.58 µM), following a trend of increase in functional groups of carboxyl, hydroxyl, and/or carbonyl. Further, the betacyanin fraction of 135.78 µg/mL and below, which were concentrations with an anti-Aβ aggregation effect, were validated as non-neurotoxic based on an in vitro cytotoxicity assay using human neuroblastoma (SH-SY5Y) cells. These findings highlight the potential neuroprotective activity of betacyanins for Alzheimer's disease.
    Matched MeSH terms: Cell Survival
  16. Qureshi AK, Mukhtar MR, Hirasawa Y, Hosoya T, Nugroho AE, Morita H, et al.
    Chem Pharm Bull (Tokyo), 2011;59(2):291-3.
    PMID: 21297315
    Two new indole alkaloids, neolamarckines A and B (1, 2) were isolated from the leaves of Neolamarckia cadamba (Rubiaceae). Structural elucidation of 1 and 2 was performed by combination of 2D-NMR and circular dichroism (CD) spectra, and chemical correlations. Neolamarckine A (1) showed inhibition of inducible nitric oxide synthase (iNOS) dose dependently.
    Matched MeSH terms: Cell Survival/drug effects; Cell Survival/physiology
  17. Chew MT, Bradley DA, Suzuki M, Matsufuji N, Murakami T, Jones B, et al.
    J Radiat Res, 2019 Mar 01;60(2):178-188.
    PMID: 30624699 DOI: 10.1093/jrr/rry099
    The effects of the charged ion species 4He, 12C and 20Ne on glioblastoma multiforme (GBM) T98G, U87 and LN18 cell lines were compared with the effects of 200 kVp X-rays (1.7 keV/μm). These cell lines have different genetic profiles. Individual GBM relative biological effectiveness (RBE) was estimated in two ways: the RBE10 at 10% survival fraction and the RBE2Gy after 2 Gy doses. The linear quadratic model radiosensitivity parameters α and β and the α/β ratio of each ion type were determined as a function of LET. Mono-energetic 4He, 12C and 20Ne ions were generated by the Heavy Ion Medical Accelerator at the National Institute of Radiological Sciences in Chiba, Japan. Colony-formation assays were used to evaluate the survival fractions. The LET of the various ions used ranged from 2.3 to 100 keV/μm (covering the depth-dose plateau region to clinically relevant LET at the Bragg peak). For U87 and LN18, the RBE10 increased with LET and peaked at 85 keV/μm, whereas T98G peaked at 100 keV/μm. All three GBM α parameters peaked at 100 keV/μm. There is a statistically significant difference between the three GBM RBE10 values, except at 100 keV/μm (P < 0.01), and a statistically significant difference between the α values of the GBM cell lines, except at 85 and 100 keV/μm. The biological response varied depending on the GBM cell lines and on the ions used.
    Matched MeSH terms: Cell Survival/drug effects; Cell Survival/radiation effects
  18. Basri DF, Xian LW, Abdul Shukor NI, Latip J
    Biomed Res Int, 2014;2014:461756.
    PMID: 24783205 DOI: 10.1155/2014/461756
    Stilbenoids have been considered as an alternative phytotherapeutic treatment against methicillin-resistant Staphylococcus aureus (MRSA) infection. The combined effect of ε-viniferin and johorenol A with the standard antibiotics, vancomycin and linezolid, was assessed against MRSA ATCC 33591 and HUKM clinical isolate. The minimum inhibitory concentration (MIC) value of the individual tested compounds and the fractional inhibitory concentration index (FICI) value of the combined agents were, respectively, determined using microbroth dilution test and microdilution checkerboard (MDC) method. Only synergistic outcome from checkerboard test will be substantiated for its rate of bacterial killing using time-kill assay. The MIC value of ε -viniferin against ATCC 33591 and johorenol A against both strains was 0.05 mg/mL whereas HUKM strain was susceptible to 0.1 mg/mL of ε-viniferin. MDC study showed that only combination between ε-viniferin and vancomycin was synergistic against ATCC 33591 (FICI 0.25) and HUKM (FICI 0.19). All the other combinations (ε-viniferin-linezolid, johorenol A-vancomycin, and johorenol A-linezolid) were either indifferent or additive against both strains. However, despite the FICI value showing synergistic effect for ε-viniferin-vancomycin, TKA analysis displayed antagonistic interaction with bacteriostatic action against both strains. As conclusion, ε-viniferin can be considered as a bacteriostatic stilbenoid as it antagonized the bactericidal activity of vancomycin. These findings therefore disputed previous report that ε-viniferin acted in synergism with vancomycin but revealed that it targets similar site in close proximity to vancomycin's action, possibly at the bacterial membrane protein. Hence, this combination has a huge potential to be further studied and developed as an alternative treatment in combating MRSA in future.
    Matched MeSH terms: Cell Survival/drug effects; Cell Survival/physiology
  19. Al-Fahdawi MQ, Al-Doghachi FAJ, Abdullah QK, Hammad RT, Rasedee A, Ibrahim WN, et al.
    Biomed Pharmacother, 2021 Jun;138:111483.
    PMID: 33744756 DOI: 10.1016/j.biopha.2021.111483
    The aim of this study was to prepare, characterize, and determine the in vitro anticancer effects of platinum-doped magnesia (Pt/MgO) nanoparticles. The chemical compositions, functional groups, and size of nanoparticles were determined using X-ray diffraction, Fourier transform infrared spectroscopy, energy dispersive X-ray spectroscopy, transmission electron microscopy, and scanning electron microscopy. Pt/MgO nanoparticles were cuboid and in the nanosize range of 30-50 nm. The cytotoxicity of Pt/MgO nanoparticles was determined via the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay on the human lung and colonic cancer cells (A549 and HT29 respectively) and normal human lung and colonic fibroblasts cells (MRC-5 and CCD-18Co repectively). The Pt/MgO nanoparticles were relatively innocuous to normal cells. Pt/MgO nanoparticles downregulated Bcl-2 and upregulated Bax and p53 tumor suppressor proteins in the cancer cells. Pt/MgO nanoparticles also induced production of reactive oxygen species, decreased cellular glutathione level, and increased lipid peroxidation. Thus, the anticancer effects of Pt/MgO nanoparticles were attributed to the induction of oxidative stress and apoptosis. The study showed the potential of Pt/MgO nanoparticles as an anti-cancer compound.
    Matched MeSH terms: Cell Survival/drug effects; Cell Survival/physiology
  20. Saw WS, Ujihara M, Chong WY, Voon SH, Imae T, Kiew LV, et al.
    Colloids Surf B Biointerfaces, 2018 Jan 01;161:365-374.
    PMID: 29101882 DOI: 10.1016/j.colsurfb.2017.10.064
    Physiochemical changes, including size, are known to affect gold nanoparticle cellular internalization and treatment efficacy. Here, we report the effect of four sizes of cystine/citric acid-coated confeito-like gold nanoparticles (confeito-AuNPs) (30, 60, 80 and 100nm) on cellular uptake, intracellular localization and photothermal anticancer treatment efficiency in MDA-MB231 breast cancer cells. Cellular uptake is size dependent with the smallest size of confeito-AuNPs (30nm) having the highest cellular internalization via clathrin- and caveolae-mediated endocytosis. However, the other three sizes (60, 80 and 100nm) utilize clathrin-mediated endocytosis for cellular uptake. The intracellular localization of confeito-AuNPs is related to their endocytosis mechanism, where all sizes of confeito-AuNPs were localized highly in the lysosome and mitochondria, while confeito-AuNPs (30nm) gave the highest localization in the endoplasmic reticulum. Similarly, a size-dependent trend was also observed in in vitro photothermal treatment experiments, with the smallest confeito-AuNPs (30nm) giving the highest cell killing rate, whereas the largest size of confeito-AuNPs (100nm) displayed the lowest photothermal efficacy. Its desirable physicochemical characteristics, biocompatible nature and better photothermal efficacy will form the basis for further development of multifunctional confeito-AuNP-based nanotherapeutic applications.
    Matched MeSH terms: Cell Survival/drug effects; Cell Survival/radiation effects
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links