Displaying publications 61 - 80 of 206 in total

Abstract:
Sort:
  1. Abd Rashid N, Abd Halim SAS, Teoh SL, Budin SB, Hussan F, Adib Ridzuan NR, et al.
    Biomed Pharmacother, 2021 Dec;144:112328.
    PMID: 34653753 DOI: 10.1016/j.biopha.2021.112328
    Cisplatin is a potent platinum-based anticancer drug approved by the Food Drug Administration (FDA) in 1978. Despite its advantages against solid tumors, cisplatin confers toxicity to various tissues that limit its clinical uses. In cisplatin-induced hepatotoxicity, few mechanisms have been identified, which started as excess generation of reactive oxygen species that leads to oxidative stress, inflammation, DNA damage and apoptosis in the liver. Various natural products, plant extracts and oil rich in flavonoids, terpenoids, polyphenols, and phenolic acids were able to minimize oxidative stress by restoring the level of antioxidant enzymes and acting as an anti-inflammatory agent. Likewise, treatment with honey and royal jelly was demonstrated to decrease serum transaminases and scavenge free radicals in the liver after cisplatin administration. Medicinal properties of these natural products have a promising potential as a complementary therapy to counteract cisplatin-induced hepatotoxicity. This review concentrated on the protective role of several natural products, which has been proven in the laboratory findings to combat cisplatin-induced hepatotoxicity.
    Matched MeSH terms: Liver/drug effects*
  2. Yusoff NA, Lim V, Al-Hindi B, Abdul Razak KN, Widyawati T, Anggraini DR, et al.
    Nutrients, 2017 Aug 23;9(9).
    PMID: 28832548 DOI: 10.3390/nu9090925
    BACKGROUND: An aqueous extract (AE) of vinegar made from Nypa fruticans Wurmb. can improve postprandial glucose levels in normoglycaemic rats. The aim of this study was to evaluate its antihyperglycaemic activity further using in vivo and in vitro approaches.

    METHODS: AE was administered to streptozotocin (STZ)-induced diabetic rats twice daily at three doses (1000, 500, and 250 mg/kg b.w.) for 12 days p.o. Several biochemical analyses and a histological study of the pancreas and liver were performed, accompanied by a cell culture assay.

    RESULTS: As compared to diabetic control (DC), AE at the doses of 500 and 1000 mg/kg b.w. caused significant reduction (p < 0.05) of blood glucose, total cholesterol and triglycerides levels, with positive improvement of serum insulin levels. Interestingly, immunohistochemical staining of the pancreas suggested no β-cell regeneration, despite significant increase in insulin production. AE-treated groups, however, showed overall restoration of the hepatic histoarchitecture of STZ-induced liver damage, suggesting a possible hepatoprotective effect. The pancreatic effect of AE was further studied through RIN-5F cell culture, which revealed a positive stimulatory effect on insulin release at a basal glucose concentration (1.1 mM).

    CONCLUSION: Nypa fruticans Wurmb. vinegar's aqueous extract exerts its antihyperglycaemic activity, at least in part, through insulin stimulatory and hepatoprotective effects.

    Matched MeSH terms: Liver/drug effects*
  3. Ooi J, Adamu HA, Imam MU, Ithnin H, Ismail M
    Biomed Pharmacother, 2018 Feb;98:125-133.
    PMID: 29248832 DOI: 10.1016/j.biopha.2017.12.002
    This study aimed to evaluate the effect of ethyl acetate fraction (EAF) isolated from Molineria latifolia rhizome as dietary interventions for type 2 diabetes mellitus (T2DM) and its underlying molecular mechanisms in vivo. Experimental rats were induced by high fat diet feeding coupled with combined exposure to streptozotocin and nicotinamide. Treatment with EAF improved glucose tolerance and lipid profiles, but the insulin secretion was unaltered. Gene expression analyses on insulin/adipocytokine signalling-related genes demonstrated tissue-specific transcriptional responses. In skeletal muscle and liver tissues, Socs1, Tnf and Mapk8 showed consistent transcript regulation. Furthermore, hepatic translational analyses revealed sensitization on proximal insulin signalling, with reduced expression of IRS1 serine phosphorylation, increased IRS1 tyrosine phosphorylation and increased phospho-AKT (Ser473). The present findings suggested that EAF exerted its effect by modulating insulin signalling, potentially via IRS1/AKT activation. The pharmacological attributes of EAF may implicate its potential therapeutic applications for diabetes management.
    Matched MeSH terms: Liver/drug effects
  4. Chan KW, Ismail M, Mohd Esa N, Imam MU, Ooi J, Khong NMH
    Food Funct, 2018 Feb 21;9(2):925-936.
    PMID: 29313544 DOI: 10.1039/c7fo01109a
    Kenaf is one of the important commercial fiber crops worldwide and defatted kenaf seed meal (DKSM) is a secondary by-product from the kenaf industry. Thus, efforts to turn this low-cost agricultural waste into value-added functional food ingredients will definitely bring advantageous impacts to the community health, environment and economy. The present study was aimed to investigate the cardioprotective properties of DKSM and its phenolics-saponins rich extract (PSRE) in diet-induced hypercholesterolemic rat model. Hypercholesterolemia was induced in Sprague-Dawley rats via atherogenic diet feeding and dietary interventions were conducted by incorporating DKSM (15% and 30%) and equivalent levels of PSRE (2.3% and 4.6%, respectively, equivalent to the total content of phenolics and saponins in DKSM groups) into the atherogenic diets. After 10 weeks of DKSM and PSRE supplementation, the hepatosomatic index, hepatosteatosis, serum lipid profile, Castelli risk indexes as well as hepatic and renal functions of hypercholesterolemic rats were significantly improved (p < 0.05). Besides, the levels of hepatic Hmgcr and serum Pcsk9 were lowered, along with transcriptional upregulations of hepatic Cyp7a1, Abca1, Lcat, ApoA2 and ApoE (p < 0.05). The gene expression of hepatic Ldlr was marginally enhanced by DKSM supplementation (p > 0.05), but superiorly upregulated by PSRE (p < 0.05). The combined results showed that hypercholesterolemia and the atherogenic risk in rats were effectively attenuated by DKSM and PSRE supplementation, possibly via modulations of multiple vital processes in hepatic cholesterol metabolism. Furthermore, phenolics and saponins may be the bioactives conferring DKSM and PSRE with their anti-hypercholesterolemic properties. In conclusion, DKSM and PSRE are prospective cardioprotective functional food ingredients for hypercholesterolemic individuals.
    Matched MeSH terms: Liver/drug effects
  5. Aithal AP, Bairy LK, Seetharam RN, Rao MK
    J Cell Biochem, 2019 08;120(8):13026-13036.
    PMID: 30873677 DOI: 10.1002/jcb.28573
    BACKGROUND: To evaluate the antimutagenic potential of combination treatment of human bone marrow-derived mesenchymal stromal cells (BM-MSCs) and silymarin and its effect on hepatocyte growth factor levels in CCl4 induced hepatotoxicity in Wistar rats.

    METHODS: Hepatotoxicity was induced in adult female Wistar rats using carbon tetrachloride (CCl4 ). Thirty-six rats were randomly divided into six groups with six rats in each group: Group 1 (normal control group), Group 2 (received only CCl 4 ), Group 3 (CCl 4 +low dose BM-MSCs), Group 4 (CCl 4 +high dose BM-MSCs), Group 5 (CCl 4  + silymarin), Group 6 (CCl 4 +silymarin+high dose BM-MSCs). Thirty days after the treatment, blood samples were collected for hepatocyte growth factor estimation. The rats were then killed, bone marrow was extracted for chromosomal aberration assay. Liver tissue was processed for evaluating the DNA fragmentation assay, histopathology, and scanning electron microscopy study.

    RESULTS: Combination treatment of silymarin and high dose BM-MSCs significantly (P liver tissue samples. The combination treatment produced significant hepatoprotective effect which was supported by histopathology and scanning electron microscopy study.

    CONCLUSION: Results indicate that the treatment of BM-MSCs in combination with silymarin had a better hepatoprotective and antimutagenic effect and represents a novel strategy for the treatment of hepatotoxicity.

    Matched MeSH terms: Liver/drug effects
  6. Fakurazi S, Rahman SA, Hidayat MT, Ithnin H, Moklas MA, Arulselvan P
    Molecules, 2013 Jan 04;18(1):666-81.
    PMID: 23292329 DOI: 10.3390/molecules18010666
    Mitragynine (MG) is the major active alkaloid found in Mitragyna speciosa Korth. In the present study, we investigated the enhancement of analgesic action of MG when combined with morphine and the effect of the combination on the development of tolerance towards morphine. Mice were administered intraperitoneally with a dose of MG (15 and 25 mg/kg b.wt) combined with morphine (5 mg/kg b.wt) respectively for 9 days. The antinociceptive effect was evaluated by a hot plate test. The protein expression of cyclic adenosine monophosphate (cAMP) and cAMP response element binding (CREB) was analyzed by immunoblot. Toxicological parameters especially liver and kidney function tests were assessed after the combination treatment with MG and morphine. The concurrent administration of MG and morphine showed significant (p < 0.05) increase in latency time when compared to morphine alone group and the outstanding analgesic effects in the combination regimens were maintained until day 9. For the protein expression, there was a significant increment of cAMP and CREB levels (p < 0.05) in group treated with 5 mg/kg morphine but there was no significant change of these protein expressions when MG was combined with morphine. There was a significant changes in toxicological parameters of various treated groups. The combination treatment of MG and morphine effectively reduce the tolerance due to the chronic administration of morphine.
    Matched MeSH terms: Liver/drug effects
  7. Zarzour RHA, Alshawsh MA, Asif M, Al-Mansoub MA, Mohamed Z, Ahmad M, et al.
    Nutrients, 2018 Aug 09;10(8).
    PMID: 30096951 DOI: 10.3390/nu10081057
    The growth of adipose tissues is considered angiogenesis-dependent during non-alcoholic fatty liver disease (NAFLD). We have recently reported that our standardized 50% methanolic extract (ME) of Phyllanthus niruri (50% ME of P. niruri) has alleviated NAFLD in Sprague⁻Dawley rats. This study aimed to assess the molecular mechanisms of action, and to further evaluate the antiangiogenic effect of this extract. NAFLD was induced by eight weeks of high-fat diet, and treatment was applied for four weeks. Antiangiogenic activity was assessed by aortic ring assay and by in vitro tests. Our findings demonstrated that the therapeutic effects of 50% ME among NAFLD rats, were associated with a significant increase in serum adiponectin, reduction in the serum levels of RBP4, vaspin, progranulin, TNF-α, IL-6, and significant downregulation of the hepatic gene expression of PPARγ, SLC10A2, and Collα1. Concomitantly, 50% ME of P. niruri has exhibited a potent antiangiogenic activity on ring assay, cell migration, vascular endothelial growth factor (VEGF), and tube formation, without any cytotoxic effect. Together, our findings revealed that the protective effects of P. niruri against NAFLD might be attributed to its antiangiogenic effect, as well as to the regulation of adipocytokines and reducing the expression of adipogenic genes.
    Matched MeSH terms: Liver/drug effects*
  8. Mahmood ND, Mamat SS, Kamisan FH, Yahya F, Kamarolzaman MF, Nasir N, et al.
    Biomed Res Int, 2014;2014:695678.
    PMID: 24868543 DOI: 10.1155/2014/695678
    Muntingia calabura L. is a tropical plant species that belongs to the Elaeocarpaceae family. The present study is aimed at determining the hepatoprotective activity of methanol extract of M. calabura leaves (MEMC) using two models of liver injury in rats. Rats were divided into five groups (n=6) and received 10% DMSO (negative control), 50 mg/kg N-acetylcysteine (NAC; positive control), or MEMC (50, 250, and 500 mg/kg) orally once daily for 7 days and on the 8th day were subjected to the hepatotoxic induction using paracetamol (PCM). The blood and liver tissues were collected and subjected to biochemical and microscopical analysis. The extract was also subjected to antioxidant study using the 2,2-diphenyl-1-picrylhydrazyl-(DPPH) and superoxide anion-radical scavenging assays. At the same time, oxygen radical antioxidant capacity (ORAC) and total phenolic content were also determined. From the histological observation, lymphocyte infiltration and marked necrosis were observed in PCM-treated groups (negative control), whereas maintenance of hepatic structure was observed in group pretreated with N-acetylcysteine and MEMC. Hepatotoxic rats pretreated with NAC or MEMC exhibited significant decrease (P<0.05) in ALT and AST enzymes level. Moreover, the extract also exhibited good antioxidant activity. In conclusion, MEMC exerts potential hepatoprotective activity that could be partly attributed to its antioxidant activity and, thus warrants further investigations.
    Matched MeSH terms: Liver/drug effects*
  9. Lim CY, Mat Junit S, Abdulla MA, Abdul Aziz A
    PLoS One, 2013;8(7):e70058.
    PMID: 23894592 DOI: 10.1371/journal.pone.0070058
    BACKGROUND: Tamarindus indica (T. indica) is a medicinal plant with many biological activities including anti-diabetic, hypolipidaemic and anti-bacterial activities. A recent study demonstrated the hypolipidaemic effect of T. indica fruit pulp in hamsters. However, the biochemical and molecular mechanisms responsible for these effects have not been fully elucidated. Hence, the aims of this study were to evaluate the antioxidant activities and potential hypocholesterolaemic properties of T. indica, using in vitro and in vivo approaches.

    METHODOLOGY/PRINCIPAL FINDINGS: The in vitro study demonstrated that T. indica fruit pulp had significant amount of phenolic (244.9 ± 10.1 mg GAE/extract) and flavonoid (93.9 ± 2.6 mg RE/g extract) content and possessed antioxidant activities. In the in vivo study, hamsters fed with high-cholesterol diet for ten weeks showed elevated serum triglyceride, total cholesterol, HDL-C and LDL-C levels. Administration of T. indica fruit pulp to hypercholesterolaemic hamsters significantly lowered serum triglyceride, total cholesterol and LDL-C levels but had no effect on the HDL-C level. The lipid-lowering effect was accompanied with significant increase in the expression of Apo A1, Abcg5 and LDL receptor genes and significant decrease in the expression of HMG-CoA reductase and Mtp genes. Administration of T. indica fruit pulp to hypercholesterolaemic hamsters also protected against oxidative damage by increasing hepatic antioxidant enzymes, antioxidant activities and preventing hepatic lipid peroxidation.

    CONCLUSION/SIGNIFICANCE: It is postulated that tamarind fruit pulp exerts its hypocholesterolaemic effect by increasing cholesterol efflux, enhancing LDL-C uptake and clearance, suppressing triglyceride accumulation and inhibiting cholesterol biosynthesis. T. indica fruit pulp has potential antioxidative effects and is potentially protective against diet-induced hypercholesterolaemia.

    Matched MeSH terms: Liver/drug effects
  10. Haleagrahara N, Jackie T, Chakravarthi S, Rao M, Kulur A
    J Toxicol Sci, 2010 Oct;35(5):663-71.
    PMID: 20930461
    Lead is known to disrupt the biological systems by altering the molecular interactions, cell signaling, and cellular function. Exposure to even low levels of lead may have potential hazardous effects on brain, liver, kidneys and testes. The efficacy of Etlingera elatior (torch ginger) to protect hepatotoxicity induced by lead acetate was evaluated experimentally in male Sprague - Dawley rats. Rats were exposed to lead acetate in drinking water (500 ppm) for 21 days and the effects of concurrent treatment with extract of E. elatior on hepatic lipid hydroperoxides (LPO), protein carbonyl content (PCC), total antioxidants (TA), superoxide dismutase (SOD), glutathione peroxidase (GPX) and glutathione S- Transferase (GST) levels and histopathological changes in liver were evaluated. There was a significant decrease in TA and other antioxidant enzymes (p < 0.05) and increase in LPO and PCC (p < 0.05) with lead acetate ingestion. Concurrent treatment with E. elatior extract significantly reduced the LPO and PCC (p < 0.05) in serum and increased the antioxidant enzyme levels (p < 0.05) in the liver. Significant histopathological changes were seen in hepatic tissue with chronic lead ingestion. Treatment with E. elatior significantly reduced these lead-induced changes in hepatic architecture. E. elatior has also reduced the blood lead levels (BLL). Thus, there has been extensive biochemical and structural alterations indicative of liver toxicity with exposure to lead and E. elatior treatment significantly reduced these oxidative damage. Our results suggest that E. elatior has a powerful antioxidant effect against lead-induced hepatotoxicity.
    Matched MeSH terms: Liver/drug effects*
  11. Islam MT, Quispe C, Islam MA, Ali ES, Saha S, Asha UH, et al.
    Biomed Pharmacother, 2021 Aug;140:111732.
    PMID: 34130201 DOI: 10.1016/j.biopha.2021.111732
    Nerol, a monoterpene is evident to possess diverse biological activities, including antioxidant, anti-microbial, anti-spasmodic, anthelmintic, and anti-arrhythmias. This study aims to evaluate its hepatoprotective effect against paracetamol-induced liver toxicity in a rat model. Five groups of rats (n = 7) were orally treated (once daily) with 0.05% tween 80 dissolved in 0.9% NaCl solution (vehicle), paracetamol 640 mg/kg (negative control), 50 mg/kg silymarin (positive control), or nerol (50 and 100 mg/kg) for 14 days, followed by the hepatotoxicity induction using paracetamol (PCM). The blood samples and livers of the animals were collected and subjected to biochemical and microscopical analysis. The histological findings suggest that paracetamol caused lymphocyte infiltration and marked necrosis, whereas maintenance of the normal hepatic structural was observed in group pre-treated with silymarin and nerol. The rats pre-treated with nerol significantly and dose-dependently reduced the hepatotoxic markers in animals. Nerol at 100 mg/kg significantly reversed the paracetamol-induced altered situations, including the liver enzymes, plasma proteins, antioxidant enzymes and serum bilirubin, lipid peroxidation (LPO) and cholesterol [e.g., total cholesterol (TC), triglycerides (TG), high-density lipoprotein cholesterol (HDL-c), low-density lipoprotein cholesterol (LDL-c)] levels in animals. Taken together, nerol exerted significant hepatoprotective activity in rats in a dose-dependent manner. PCM-induced toxicity and nerol induced hepatoprotective effects based on expression of inflammatory and apoptosis factors will be future line of work for establishing the precise mechanism of action of nerol in Wistar albino rats.
    Matched MeSH terms: Liver/drug effects
  12. Nandini C, Madhunapantula SV, Bovilla VR, Ali M, Mruthunjaya K, Santhepete MN, et al.
    J Ethnopharmacol, 2021 Jul 15;275:114074.
    PMID: 33831466 DOI: 10.1016/j.jep.2021.114074
    ETHNOPHARMACOLOGICAL RELEVANCE: Carica papaya leaf juice/decoction has been in use in folk medicine in Srilanka, Malaysia and in few parts of India for enhancing the platelet counts in dengue. In Siddha medicine, a traditional form of medicine in India, papaya leaf juice has been used for increasing the platelet counts. Papaya leaf has been reported to enhance blood volume in ancient Ayurveda books in India. Carica papaya leaf is well known for its platelet enhancement activity. Although many preclinical and clinical studies have demonstrated the ability of papaya leaf juice for platelet enhancement, but the underlying mechanisms are still unclear.

    AIM OF THE STUDY: The study is aimed at identifying the key ingredients of papaya leaf extract and elucidate the mechanism (s) of action of the identified potent component in mitigating thrombocytopenia (Thp).

    MATERIALS AND METHODS: C. papaya leaf juice was subjected for sequential fractionation to identify the anti-thrombocytopenic phytochemicals. In vivo, stable thrombocytopenia was induced by subcutaneous injection of 70 mg/kg cyclophosphamide (Cyp). After induction, rats were treated with 200 and 400 mg/kg body weight papaya leaf juice and with identified fractions for 14 days. Serum thrombopoietin level was estimated using ELISA. CD110/cMpl, a receptor for thrombopoietin on platelets was measured by western blotting.

    RESULTS: Administration of cyclophosphamide for 6 days induced thrombocytopenia (210.4 ± 14.2 × 103 cells/μL) in rats. Treating thrombocytopenic rats with papaya leaf juice and butanol fraction for 14 days significantly increased the platelet count to 1073.50 ± 29.6 and 1189.80 ± 36.5 × 103 cells/μL, respectively. C.papaya extracts normalized the elevated bleeding and clotting time and decreased oxidative markers by increasing endogenous antioxidants. A marginal increase in the serum thrombopoietin (TPO) level was observed in Cyp treated group compared to normal and treatment groups. Low expression of CD110/cMpl receptor found in Cyp treated group was enhanced by C. papaya extracts (CPJ) and CPJ-BT. Furthermore, examination of the morphology of bone marrow megakaryocytes, histopathology of liver and kidneys revealed the ability of CPJ and fractions in mitigating Cyp-induced thrombocytopenia in rats.

    CONCLUSION: C. papaya leaf juice enhances the platelet count in chemotherapy-induced thrombocytopenia by increasing the expression of CD110 receptor on the megakaryocytes. Hence, activating CD110 receptor might be a viable strategy to increase the platelet production in individuals suffering from thrombocytopenia.

    Matched MeSH terms: Liver/drug effects
  13. Wang S, Tan KS, Beng H, Liu F, Huang J, Kuai Y, et al.
    Pharmacol Res, 2021 Oct;172:105781.
    PMID: 34302975 DOI: 10.1016/j.phrs.2021.105781
    Sepsis is a severe inflammatory disorder that can lead to multiple organ injury. Isosteviol sodium (STV-Na) is a terpenoid derived from stevioside that exerts anti-inflammatory, antioxidant and antiapoptotic activities. However, the influence of STV-Na on sepsis remains unknown. Here, we assessed the potential effects of STV-Na on sepsis and multiple organ injury induced by lipopolysaccharide (LPS). We found that STV-Na increased the survival rate of mice treat with LPS, significantly improved the functions of the heart, lung, liver, and kidney, reduced the production of inflammatory cytokines and decreased macrophage infiltration. Moreover, Multiorgan metabolomics analysis demonstrated that glutathione metabolism, purine metabolism, glycerophospholipid metabolism and pantothenate and CoA biosynthesis, were significantly altered by STV-Na. This study provides novel insights into the metabolite changes of multiple organ injury in septic mice, which may help characterize the underlying mechanism and provide an improved understanding of the therapeutic effects of STV-Na on sepsis.
    Matched MeSH terms: Liver/drug effects
  14. Al-Zuaidy MH, Mumtaz MW, Hamid AA, Ismail A, Mohamed S, Razis AFA
    BMC Complement Altern Med, 2017 Jul 10;17(1):359.
    PMID: 28693595 DOI: 10.1186/s12906-017-1849-2
    BACKGROUND: Type 2 diabetes mellitus (T2DM) is a metabolic disorder characterized by continuous hyperglycemia associated with insulin resistance and /or reduced insulin secretion. There is an emerging trend regarding the use of medicinal plants for the treatment of diabetes mellitus. Melicope lunu-ankenda (ML) is one of the Melicope species belonging to the family Rutaceae. In traditional medicines, its leaves and flowers are known to exhibit prodigious health benefits. The present study aimed at investigating anti-diabetic effect of Melicope lunu-ankenda (ML) leaves extract.

    METHODS: In this study, anti-diabetic effect of ML extract is investigated in vivo to evaluate the biochemical changes, potential serum biomarkers and alterations in metabolic pathways pertaining to the treatment of HFD/STZ induced diabetic rats with ML extract using 1H NMR based metabolomics approach. Type 2 diabetic rats were treated with different doses (200 and 400 mg/kg BW) of Melicope lunu-ankenda leaf extract for 8 weeks, and serum samples were examined for clinical biochemistry. The metabolomics study of serum was also carried out using 1H NMR spectroscopy in combination with multivariate data analysis to explore differentiating serum metabolites and altered metabolic pathways.

    RESULTS: The ML leaf extract (400 mg/kg BW) treatment significantly increased insulin level and insulin sensitivity of obese diabetic rats, with concomitant decrease in glucose level and insulin resistance. Significant reduction in total triglyceride, cholesterol and low density lipoprotein was also observed after treatment. Interestingly, there was a significant increase in high density lipoprotein of the treated rats. A decrease in renal injury markers and activities of liver enzymes was also observed. Moreover, metabolomics studies clearly demonstrated that, ML extract significantly ameliorated the disturbance in glucose metabolism, tricarboxylic acid cycle, lipid metabolism, and amino acid metabolism.

    CONCLUSION: ML leaf extract exhibits potent antidiabetic properties, hence could be a useful and affordable alternative option for the management of T2DM.

    Matched MeSH terms: Liver/drug effects
  15. Fernando HA, Chandramouli C, Rosli D, Lam YL, Yong ST, Yaw HP, et al.
    Nutrients, 2014 Nov 04;6(11):4856-71.
    PMID: 25375630 DOI: 10.3390/nu6114856
    Glycyrrhizic acid (GA) ameliorates many components of the metabolic syndrome, but its potential therapeutic use is marred by edema caused by inhibition of renal 11β-hydroxysteroid dehydrogenase 2 (11β-HSD2). We assessed whether 100 mg/kg per day GA administered orally could promote metabolic benefits without causing edema in rats fed on a high-sucrose diet. Groups of eight male rats were fed on one of three diets for 28 days: normal diet, a high-sucrose diet, or a high-sucrose diet supplemented with GA. Rats were then culled and renal 11β-HSD2 activity, as well as serum sodium, potassium, angiotensin II and leptin levels were determined. Histological analyses were performed to assess changes in adipocyte size in visceral and subcutaneous depots, as well as hepatic and renal tissue morphology. This dosing paradigm of GA attenuated the increases in serum leptin levels and visceral, but not subcutaneous adipocyte size caused by the high-sucrose diet. Although GA decreased renal 11β-HSD2 activity, it did not affect serum electrolyte or angiotensin II levels, indicating no onset of edema. Furthermore, there were no apparent morphological changes in the liver or kidney, indicating no toxicity. In conclusion, it is possible to reap metabolic benefits of GA without edema using the current dosage and treatment time.
    Matched MeSH terms: Liver/drug effects
  16. Hashim H, Mughrabi FF, Ameen M, Khaledi H, Ali HM
    Molecules, 2012 Aug 03;17(8):9306-20.
    PMID: 22864239 DOI: 10.3390/molecules17089306
    Indolic compounds have attracted a lot of attention due to their interesting biological properties. The present study was performed to evaluate the subacute toxicity and anti-ulcer activity of BClHC against ethanol-induced gastric ulcers. Experimental animal groups were orally pre-treated with different doses of BClHC (50, 100, 200 and 400 mg/kg) in 10% Tween 20 solution (vehicle). Blank and ulcer control groups were pre-treated with vehicle. The positive group was orally pretreated with 20 mg/kg omeprazole. After one hour, all groups received absolute ethanol (5 mL/kg) to generate gastric mucosal injury except the blank control group which was administered the vehicle solution. After an additional hour, all rats were sacrificed, and the ulcer areas of the gastric walls determined. Grossly, the ulcer control group exhibited severe mucosal injury, whereas pre-treatment with either derivative or omeprazole resulted in significant protection of gastric mucosal injury. Flattening of gastric mucosal folds was also observed in rats pretreated with BClHC. Histological studies of the gastric wall of ulcer control group revealed severe damage of gastric mucosa, along with edema and leucocytes infiltration of the submucosal layer compared to rats pre-treated with either BClHC or omeprazole where there were marked gastric protection along with reduction or absence of edema and leucocytes infiltration of the submucosal layer. Subacute toxicity study with a higher dose of derivative (5 g/kg) did not manifest any toxicological signs in rats. In conclusions, the present finding suggests that benzyl N'-(5-chloroindol-3-ylmethylidene)hydrazinecarbodithioate promotes ulcer protection as ascertained by the comparative decreases in ulcer areas, reduction of edema and leucocytes infiltration of the submucosal layer.
    Matched MeSH terms: Liver/drug effects
  17. Cheng LC, Murugaiyah V, Chan KL
    J Ethnopharmacol, 2015 Dec 24;176:485-93.
    PMID: 26593216 DOI: 10.1016/j.jep.2015.11.025
    ETHNOPHARMACOLOGICAL RELEVANCE: Lippia nodiflora has been traditionally used in the Ayurvedic, Unani, and Sidha systems, as well as Traditional Chinese Medicine (TCM) for the treatment of knee joint pain, lithiasis, diuresis, urinary disorder and swelling.
    AIM OF THE STUDY: The present study aims to investigate the antihyperuricemic effect of the L. nodiflora methanol extract, fractions, and chemical constituents and their mechanism of action in the rat model.
    MATERIALS AND METHODS: The mechanisms were investigated by performing xanthine oxidase inhibitory, uricosuric, and liver xanthine oxidase/xanthine dehydrogenase (XOD/XDH) inhibitory studies in potassium oxonate- and hypoxanthine-induced hyperuricemic rats. The plant safety profile was determined using acute toxicity study. The molecular docking of the active compound to the xanthine oxidase was simulated using computer aided molecular modeling analysis.
    RESULTS: Oral administration of methanol extract showed a dose-dependent reduction effect on the serum uric acid level of hyperuricemic rats. F3 was the most potent fraction in lowering the serum uric acid level of hyperuricemic rats. Bioactivity-guided purification of F3 afforded two phenylethanoid glycosides, arenarioside (1) and verbascoside (2) and three flavonoids, 6-hydroxyluteolin (3), 6-hydroxyluteolin-7-O-glycoside (4), and nodifloretin (5). The highest serum uric acid reduction effect was exhibited by 3 (66.94%) in hyperuricemic rats, followed by 5 (55.97%), 4 (49.16%), 2 (29.03%), and 1 (22.08%) at 0.2 mmol/kg. Dose-response investigation on 3 at doses of 0.05, 0.1, and 0.3 mmol/kg produced a significant dose-dependent reduction on the serum uric acid level of hyperuricemic rats. Repeated administration of F3 or 3 to the hyperuricemic rats for 10 continuous days resulted in a significant and progressive serum uric acid lowering effect in hyperuricemic rats. In contrast, methanol extract and F3 did not reduce serum uric acid level of normoruricemic rats. In addition, F4 significantly increased the uric acid excretion of hyperuricemic rats at 200mg/kg. No toxic effect was observed in rats administered with 5000 mg/kg of methanol extract or F3.
    CONCLUSION: The potential application of L. nodiflora against hyperuricemia in the animal in accordance with its traditional uses has been demonstrated in the present study for the first time. The antihyperuricemic effect possessed by L. nodiflora was contributed mainly by liver XOD/XDH inhibitory activities and partially by uricosuric effect. Flavonoids mainly accountable for the uric acid lowering effect of L. nodiflora through the inhibition of XOD/XDH activities.
    KEYWORDS: Antihyperuricemic; Hypoxanthine-induced hyperuricemic rat; Lippia nodiflora; Liver xanthine oxidase and xanthine dehydrogenase; Serum uric acid; Uric acid excretion
    Matched MeSH terms: Liver/drug effects
  18. Roy P, Das S, Auddy RG, Mukherjee A
    Int J Nanomedicine, 2014;9:4723-35.
    PMID: 25336950 DOI: 10.2147/IJN.S65262
    Andrographolide (AG) is one of the most potent labdane diterpenoid-type free radical scavengers available from plant sources. The compound is the principal bioactive component in Andrographis paniculata leaf extracts, and is responsible for anti-inflammatory, anticancer, and immunomodulatory activity. The application of AG in therapeutics, however, is severely constrained, due to its low aqueous solubility, short biological half-life, and poor cellular permeability. Engineered nanoparticles in biodegradable polymer systems were therefore conceived as one solution to aid in further drug-like applications of AG. In this study, a cationic modified poly(lactic-co-glycolic) acid nanosystem was applied for evaluation against experimental mouse hepatotoxic conditions. Biopolymeric nanoparticles of hydrodynamic size of 229.7 ± 17.17 nm and ζ-potential +34.4 ± 1.87 mV facilitated marked restoration in liver functions and oxidative stress markers. Superior dissolution for bioactive AG, hepatic residence, and favorable cytokine regulation in the liver tissues are some of the factors responsible for the newer nanosystem-assisted rapid recovery.
    Matched MeSH terms: Liver/drug effects*
  19. Dhiyaaldeen SM, Amin ZA, Darvish PH, Mustafa IF, Jamil MM, Rouhollahi E, et al.
    BMC Vet Res, 2014;10:961.
    PMID: 25551777 DOI: 10.1186/s12917-014-0303-7
    Non-steroidal anti-inflammatory drugs (NSAIDs) can result in peptic ulcer disease (PUD) which is a common condition worldwide. The aim of this study was to evaluate the antiulcer properties of (1-(4-hydroxy-phenyl)-3-m-tolyl-propenone) (HPTP) chalcone in rats using indomethacin as ulcerogenic agent.
    Matched MeSH terms: Liver/drug effects
  20. Rahim SM, Taha EM, Al-janabi MS, Al-douri BI, Simon KD, Mazlan AG
    PMID: 25435631
    BACKGROUND: Cymbopogon citratus (Poaceae) a tropical perennial herb plant that is widely cultivated to be eaten either fresh with food or dried in tea or soft drink has been reported to possess a number of medicinal and aromatic properties. This study aimed at evaluating the protective effects of C. citratus aqueous extract against liver injury induced by hydrogen peroxide (H2O2), in male rats.

    MATERIALS AND METHODS: Twenty-five rats were randomly divided into five different groups of five animals in each group; (1) Control. (2) Received H2O2 (0.5%) with drinking water. (3), and (4) received H2O2 and C. citratus (100 mg·kg(-1) b wt), vitamin C (250 mg·kg(-1) b wt) respectively. (5), was given C. citratus alone. The treatments were administered for 30 days. Blood samples were collected and serum was used for biochemical assay including liver enzymes activities, total protein, total bilirubin and malonaldehyde, glutathione in serum and liver homogenates. Liver was excised and routinely processed for histological examinations.

    RESULTS: C. citratus attenuated liver damage due to H2O2 administration as indicated by the significant reduction (p<0.05), in the elevated levels of ALT, AST, ALP, LDH, TB, and MDA in serum and liver homogenates; increase in TP and GSH levels in serum and liver homogenates; and improvement of liver histo-pathological changes. These effects of the extract were similar to that of vitamin C which used as antioxidant reference.

    CONCLUSION: C. citratus could effectively ameliorate H2O2-induced oxidative stress and prevent liver injury in male rats.

    Matched MeSH terms: Liver/drug effects
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links