Displaying publications 61 - 80 of 178 in total

Abstract:
Sort:
  1. Pendashteh AR, Fakhru'l-Razi A, Chaibakhsh N, Abdullah LC, Madaeni SS, Abidin ZZ
    J Hazard Mater, 2011 Aug 30;192(2):568-75.
    PMID: 21676540 DOI: 10.1016/j.jhazmat.2011.05.052
    A membrane sequencing batch reactor (MSBR) treating hypersaline oily wastewater was modeled by artificial neural network (ANN). The MSBR operated at different total dissolved solids (TDSs) (35,000; 50,000; 100,000; 150,000; 200,000; 250,000mg/L), various organic loading rates (OLRs) (0.281, 0.563, 1.124, 2.248, and 3.372kg COD/(m(3)day)) and cyclic time (12, 24, and 48h). A feed-forward neural network trained by batch back propagation algorithm was employed to model the MSBR. A set of 193 operational data from the wastewater treatment with the MSBR was used to train the network. The training, validating and testing procedures for the effluent COD, total organic carbon (TOC) and oil and grease (O&G) concentrations were successful and a good correlation was observed between the measured and predicted values. The results showed that at OLR of 2.44kg COD/(m(3)day), TDS of 78,000mg/L and reaction time (RT) of 40h, the average removal rate of COD was 98%. In these conditions, the average effluent COD concentration was less than 100mg/L and met the discharge limits.
    Matched MeSH terms: Membranes, Artificial*
  2. Mansourizadeh A, Ismail AF
    J Hazard Mater, 2009 Nov 15;171(1-3):38-53.
    PMID: 19616376 DOI: 10.1016/j.jhazmat.2009.06.026
    Membrane contactors using microporous membranes for acid gas removal have been extensively reviewed and discussed. The microporous membrane acts as a fixed interface between the gas and the liquid phase without dispersing one phase into another that offers a flexible modular and energy efficient device. The gas absorption process can offer a high selectivity and a high driving force for transport even at low concentrations. Using hollow fiber gas-liquid membrane contactors is a promising alternative to conventional gas absorption systems for acid gas capture from gas streams. Important aspects of membrane contactor as an efficient energy devise for acid gas removal including liquid absorbents, membrane characteristics, combination of membrane and absorbent, mass transfer, membrane modules, model development, advantages and disadvantages were critically discussed. In addition, current status and future potential in research and development of gas-liquid membrane contactors for acid gas removal were also briefly discussed.
    Matched MeSH terms: Membranes, Artificial
  3. Ahmad AL, Chong MF, Bhatia S
    J Hazard Mater, 2009 Nov 15;171(1-3):166-74.
    PMID: 19573986 DOI: 10.1016/j.jhazmat.2009.05.114
    The discharge of palm oil mill effluent (POME) causes serious pollution problems and the membrane based POME treatment is suggested as a solution. Three different designs, namely Design A, B and C distinguished by their different types and orientations of membrane system are proposed. The results at optimum condition proved that the quality of the recovered water for all the designs met the effluent discharge standards imposed by the Department of Environment (DOE). The economic analysis at the optimum condition shows that the total treatment cost for Design A was the highest (RM 115.11/m(3)), followed by Design B (RM 23.64/m(3)) and Design C (RM 7.03/m(3)). In this study, the membrane system operated at high operating pressure with low membrane unit cost is preferable. Design C is chosen as the optimal design for the membrane based POME treatment system based on the lowest total treatment cost.
    Matched MeSH terms: Membranes, Artificial
  4. Naim R, Ismail AF
    J Hazard Mater, 2013 Apr 15;250-251:354-61.
    PMID: 23474409 DOI: 10.1016/j.jhazmat.2013.01.083
    A series of polyetherimide (PEI) hollow fiber membranes with various polymer concentrations (13-16 wt.%) for CO2 stripping process in membrane contactor application was fabricated via wet phase inversion method. The PEI membranes were characterized in terms of liquid entry pressure, contact angle, gas permeation and morphology analysis. CO2 stripping performance was investigated via membrane contactor system in a stainless steel module with aqueous diethanolamine as liquid absorbent. The hollow fiber membranes showed decreasing patterns in gas permeation, contact angle, mean pore size and effective surface porosity with increasing polymer concentration. On the contrary, wetting pressure of PEI membranes has enhanced significantly with polymer concentration. Various polymer concentrations have different effects on the CO2 stripping flux in which membrane with 14 wt.% polymer concentration showed the highest stripping flux of 2.7 × 10(-2)mol/m(2)s. From the performance comparison with other commercial membrane, it is anticipated that the PEI membrane has a good prospect in CO2 stripping via membrane contactor.
    Matched MeSH terms: Membranes, Artificial
  5. Yogarathinam LT, Usman J, Othman MHD, Ismail AF, Goh PS, Gangasalam A, et al.
    J Hazard Mater, 2022 02 15;424(Pt A):127298.
    PMID: 34571470 DOI: 10.1016/j.jhazmat.2021.127298
    In this study, an economic silica based ceramic hollow fiber (HF) microporous membrane was fabricated from guinea cornhusk ash (GCHA). A silica interlayer was coated to form a defect free silica membrane which serves as a support for the formation of thin film composite (TFC) ceramic hollow fiber (HF) membrane for the removal of microplastics (MPs) from aqueous solutions. Polyacrylonitrile (PAN), polyvinyl-chloride (PVC), polyvinylpyrrolidone (PVP) and polymethyl methacrylate (PMMA) are the selected MPs The effects of amine monomer concentration (0.5 wt% and 1 wt%) on the formation of poly (piperazine-amide) layer via interfacial polymerization over the GCHA ceramic support were also investigated. The morphology analysis of TFC GCHA HF membranes revealed the formation of a poly (piperazine-amide) layer with narrow pore arrangement. The pore size of TFC GCHA membrane declined with the formation of poly (piperazine-amide) layer, as evidenced from porosimetry analysis. The increase of amine concentration reduced the porosity and water flux of TFC GCHA HF membranes. During MPs filtration, 1 wt% (piperazine) based TFC GCHA membrane showed a lower transmission percentage of PVP (2.7%) and other suspended MPs also displayed lower transmission. The impact of humic acid and sodium alginate on MPs filtration and seawater pretreatment were also analyzed.
    Matched MeSH terms: Membranes, Artificial*
  6. Pang WY, Ahmad AL, Zaulkiflee ND
    J Environ Manage, 2019 Nov 01;249:109358.
    PMID: 31450197 DOI: 10.1016/j.jenvman.2019.109358
    The aim of this study is to evaluate the performance and antifouling properties of polyethersulfone (PES) membrane incorporated with dual nanofiller, zinc oxide (ZnO) and multi-walled carbon nanotube (MWCNT). The synergistic effect of the these nanofillers in PES membrane is studied by blending different ratio of ZnO/MWCNT nanofiller into the PES membrane. The fabricated membranes were characterized in terms of cross-section and surface morphology, surface hydrophilicity, pore size and porosity. The filtration performance of the membranes was tested using 50 mg/L humic acid (HA) solution as model solution. SEM image and gravimetric evaluation reported that the incorporation of both MWCNT and ZnO into the PES membrane improved porosity significantly up to 46.02%. Lower water contact angle of PES membrane incorporated with equal ratio of MWCNT and ZnO (PES 3) revealed that it has neat PES membrane properties and more hydrophilic membrane surface than single filler. PES 3 outperform other membranes with excellent HA permeate flux of 40.00 L/m2.h and rejection of 88.51%. Due to hydrophilic membrane surface, PES 3 membrane demonstrate efficient antifouling properties with lower relative flux reduction (RFR) and higher flux recovery ratio (FRR). PES 3 also showed notable antibacterial properties with less bacterial attached to the membrane compared to neat PES membrane (PES 0).
    Matched MeSH terms: Membranes, Artificial
  7. Rahmawati R, Bilad MR, Laziz AM, Nordin NAHM, Jusoh N, Putra ZA, et al.
    J Environ Manage, 2019 Nov 01;249:109359.
    PMID: 31404857 DOI: 10.1016/j.jenvman.2019.109359
    Membrane based technologies are highly reliable for water and wastewater treatment, including for removal of total oil and grease from produced water. However, performances of the pressure driven processes are highly restricted by membrane fouling and the application of traditional air bubbling system is limited by their low shear stress due to poor contacts with the membrane surface. This study develops and assesses a novel finned spacer, placed in between vertical panel, for membrane fouling control in submerged plate-and-frame module system for real produced water filtration. Results show that permeability of the panel is enhanced by 87% from 201 to 381 L/(m2 h bar). The spacer system can be operated in switching mode to accommodate two-sided panel aeration. This leads to panel permeability increment by 22% higher than the conventional vertical system. The mechanisms of finned spacer in encouraging the flow trajectory was proven by visual observation and flow simulation. The fins alter the air bubbles flow trajectory toward the membrane surface to effectively scour-off the foulant. Overall results demonstrate the efficacy of the developed spacer in projecting the air bubble trajectory toward the membrane surface and thus significantly enhances membrane panel productivity.
    Matched MeSH terms: Membranes, Artificial
  8. Sajjad Z, Gilani MA, Nizami AS, Bilad MR, Khan AL
    J Environ Manage, 2019 Dec 01;251:109618.
    PMID: 31563603 DOI: 10.1016/j.jenvman.2019.109618
    This paper aims to develop novel hydrophilic ionic liquid membranes using pervaporation for the recovery of biobutanol. Multiple polyvinyl alcohol (PVA) membranes based on three commercial ionic liquids with different loading were prepared for various experimental trials. The ionic liquids selected for the study include tributyl (tetradecyl) phosphonium chloride ([TBTDP][Cl]), tetrabutyl phosphonium bromide ([TBP][Br]) and tributyl methyl phosphonium methylsulphate ([TBMP][MS]). The synthesized membranes were characterized and tested in a custom-built pervaporation set-up. All ionic liquid membranes showed better results with total flux of 1.58 kg/m2h, 1.43 kg/m2h, 1.38 kg/m2h at 30% loading of [TBP][Br], [TBMP][MS] and [TBTDP][Cl] respectively. The comparison of ionic liquid membranes revealed that by incorporating [TBMP]MS to PVA matrix resulted in a maximum separation factor of 147 at 30 wt% loading combined with a relatively higher total flux of 1.43 kg/m2h. Density functional theory (DFT) calculations were also carried out to evaluate the experimental observations along with theoretical studies. The improved permeation properties make these phosphonium based ionic liquid a promising additive in PVA matrix for butanol-water separation under varying temperature conditions.
    Matched MeSH terms: Membranes, Artificial
  9. Bilad MR, Azizo AS, Wirzal MDH, Jia Jia L, Putra ZA, Nordin NAHM, et al.
    J Environ Manage, 2018 Oct 01;223:23-28.
    PMID: 29885561 DOI: 10.1016/j.jenvman.2018.06.007
    Microalgae technology, if managed properly, has promising roles in solving food-water-energy nexus. The Achilles' heel is, however, to lower the costs associated with cultivation and harvesting. As a favorable technique, application of membrane process is strongly limited by membrane fouling. This study evaluates performance of nylon 6,6 nanofiber membrane (NFM) to a conventional polyvinylidene fluoride phase inverted membrane (PVDF PIM) for filtration of Chlorella vulgaris. Results show that nylon 6,6 NFM is superhydrophilic, has higher size of pore opening (0.22 vs 0.18 μm) and higher surface pore density (23 vs 18 pores/μm2) leading to higher permeance (1018 vs 493 L/m2hbar) and better fouling resistant. Such advantages help to outperform the filterability of PVDF PIM by showing much higher steady-state permeance (286 vs 120 L/m2hbar), with comparable biomass retention. In addition, unlike for PVDF PIM, imposing longer relaxation cycles further enhances the performance of the NFM (i.e., 178 L/m2hbar for 0.5 min and 236 L/m2hbar for 5 min). Overall findings confirm the advantages of nylon 6,6 NFM over the PVDF PIM. Such advantages can help to reduce required membrane area and specific aeration demand by enabling higher flux and lowering aeration rate. Nevertheless, developments of nylon 6,6 NFM material with respect to its intrinsic properties, mechanical strength and operational conditions of the panel can still be explored to enhance its competitiveness as a promising fouling resistant membrane material for microalgae filtration.
    Matched MeSH terms: Membranes, Artificial
  10. Shishegaran A, Boushehri AN, Ismail AF
    J Environ Manage, 2020 Jun 15;264:110444.
    PMID: 32217322 DOI: 10.1016/j.jenvman.2020.110444
    Surfactants are the emerging contaminant and cause a detrimental effect on the ecosystem. In this study, an attempt is made to removal anionic surfactant Sodium dodecyl sulfate (SDS) containing wastewater using hydrophilic polyvinylpyrollidone (PVP) (5-15 wt%) modified polyethersulfone (PES) ultrafiltration membrane. The influence of operating variables on membrane performance was also sequentially analyzed using tests and three numerical modeling methods such as multiple linear regression (MLR), multiple Ln-equation regression (MLnER), and gene expression programming (GEP). Contact angle value of 10 wt% PVP modified PES membrane decreased up to 23.8°, whereas the neat PES membrane is 70.7°. This study indicates that the required hydrophilic property was improved in the modified membrane. The water flux and porosity also enhanced in PVP modified PES membranes. In performance evaluation, the optimum operating variable condition of transmembrane pressure (TMP), feed concentration, and the temperature is found to be 3 bar, 100 ppm, and 25 °C, respectively. Among the models, GEP has a good correlation with experimental anionic surfactant SDS filtration data. GEP performs better than other model with respect to statistical parameter and error terms. This study provides an insight into an adaptation of novel numerical modeling methods for the prediction of membrane performance to the treatment of surfactant wastewater.
    Matched MeSH terms: Membranes, Artificial
  11. Yogarathinam LT, Velswamy K, Gangasalam A, Ismail AF, Goh PS, Narayanan A, et al.
    J Environ Manage, 2022 Jan 01;301:113872.
    PMID: 34607142 DOI: 10.1016/j.jenvman.2021.113872
    Effluent originating from cheese production puts pressure onto environment due to its high organic load. Therefore, the main objective of this work was to compare the influence of different process variables (transmembrane pressure (TMP), Reynolds number and feed pH) on whey protein recovery from synthetic and industrial cheese whey using polyethersulfone (PES 30 kDa) membrane in dead-end and cross-flow modes. Analysis on the fouling mechanistic model indicates that cake layer formation is dominant as compared to other pore blocking phenomena evaluated. Among the input variables, pH of whey protein solution has the biggest influence towards membrane flux and protein rejection performances. At pH 4, electrostatic attraction experienced by whey protein molecules prompted a decline in flux. Cross-flow filtration system exhibited a whey rejection value of 0.97 with an average flux of 69.40 L/m2h and at an experimental condition of 250 kPa and 8 for TMP and pH, respectively. The dynamic behavior of whey effluent flux was modeled using machine learning (ML) tool convolutional neural networks (CNN) and recursive one-step prediction scheme was utilized. Linear and non-linear correlation indicated that CNN model (R2 - 0.99) correlated well with the dynamic flux experimental data. PES 30 kDa membrane displayed a total protein rejection coefficient of 0.96 with 55% of water recovery for the industrial cheese whey effluent. Overall, these filtration studies revealed that this dynamic whey flux data studies using the CNN modeling also has a wider scope as it can be applied in sensor tuning to monitor flux online by means of enhancing whey recovery efficiency.
    Matched MeSH terms: Membranes, Artificial
  12. Tan TJ, Wang D, Moraru CI
    J Dairy Sci, 2014;97(8):4759-71.
    PMID: 24881794 DOI: 10.3168/jds.2014-7957
    The main challenge in microfiltration (MF) is membrane fouling, which leads to a significant decline in permeate flux and a change in membrane selectivity over time. This work aims to elucidate the mechanisms of membrane fouling in cold MF of skim milk by identifying and quantifying the proteins and minerals involved in external and internal membrane fouling. Microfiltration was conducted using a 1.4-μm ceramic membrane, at a temperature of 6±1°C, cross-flow velocity of 6m/s, and transmembrane pressure of 159kPa, for 90min. Internal and external foulants were extracted from a ceramic membrane both after a brief contact between the membrane and skim milk, to evaluate instantaneous adsorption of foulants, and after MF. Four foulant streams were collected: weakly attached external foulants, weakly attached internal foulants, strongly attached external foulants, and strongly attached internal foulants. Liquid chromatography coupled with tandem mass spectrometry analysis showed that all major milk proteins were present in all foulant streams. Proteins did appear to be the major cause of membrane fouling. Proteomics analysis of the foulants indicated elevated levels of serum proteins as compared with milk in the foulant fractions collected from the adsorption study. Caseins were preferentially introduced into the fouling layer during MF, when transmembrane pressure was applied, as confirmed both by proteomics and mineral analyses. The knowledge generated in this study advances the understanding of fouling mechanisms in cold MF of skim milk and can be used to identify solutions for minimizing membrane fouling and increasing the efficiency of milk MF.
    Matched MeSH terms: Membranes, Artificial
  13. Rosman N, Salleh WNW, Mohamed MA, Jaafar J, Ismail AF, Harun Z
    J Colloid Interface Sci, 2018 Dec 15;532:236-260.
    PMID: 30092507 DOI: 10.1016/j.jcis.2018.07.118
    Reports of pharmaceuticals exist in surface water and drinking water around the world, indicate they are ineffectively remove from water and wastewater using conventional treatment technologies. The potential of adverse effect of these pharmaceuticals on public health and aquatic life, also their continuos accumulation have raised the development of water treatment technologies. Hybrid treatment processes like membrane filtration and advance oxidation processes (AOPs) are likely to give rise to efficient simultaneous degradation and separation mechanisms. Conventional membrane filtration techniques can remove the majority of contaminants, but the smallest, undegraded, and stabilized pharmaceutical wastes persist in the treated water. After some 20 years, researchers have recognized the important role of AOPs in the treatment of pharmaceutical wastewater because these technologies are capable of oxidizing recalcitrant, toxic, and non-biodigradable compounds into numerous by-products and finally, inert end-products via the intermediacy of hydroxyl and other radicals. Evidently, membranes are subjected to the fouling phenomenon by the contaminants in wastewater, hence resulting in a reduction of clean water flux and increase in energy demand. In such situations, these membrane hybrid AOPs exert a complementary effect in the elimination of membrane fouling, thus enhancing the performance of the membrane. Therefore, in this review, we describe the basic aspects of the removal and transformation of certain pharmaceuticals via membranes and AOPs. In addition, information and evidences on membrane hybrid AOPs in the field of pharmaceutical wastewater treatment is also presented.
    Matched MeSH terms: Membranes, Artificial*
  14. See HH, Hauser PC, Sanagi MM, Ibrahim WA
    J Chromatogr A, 2010 Sep 10;1217(37):5832-8.
    PMID: 20696433 DOI: 10.1016/j.chroma.2010.07.054
    A dynamic supported liquid membrane tip extraction (SLMTE) procedure for the effective extraction and preconcentration of glyphosate (GLYP) and its metabolite aminomethylphosphonic acid (AMPA) in water has been investigated. The SLMTE procedure was performed in a semi-automated dynamic mode and demonstrated a greater performance against a static extraction. Several important extraction parameters such as donor phase pH, cationic carrier concentration, type of membrane solvent, type of acceptor stripping phase, agitation and extraction time were comprehensively optimized. A solution of Aliquat-336, a cationic carrier, in dihexyl ether was selected as the supported liquid incorporated into the membrane phase. Quantification of GLYP and AMPA was carried out using capillary electrophoresis with contactless conductivity detection. An electrolyte solution consisting of 12 mM histidine (His), 8 mM 2-(N-morpholino)ethanesulfonic acid (MES), 75 microM cetyltrimethylammonium bromide (CTAB), 3% methanol, pH 6.3, was used as running buffer. Under the optimum extraction conditions, the method showed good linearity in the range of 0.01-200 microg/L (GLYP) and 0.1-400 microg/L (AMPA), acceptable reproducibility (RSD 5-7%, n=5), low limits of detection of 0.005 microg/L for GLYP and 0.06 microg/L for AMPA, and satisfactory relative recoveries (90-94%). Due to the low cost, the SLMTE device was disposed after each run which additionally eliminated the possibility of carry-over between runs. The validated method was tested for the analysis of both analytes in spiked tap water and river water with good success.
    Matched MeSH terms: Membranes, Artificial
  15. Mamat NA, See HH
    J Chromatogr A, 2015 Aug 7;1406:34-9.
    PMID: 26141273 DOI: 10.1016/j.chroma.2015.06.020
    In this work, a new variation of the electromembrane extraction (EME) approach employing a hollow polymer inclusion membrane (HPIM) was developed. In this method, a HPIM was prepared by casting a solution of the desired proportions of cellulose acetate (CTA), tris(2-ethylhexyl)phosphate (TEHP) and di-(2-ethylhexyl)phosphoric acid (D2EHPA) in dichloromethane on glass capillary tubing. Three basic drugs namely amphetamine, methamphetamine, and 3,4-methylenedioxy-N-methylamphetamine (MDMA) were selected as model analytes to evaluate the extraction performance of this new approach. The drugs were extracted from human plasma samples, through a 20μm thickness HPIM, to an aqueous acceptor solution inside the lumen of the hollow membrane. Parameters affecting the extraction efficiency were investigated in detail. Under the optimized conditions, enrichment factors in the range of 97-103-fold were obtained from 3mL of sample solution with a 10min extraction time and an applied voltage of 300V across the HPIM. The detection limits of the method for the three drugs were in the range of 1.0-2.5ng/mL (at a signal/noise ratio of three), with relative standard deviations of between 6.4% and 7.9%. When the method was applied to spiked plasma samples, the relative recoveries ranged from 99.2% to 100.8%. Enrichment factors of 103, 99 and 97 were obtained for amphetamine, methamphetamine, and MDMA, respectively. A comparison was also made between the newly developed approach and EME using supported liquid membranes (SLM) as well as standard sample preparation methods (liquid-liquid extraction) used by the Toxicology Unit, Department of Chemistry, Malaysia.
    Matched MeSH terms: Membranes, Artificial
  16. Chui MQ, Thang LY, See HH
    J Chromatogr A, 2017 Jan 20;1481:145-151.
    PMID: 28017568 DOI: 10.1016/j.chroma.2016.12.042
    A new approach based on the integration of the free liquid membrane (FLM) into electrokinetic supercharging (EKS) was demonstrated to be a new powerful tool used in order to enhance online preconcentration efficiency in capillary electrophoresis (CE). A small plug of water immiscible organic solvent was used as a membrane interface during the electrokinetic sample injection step in EKS in order to significantly enhance the analyte stacking efficiency. The new online preconcentration strategy was evaluated for the determination of paraquat and diquat present in the environmental water samples. The optimised FLM-EKS conditions employed were as follows: hydrodynamic injection (HI) of 20mM potassium chloride as leading electrolyte at 50mbar for 75s (3% of the total capillary volume) followed by the HI of tris(2-ethylhexyl) phosphate (TEHP) as FLM at a 1mm length (0.1% of the capillary volume). The sample was injected at 10kV for 360s, followed by the HI of 20mM cetyl trimethylammonium bromide (CTAB) as terminating electrolyte at 50mbar for 50s (2% of the total capillary volume). The separation was performed in 12mM ammonium acetate and 30mM NaCl containing 20% MeOH at +25kV with UV detection at 205nm. Under optimised conditions, the sensitivity was enhanced between 1500- and 1866-fold when compared with the typical HI at 50mbar for 50s. The detection limit of the method for paraquat and diquat was 0.15-0.20ng/mL, with RSDs below 5.5%. Relative recoveries in spiked river water were in the range of 95.4-97.5%. A comparison was also made between the proposed approach with sole preconcentration of the field-enhanced sample injection (FASI) and EKS in the absence of the FLM.
    Matched MeSH terms: Membranes, Artificial*
  17. Mamat NA, See HH
    J Chromatogr A, 2017 Jun 30;1504:9-16.
    PMID: 28499598 DOI: 10.1016/j.chroma.2017.05.005
    A new electric-field driven extraction approach based on the integration of a bubbleless electrode into the electromembrane extraction (EME) across hollow polymer inclusion membranes (HPIMs) was demonstrated for the first time. The bubbleless electrode was prepared based on an in-situ synthesised polyacrylamide within a fused silica capillary. The electrode functions as a salt bridge, which conducts the electrical current between the acceptor phase in the lumen of the HPIM and the acceptor solution in the reservoir connected to a high voltage supply through a platinum electrode. Two types of HPIMs were employed, which consisted of desired proportions of cellulose acetate as base polymer, tris(2-ethylhexyl)phosphate as plasticizer, and di-(2-ethylhexyl)phosphoric acid as anionic carrier or Aliquat 336 as cationic carrier, respectively. The EME strategy was evaluated for the simultaneous determination of cationic quaternary ammonium and anionic chlorophenoxy acetic acid herbicides present in the river water, respectively. The analysis was carried out using capillary electrophoresis coupled with UV and contactless conductivity detection. Under the optimised conditions, enrichment factors in the range of 152-185-fold were obtained from 4mL of river water sample with a 20min extraction time and an applied voltage of 3000V. The proposed method provided good linearity with correlation coefficients ranging from 0.9982 to 0.9997 over a concentration range of 1-1000μg/L. The detection limits of the method for the herbicides were in the range of 0.3-0.4μg/L, with relative standard deviations of between 4.8% and 8.5%. The relative recoveries obtained when analysing the spiked river water ranged from 99.1% to 100%. A comparison was also made between the newly developed approach with the conventional EME setup by placing the platinum electrode directly in the lumen of the HPIMs.
    Matched MeSH terms: Membranes, Artificial
  18. Siddiqui MF, Sakinah M, Singh L, Zularisam AW
    J Biotechnol, 2012 Oct 31;161(3):190-7.
    PMID: 22796090 DOI: 10.1016/j.jbiotec.2012.06.029
    Exploring novel biological anti-quorum sensing (QS) agents to control membrane biofouling is of great worth in order to allow sustainable performance of membrane bioreactors (MBRs) for wastewater treatment. In recent studies, QS inhibitors have provided evidence of alternative route to control membrane biofouling. This study investigated the role of Piper betle extract (PBE) as an anti-QS agent to mitigate membrane biofouling. Results demonstrated the occurrence of the N-acyl-homoserine-lactone (AHL) autoinducers (AIs), correlate QS activity and membrane biofouling mitigation. The AIs production in bioreactor was confirmed using an indicator strain Agrobacterium tumefaciens (NTL4) harboring plasmid pZLR4. Moreover, three different AHLs were found in biocake using thin layer chromatographic analysis. An increase in extracellular polymeric substances (EPS) and transmembrane pressure (TMP) was observed with AHL activity of the biocake during continuous MBR operation, which shows that membrane biofouling was in close relationship with QS activity. PBE was verified to mitigate membrane biofouling via inhibiting AIs production. SEM analysis further confirmed the effect of PBE on EPS and biofilm formation. These results exhibited that PBE could be a novel agent to target AIs for mitigation of membrane biofouling. Further work can be carried out to purify the active compound of Piper betle extract to target the QS to mitigate membrane biofouling.
    Matched MeSH terms: Membranes, Artificial*
  19. Zare-Zardini H, Amiri A, Shanbedi M, Taheri-Kafrani A, Kazi SN, Chew BT, et al.
    J Biomed Mater Res A, 2015 Sep;103(9):2959-65.
    PMID: 25690431 DOI: 10.1002/jbm.a.35425
    One of the novel applications of the nanostructures is the modification and development of membranes for hemocompatibility of hemodialysis. The toxicity and hemocompatibility of Ag nanoparticles and arginine-treated multiwalled carbon nanotubes (MWNT-Arg) and possibility of their application in membrane technology are investigated here. MWNT-Arg is prepared by amidation reactions, followed by characterization by FTIR spectroscopy, Raman spectroscopy, and thermogravimetric analysis. The results showed a good hemocompatibility and the hemolytic rates in the presence of both MWNT-Arg and Ag nanoparticles. The hemolytic rate of Ag nanoparticles was lower than that of MWNT-Arg. In vivo study revealed that Ag nanoparticle and MWNT-Arg decreased Hematocrit and mean number of red blood cells (RBC) statistically at concentration of 100 µg mL(-1) . The mean decrease of RBC and Hematocrit for Ag nanoparticles (18% for Hematocrit and 5.8 × 1,000,000/µL) was more than MWNT-Arg (20% for Hematocrit and 6 × 1000000/µL). In addition, MWNT-Arg and Ag nanoparticles had a direct influence on the White Blood Cell (WBC) drop. Regarding both nanostructures, although the number of WBC increased in initial concentration, it decreased significantly at the concentration of 100 µg mL(-1) . It is worth mentioning that the toxicity of Ag nanoparticle on WBC was higher than that of MWNT-Arg. Because of potent antimicrobial activity and relative hemocompatibility, MWNT-Arg could be considered as a new candidate for biomedical applications in the future especially for hemodialysis membranes.
    Matched MeSH terms: Membranes, Artificial
  20. Kouhi M, Jayarama Reddy V, Fathi M, Shamanian M, Valipouri A, Ramakrishna S
    J Biomed Mater Res A, 2019 06;107(6):1154-1165.
    PMID: 30636094 DOI: 10.1002/jbm.a.36607
    Guided bone regeneration (GBR) has been established to be an effective method for the repair of defective tissues, which is based on isolating bone defects with a barrier membrane for faster tissue reconstruction. The aim of the present study is to develop poly (hydroxybutyrate-co-3-hydroxyvalerate) (PHBV)/fibrinogen (FG)/bredigite (BR) membranes with applicability in GBR. BR nanoparticles were synthesized through a sol-gel method and characterized using transmission electron microscopy and X-ray diffractometer. PHBV, PHBV/FG, and PHBV/FG/BR membranes were fabricated using electrospinning and characterized by scanning electron microscopy, Fourier transform infrared spectroscopy, contact angle, pore size, thermogravimetric analysis and tensile strength. The electrospun PHBV, PHBV/FG, and PHBV/FG/BR nanofibers were successfully obtained with the mean diameter ranging 240-410 nm. The results showed that Young's modulus and ultimate strength of the PHBV membrane reduced upon blending with FG and increased by further incorporation of BR nanoparticles, Moreover hydrophilicity of the PHBV membrane improved on addition of FG and BR. The in vitro degradation assay demonstrated that incorporation of FG and BR into PHBV matrix increased its hydrolytic degradation. Cell-membrane interactions were studied by culturing human fetal osteoblast cells on the fabricated membrane. According to the obtained results, osteoblasts seeded on PHBV/FG/BR displayed higher cell adhesion and proliferation compared to PHBV and PHBV/FG membrane. Furthermore, alkaline phosphatase activity and alizarin red-s staining indicated enhanced osteogenic differentiation and mineralization of cells on PHBV/FG/BR membranes. The results demonstrated that developed electrospun PHBV/FG/BR nanofibrous mats have desired potential as a barrier membrane for guided bone tissue engineering. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 107A: 1154-1165, 2019.
    Matched MeSH terms: Membranes, Artificial*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links