Displaying publications 61 - 80 of 237 in total

Abstract:
Sort:
  1. Islam MA, Khandker SS, Kotyla PJ, Hassan R
    Front Immunol, 2020;11:1477.
    PMID: 32793202 DOI: 10.3389/fimmu.2020.01477
    Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by multiple organ involvement, including the skin, joints, kidneys, lungs, central nervous system and the haematopoietic system, with a large number of complications. Despite years of study, the etiology of SLE remains unclear; thus, safe and specifically targeted therapies are lacking. In the last 20 years, researchers have explored the potential of nutritional factors on SLE and have suggested complementary treatment options through diet. This study systematically reviews and evaluates the clinical and preclinical scientific evidence of diet and dietary supplementation that either alleviate or exacerbate the symptoms of SLE. For this review, a systematic literature search was conducted using PubMed, Scopus and Google Scholar databases only for articles written in the English language. Based on the currently published literature, it was observed that a low-calorie and low-protein diet with high contents of fiber, polyunsaturated fatty acids, vitamins, minerals and polyphenols contain sufficient potential macronutrients and micronutrients to regulate the activity of the overall disease by modulating the inflammation and immune functions of SLE.
    Matched MeSH terms: Minerals/therapeutic use
  2. Liu BH, Chong FL, Yuan CC, Liu YL, Yang HM, Wang WW, et al.
    Front Pharmacol, 2020;11:586725.
    PMID: 33708111 DOI: 10.3389/fphar.2020.586725
    Background: Recently, chronic kidney disease (CKD)-mineral and bone disorder (MBD) has become one of common complications occurring in CKD patients. Therefore, development of a new treatment for CKD-MBD is very important in the clinic. In China, Fucoidan (FPS), a natural compound of Laminaria japonica has been frequently used to improve renal dysfunction in CKD. However, it remains elusive whether FPS can ameliorate CKD-MBD. FGF23-Klotho signaling axis is reported to be useful for regulating mineral and bone metabolic disorder in CKD-MBD. This study thereby aimed to clarify therapeutic effects of FPS in the CKD-MBD model rats and its underlying mechanisms in vivo and in vitro, compared to Calcitriol (CTR). Methods: All male rats were divided into four groups: Sham, CKD-MBD, FPS and CTR. The CKD-MBD rat models were induced by adenine administration and uninephrectomy, and received either FPS or CTR or vehicle after induction of renal injury for 21 days. The changes in parameters related to renal dysfunction and renal tubulointerstitial damage, calcium-phosphorus metabolic disorder and bone lesion were analyzed, respectively. Furthermore, at sacrifice, the kidneys and bone were isolated for histomorphometry, immunohistochemistry and Western blot. In vitro, the murine NRK-52E cells were used to investigate regulative actions of FPS or CTR on FGF23-Klotho signaling axis, ERK1/2-SGK1-NHERF-1-NaPi-2a pathway and Klotho deficiency. Results: Using the modified CKD-MBD rat model and the cultured NRK-52E cells, we indicated that FPS and CTR alleviated renal dysfunction and renal tubulointerstitial damage, improved calcium-phosphorus metabolic disorder and bone lesion, and regulated FGF23-Klotho signaling axis and ERK1/2-SGK1-NHERF-1-NaPi-2a pathway in the kidney. In addition, using the shRNA-Klotho plasmid-transfected cells, we also detected, FPS accurately activated ERK1/2-SGK1-NHERF-1-NaPi-2a pathway through Klotho loss reversal. Conclusion: In this study, we emphatically demonstrated that FPS, a natural anti-renal dysfunction drug, similar to CTR, improves renal injury-related calcium-phosphorus metabolic disorder and bone abnormality in the CKD-MBD model rats. More importantly, we firstly found that beneficial effects in vivo and in vitro of FPS on phosphorus reabsorption are closely associated with regulation of FGF23-Klotho signaling axis and ERK1/2-SGK1-NHERF-1-NaPi-2a pathway in the kidney. This study provided pharmacological evidences that FPS directly contributes to the treatment of CKD-MBD.
    Matched MeSH terms: Minerals
  3. Yeo BH, Tang TK, Wong SF, Tan CP, Wang Y, Cheong LZ, et al.
    Front Pharmacol, 2021;12:631136.
    PMID: 33833681 DOI: 10.3389/fphar.2021.631136
    Edible bird's nest (EBN) is recognized as a nourishing food among Chinese people. The efficacy of EBN was stated in the records of traditional Chinese medicine and its activities have been reported in many researches. Malaysia is the second largest exporter of EBNs in the world, after Indonesia. For many years, EBN trade to China was not regulated until August 2011, when a safety alert was triggered for the consumption of EBNs. China banned the import of EBNs from Malaysia and Indonesia due to high level of nitrite. Since then, the Malaysia government has formulated Malaysia Standards for swiftlet farming (MS 2273:2012), edible bird's nest processing plant design and management (MS 2333:2010), and edible bird's nest product quality (MS 2334:2011) to enable the industry to meet the specified standards for the export to China. On the other hand, Indonesia's EBN industry formulated a standard operating procedure (SOP) for exportation to China. Both countries can export EBNs to China by complying with the standards and SOPs. EBN contaminants may include but not limited to nitrite, heavy metals, excessive minerals, fungi, bacteria, and mites. The possible source of contaminants may come from the swiftlet farms and the swiftlets or introduced during processing, storage, and transportation of EBNs, or adulterants. Swiftlet house design and management, and EBN processing affect the bird's nest color. Degradation of its optical quality has an impact on the selling price, and color changes are tied together with nitrite level. In this review, the current and future prospects of EBNs in Malaysia and Indonesia in terms of their quality, and the research on the contaminants and their effects on EBN color changes are discussed.
    Matched MeSH terms: Minerals
  4. Ahmad W, Khan MA, Ashraf K, Ahmad A, Daud Ali M, Ansari MN, et al.
    Front Pharmacol, 2021;12:597990.
    PMID: 33935697 DOI: 10.3389/fphar.2021.597990
    Safoof-e-Pathar phori (SPP) is an Unani poly-herbomineral formulation, which has for a long time been used as a medicine due to its antiurolithiatic activity, as per the Unani Pharmacopoeia. This powder formulation is prepared using six different plant/mineral constituents. In this study, we explored the antiurolithiatic and antioxidant potentials of SPP (at 700 and 1,000 mg/kg) in albino Wistar rats with urolithiasis induced by 0.75% ethylene glycol (EG) and 1% ammonium chloride (AC). Long-term oral toxicity studies were performed according to the Organization for Economic Co-operation and Development (OECD) guidelines for 90 days at an oral dose of 700 mg/kg of SPP. The EG urolithiatic toxicant group had significantly higher levels of urinary calcium, serum creatinine, blood urea, and tissue lipid peroxidation and significantly (p < 0.001 vs control) lower levels of urinary sodium and potassium than the normal control group. Histopathological examination revealed the presence of refractile crystals in the tubular epithelial cell and damage to proximal tubular epithelium in the toxicant group but not in the SPP treatment groups. Treatment of SPP at 700 and 1,000 mg/kg significantly (p < 0.001 vs toxicant) lowered urinary calcium, serum creatinine, blood urea, and lipid peroxidation in urolithiatic rats, 21 days after induction of urolithiasis compared to the toxicant group. A long-term oral toxicity study revealed the normal growth of animals without any significant change in hematological, hepatic, and renal parameters; there was no evidence of abnormal histology of the heart, kidney, liver, spleen, or stomach tissues. These results suggest the usefulness of SPP as an antiurolithiatic and an antioxidant agent, and long-term daily oral consumption of SPP was found to be safe in albino Wistar rats for up to 3 months. Thus, SPP may be safe for clinical use as an antiurolithiatic formulation.
    Matched MeSH terms: Minerals
  5. Stevenson MA, McGowan S, Anderson NJ, Foy RH, Leavitt PR, McElarney YR, et al.
    Glob Chang Biol, 2016 Apr;22(4):1490-504.
    PMID: 26666434 DOI: 10.1111/gcb.13194
    Planted forests are increasing in many upland regions worldwide, but knowledge about their potential effects on algal communities of catchment lakes is relatively unknown. Here, the effects of afforestation were investigated using palaeolimnology at six upland lake sites in the north-west of Ireland subject to different extents of forest plantation cover (4-64% of catchment area). (210) Pb-dated sediment cores were analysed for carotenoid pigments from algae, stable isotopes of bulk carbon (δ(13) C) and nitrogen (δ(15) N), and C/N ratios. In lakes with >50% of their catchment area covered by plantations, there were two- to sixfold increases in pigments from cryptophytes (alloxanthin) and significant but lower increases (39-116%) in those from colonial cyanobacteria (canthaxanthin), but no response from biomarkers of total algal abundance (β-carotene). In contrast, lakes in catchments with <20% afforestation exhibited no consistent response to forestry practices, although all lakes exhibited fluctuations in pigments and geochemical variables due to peat cutting and upland grazing prior to forest plantation. Taken together, patterns suggest that increases in cyanobacteria and cryptophyte abundance reflect a combination of mineral and nutrient enrichment associated with forest fertilization and organic matter influx which may have facilitated growth of mixotrophic taxa. This study demonstrates that planted forests can alter the abundance and community structure of algae in upland humic lakes of Ireland and Northern Ireland, despite long histories of prior catchment disturbance.
    Matched MeSH terms: Minerals
  6. Levin LA, Wei CL, Dunn DC, Amon DJ, Ashford OS, Cheung WWL, et al.
    Glob Chang Biol, 2020 09;26(9):4664-4678.
    PMID: 32531093 DOI: 10.1111/gcb.15223
    Climate change manifestation in the ocean, through warming, oxygen loss, increasing acidification, and changing particulate organic carbon flux (one metric of altered food supply), is projected to affect most deep-ocean ecosystems concomitantly with increasing direct human disturbance. Climate drivers will alter deep-sea biodiversity and associated ecosystem services, and may interact with disturbance from resource extraction activities or even climate geoengineering. We suggest that to ensure the effective management of increasing use of the deep ocean (e.g., for bottom fishing, oil and gas extraction, and deep-seabed mining), environmental management and developing regulations must consider climate change. Strategic planning, impact assessment and monitoring, spatial management, application of the precautionary approach, and full-cost accounting of extraction activities should embrace climate consciousness. Coupled climate and biological modeling approaches applied in the water and on the seafloor can help accomplish this goal. For example, Earth-System Model projections of climate-change parameters at the seafloor reveal heterogeneity in projected climate hazard and time of emergence (beyond natural variability) in regions targeted for deep-seabed mining. Models that combine climate-induced changes in ocean circulation with particle tracking predict altered transport of early life stages (larvae) under climate change. Habitat suitability models can help assess the consequences of altered larval dispersal, predict climate refugia, and identify vulnerable regions for multiple species under climate change. Engaging the deep observing community can support the necessary data provisioning to mainstream climate into the development of environmental management plans. To illustrate this approach, we focus on deep-seabed mining and the International Seabed Authority, whose mandates include regulation of all mineral-related activities in international waters and protecting the marine environment from the harmful effects of mining. However, achieving deep-ocean sustainability under the UN Sustainable Development Goals will require integration of climate consideration across all policy sectors.
    Matched MeSH terms: Minerals
  7. Hu SJ, Koo WK, Tan KL
    Health Phys, 1984 Feb;46(2):452-5.
    PMID: 6693279
    Matched MeSH terms: Minerals/analysis*
  8. Hu SJ, Kandaiya S
    Health Phys, 1985 Nov;49(5):1003-7.
    PMID: 4066325
    Matched MeSH terms: Minerals/analysis
  9. Ngatiman M, Jami MS, Abu Bakar MR, Subramaniam V, Loh SK
    Heliyon, 2021 Jan;7(1):e05931.
    PMID: 33490684 DOI: 10.1016/j.heliyon.2021.e05931
    The formation of struvite crystals or magnesium ammonium phosphate (MgNH4PO4) in palm oil mill effluent (POME) occurs as early as in the secondary stage of POME treatment system. Its growth continues in the subsequent tertiary treatment which reduces piping diameter, thus affecting POME treatment efficiency. Hypothesis. The beneficial use of the crystal is the motivation. This occurrence is rarely reported in scientific articles despite being a common problem faced by palm oil millers. The aim of this study is to characterize struvite crystals found in an anaerobic digester of a POME treatment facility in terms of their physical and chemical aspects. The compositions, morphology and properties of these crystals were determined via energy dispersive spectroscopy (EDS), elemental analysis, scanning electron microscopy (SEM) and x-ray diffraction (XRD). Solubility tests were carried out to establish solubility curve for struvite from POME. Finally, crystal growth experiment was done applying reaction crystallization method to demonstrate struvite precipitation from POME. Results showed that high phosphorous (P) (24.85 wt%) and magnesium (Mg) (21.33 wt%) content was found in the struvite sample. Elemental analysis detected carbon (C), hydrogen (H), nitrogen (N) and sulfur (S) below 4 wt%. The crystals analysed by XRD in this study were confirmed as struvite with 94.8% struvite mineral detected from its total volume. Having an orthorhombic crystal system, struvite crystals from POME recorded an average density of 1.701 g cm-3. Solubility curve of struvite from POME was established with maximum solubility of 275.6 mg L-1 at pH 3 and temperature 40 °C. Minimum solubility of 123.6 mg L-1 was recorded at pH 7 and temperature 25 °C. Crystal growth experiment utilizing POME as the source medium managed to achieve 67% reduction in phosphorous content. This study concluded that there is a potential of harnessing valuable nutrients from POME in the form of struvite. Struvite precipitation technology can be adapted in the management of POME in order to achieve maximum utilization of the nutrients that are still abundant in POME. At the same time maximization of nutrient extractions from POME will also reduce pollutants loading in the final discharge.
    Matched MeSH terms: Minerals
  10. Omale SO, Choong TSY, Abdullah LC, Siajam SI, Yip MW
    Heliyon, 2019 Oct;5(10):e02602.
    PMID: 31667417 DOI: 10.1016/j.heliyon.2019.e02602
    Iron and steel industries are among the contributors of CO2 emission in large volume into the atmosphere, causing detrimental effects to the environment and the ecosystem at large scale. These industries also generate solid wastes in the form of electric arc furnace (EAF) slag during operations which result in about 10-15% slag wastes per ton of steel produced. In this study, the EAF slags from an iron and steel-making factory in Klang, Malaysia was utilized for CO2 sequestration through direct aqueous mineral carbonation. According to the surface area analysis, the fresh EAF slag has a mesoporous structure, its elemental composition shows the presence of 20.91 wt.% of CaO that was used for the sequestration of CO2 through carbonation. The sequestration capacity was found to be 58.36 g CO2/kg of slag at ambient temperature in 3 h, with the liquid/solid (L/S) ratio of 5:1 and using <63μm particle size. Moreover, the shrinking core model (SCM) was used to analyze the solid-fluid reaction in a heterogeneous phase and the CO2 sequestration shows to be controlled by the product layer phase. The EAF slag is demonstrated to have the potential of CO2 sequestration at ambient temperature.
    Matched MeSH terms: Minerals
  11. Fung SY, Cheong PCH, Tan NH, Ng ST, Tan CS
    IUBMB Life, 2019 07;71(7):821-826.
    PMID: 30629799 DOI: 10.1002/iub.2006
    Sclerotial powder of a cultivated species of the Tiger Milk Mushroom, Lignosus cameronensis was analysed for its nutritional components and compared against species of the same genus, Lignosus rhinocerus and Lignosus tigris. All three species have been used by indigenous tribes in Peninsular Malaysia as medicinal mushrooms. Content of carbohydrate, fibre, mineral, amino acid, palatable index, fat, ash and moisture were determined. L. cameronensis sclerotial material consists of carbohydrate (79.7%), protein (12.4%) and dietary fibre (5.4%) with low fat (1.7%) and no free sugar. It has the highest content of total carbohydrate (791 g kg-1 ), energy value (3,700 kcal kg-1 ) and calcium (0.85 g kg-1 ). The crude protein content (123 g kg-1 ) is comparable to that of L. rhinocerus with its main amino acids consisting of glutamic acid, aspartic acid and leucine. The umami index is determined to be 0.27. The total essential amino acid (45 g kg-1 ) is comparable to that of L. tigris. The main mineral is potassium (1.51 g kg-1 ) and the Na/K ratio was <0.6. Heavy metals such as mercury, cadmium, lead and arsenic were absent. L. cameronensis has the highest amount of food energy, total carbohydrate and calcium compared to those of both L. rhinocerus and L. tigris. The essential amino acids comprised almost 40% of the total amino acid content, slightly more than that reported from sclerotial powder of the L. tigris. © 2019 IUBMB Life, 9999(9999):1-6, 2019.
    Matched MeSH terms: Minerals/analysis*
  12. Kong, C. K., Tan, Y. N., Chye, F. Y., Sit, N. W.
    MyJurnal
    The edible shoots of Dendrocalamus asper (family Poaceae) is an underutilised food. The
    present work was conducted to evaluate the nutritional compositions, biological activities, and
    phytochemical contents of the shoots of D. asper obtained from different regions of Malaysia,
    Peninsular (DP) and East Malaysia (DS). The nutritional analysis was conducted using the
    Official Methods of Analysis of the AOAC International. All minerals were quantified using
    an inductively coupled plasma-mass spectrometer, except for potassium which was measured
    using a flame atomic absorption spectrometer. Total phenolic content (TPC) was determined
    using the Folin-Ciocalteu method. Antibacterial and antifungal activities were assayed using
    a colourimetric broth microdilution method, while antioxidant activity was tested using DPPH
    radical scavenging activity, ferric-reducing antioxidant power, and cellular antioxidant activity (CAA) assays. Enzyme inhibitory activities were examined using α-amylase and α-glucosidase. Both bamboo shoots (boiled at 100°C for 20 min) were high in moisture (> 93 g/100 g
    FW), crude protein (> 21 g/100 g DW), and crude fibre contents (> 9 g/100 g DW), but low in
    fat content (< 4 g/100 g DW). Potassium was the most abundant mineral at 205.67 and 203.83
    µg/100 g DW of bamboo shoots of DP and DS, respectively. The extracts (hexane, ethyl
    acetate, ethanol, and water) of both shoots showed stronger antifungal activity than antibacterial activity against selected human pathogens. All extracts of DP shoots demonstrated higher
    CAA in HeLa cells and α-amylase inhibitory activity than that of DS shoots. In contrast, the
    extracts of DS shoots exhibited stronger inhibition on α-glucosidase and contained higher
    TPC than that of DP shoots. The D. asper shoots obtained from the Peninsular Malaysia and
    East Malaysia contained different types of secondary metabolites which account for the differences in the biological activities. In conclusion, D. asper shoots have potential as a nutritional
    and functional food.
    Matched MeSH terms: Minerals
  13. Ho, L.H., Noor Aziah, A.A., Rajeev Bhat
    MyJurnal
    The banana pseudo-stem is not currently utilised in the food industry. The aim of this research was to investigate the chemical and pasting profile of banana pseudo-stem flour (BPF). Wheat flour were substituted with BPF (0, 5, 15 and 30%) and the pasting profile were determined. Results from mineral analysis showed that the levels of sodium (Na), potassium (K), calcium (Ca), magnesium (Mg) and phosphorus (P) were higher than those of iron (Fe), zinc (Zn) and manganese (Mn). The BPF had a 0.04% total titratable acidity (TTA) and a total soluble solid (TSS) of 1.30⁰ Brix with pH 5.41. BPF contained 28.26% total starch, 12.81% resistant starch and a total digestible starch value of 15.45%. An increased substitution level of BPF into wheat flour significantly (p
    Matched MeSH terms: Minerals
  14. Che Othman, S.F., Noor Aziah, A.A., Ahmad, R.
    MyJurnal
    This research was conducted to evaluate the effects of supplementation of jackfruit puree on probiotic (Lactobacillus acidophilus FTDC 1295) in terms of cell count, viability and nutritional value of dadih. Four samples of dadih were prepared in this investigation; Control, Jackfruit dadih, Probiotic dadih and Jackfruit Probiotic dadih (Control, ConJD, ConPD and JPD respectively). Results revealed that dadih supplemented with jackfruit puree (JPD) directly improved the probiotic cell counts which are significantly higher than the dadih without jackfruit puree (ConPD). The high probiotic viability in dadih (ConPD 92%; JPD 96%) indicated that it can be an effective probiotic delivery vehicle. The chemical compositions (moisture, total solids, fat, protein, mineral, organic acid, and pH) showed variations in its pattern due to the differential in formulations and the incorporations of probiotic bacteria. In addition, the Total Phenolic Content and the antioxidant capacity were reported to be the highest in dadih supplemented with jackfruit puree and probiotic (JPD) as compared with other dadih samples. These are attributed by the presence of jackfruit puree and probiotic in the samples which effectively increased the total phenolic content which directly increase the antioxidant activity
    Matched MeSH terms: Minerals
  15. Nurul, S.R., Asmah, R
    MyJurnal
    The present work sought to investigate the nutritional composition and phytochemical properties of red pitaya (Hylocereus polyrhizus) juices from Malaysia and Australia and to determine the optimum ethanol concentration (in the range of 0 – 100% ethanol) for the extraction of phenolic, flavonoid and betacyanin contents. The predominant macronutrient in red pitaya juice was carbohydrate while potassium and vitamin A were the major mineral and vitamin content. Red pitaya juice from Malaysia achieved optimal total phenolic content at 20% of ethanol (20 mL ethanol in 100 mL water, v/v); total flavonoid content at 60% (v/v); and betacyanin content at 0% (v/v). Red pitaya juice from Australia achieved the maximum total phenolic content at 60% (v/v); total flavonoid content at 20% (v/v); and betacyanin content at 80% (v/v). Nutritional composition and the phytochemical properties of red pitaya in Malaysia and Australia were significantly different suggested the role of environmental factors like soil and climate on the phytochemical properties of red pitaya.
    Matched MeSH terms: Minerals
  16. Megat Rusydi, M.R., Azrina, A.
    MyJurnal
    Legume is a plant in the family of Fabacae or Leguminosae that rich in protein, carbohydrate, dietary fibre, and minerals. Germination of legume causes some important changes in the biochemical and a nutritional characteristic of the legumes that may be beneficial to human’s health and nutritional status. This study was carried out to determine the effect of germination on total phenolic, tannin and phytic acid contents of soy beans and peanut. The process of germination was carried out by soaking legumes in water for 6 hours, followed by germinating them in wet muslin cloth for 48 hours. After germination, samples were dried and stored in refrigerator before analysis. Total phenolic, tannin and phytic acid were determined spectrophotometrically. Total phenolic contents were decreased significantly (p
    Matched MeSH terms: Minerals
  17. Rajan, Nithiya Shanmuga, Bhat,Rajeev, Karim, A.A.
    MyJurnal
    Unripe and ripe kundang fruits (Bouea macrophylla Griffith) is either consumed fresh or is cooked in Malaysia. In this study composition of unripe and ripe fruits (proximate, amino acids profile, minerals and heavy metal contents) were evaluated. Results obtained showed unripe kundang fruit to possess higher moisture, ash, crude lipid, crude fiber and crude protein contents than the ripe fruits. With regard to amino acid contents, unripe fruits had higher content of essential amino acids. The unripe and ripe fruits were found to be rich in essential minerals with potassium (K) to be in abundance. Heavy metals such as cadmium, nickel, mercury, lead and arsenic, were detected in trace amounts (< 5.0 mg/kg) in both unripe and ripe fruits. Through this investigation, it is concluded that both unripe and ripe fruits to posses’ adequate amount of nutritionally important compounds beneficial to human health and can be explored for commercial purposes.
    Matched MeSH terms: Minerals
  18. Fatimah, A.M.Z., Norazian, M.H., Rashidi, O.
    MyJurnal
    Ulam or traditional vegetables in Malaysia comprise more than 120 species representing various
    families ranging from groundcovers, shrubs to trees. The leaves, shoots, flowers, fruits, roots and rhizomes of the vegetables are eaten fresh as salad or cooked and are consumed to add variety and flavor to the diet, as well as for their health benefits. Ulam species are rich in carbohydrate, protein, mineral and vitamin. This study established that ulam species differ greatly with respect to types and concentrations of carotenoids in leaves. A total of 10 species were evaluated for quantitative and qualitative carotenoid composition through spectrophotometry and HPLC analysis. The main carotenoids identified in these selected ulam were lutein, neoxanthin, violaxanthin, zeaxanthin and β-carotene. The ratio of these carotenoids varies between species.
    Matched MeSH terms: Minerals
  19. Ricca, R.N., Jami, Mohammed Saedi, Alam, Md. Zahangir
    MyJurnal
    This work aims at optimizing the media constituents for citric acid production from oil palm empty fruit bunches (EFB) as renewable resource using artificial neural networks (ANN) approach. The bioconversion process was done through solid state bioconversion using Aspergillus niger. ANN model was built using MATLAB software. A dataset consists of 20 runs from our previous work was used to develop ANN. The predictive and generalization ability of ANN and the results of RSM were compared. The determination coefficients (R2-value) for ANN and RSM models were 0.997 and 0.985, respectively, indicating the superiority of ANN in capturing the non-linear behavior of the system. Validation process was done and the maximum citric acid production (147.74 g/kg-EFB) was achieved using the optimal solution from ANN which consists of 6.1% sucrose, 9.2% mineral solution and 15.0% inoculum.
    Matched MeSH terms: Minerals
  20. Nurraihana, H., Norfarizan-Hanoon, N.A.
    MyJurnal
    Strobilanthes crispus (S. crispus) is an herbal medicine plant which is native to countries from Madagascar to Indonesia. The plants contained high amount of mineral content and vitamin C, B1 and B2. This plant are used in medicinal and to treat a variety of ailments in the various traditional systems of medicine. Phytochemical investigations have revealed that the plant contain polyphenols, flavonoids, catechins, alkaloids, caffeine, tannins, compounds known to possess multiple health beneficial effects. Preclinical studies have shown that the plant possess antioxidant, free radical scavenging, anticancer, antidiabetic, antimicrobial, wound healing and antiulcerogenic activities. This review presents the comprehensive overview of phytochemical constituents, pharmacological and toxicological properties of S. crispus and to provide preliminary information for future research and for commercial exploitation.
    Matched MeSH terms: Minerals
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links